################################################################################# ## penta-classifier-prototype ################################################################################# ## Author: AbstractPhil ## Assistant: Claude Opus 4.1 ################################################################################# ## License Apache - cite with care and share with passionate individuals. ## ## This tiny model somehow defeated all my larger variants. ## The first model showing direct evidence of potential pentachora scaling. ## No pretraining, pure noise. Nothing bulky or extra, just run it. ## ## Somehow, this model contains 60+ classifiers in 3 pentachora. ## I'm still uncertain as to why, as it defeated the projections. ## I need additional research, additional time. But here's the model. ## ## This is based on one of my earlier prototypes and thus is labeled. ## Somehow over the development it fell apart, today I put it together again. ## ################################################################################# import torch import torch.nn as nn import torch.nn.functional as F from torchvision import datasets, transforms from torch.utils.data import DataLoader import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm from torch.utils.tensorboard import SummaryWriter from huggingface_hub import HfApi, create_repo, upload_folder from safetensors.torch import save_file, load_file import os import json import hashlib from datetime import datetime from google.colab import userdata # ============== SETUP HF AND PATHS ============== HF_TOKEN = userdata.get('HF_TOKEN') REPO_ID = "AbstractPhil/penta-classifier-prototype" # Create unique run ID based on timestamp and config run_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") config_str = f"emnist_byclass_b1024_lr1e-3_{run_timestamp}" run_hash = hashlib.md5(config_str.encode()).hexdigest()[:8] # Local directories os.makedirs("checkpoints", exist_ok=True) os.makedirs("tensorboard_logs", exist_ok=True) # TensorBoard setup writer = SummaryWriter(f'tensorboard_logs/{run_hash}') # Initialize HF API api = HfApi() try: create_repo(REPO_ID, repo_type="model", token=HF_TOKEN, exist_ok=True) print(f"Using HuggingFace repo: {REPO_ID}") except Exception as e: print(f"Repo setup: {e}") # ============== CONFIGURATION ============== device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") if device.type == "cuda": print(f"GPU: {torch.cuda.get_device_name(0)}") print(f"Memory Allocated: {torch.cuda.memory_allocated(0) / 1e9:.2f} GB") torch.backends.cudnn.benchmark = True torch.backends.cudnn.enabled = True # Hyperparameters config = { "input_dim": 28 * 28, "base_dim": 64, "batch_size": 1024, "epochs": 5, "initial_lr": 1e-3, "temp_contrastive": 0.1, "lambda_contrastive": 0.5, "lambda_cayley": 0.01, "dataset": "EMNIST_byclass", "run_hash": run_hash, "timestamp": run_timestamp } # Save config config_path = f"checkpoints/config_{run_hash}.json" with open(config_path, 'w') as f: json.dump(config, f, indent=2) # Log config to TensorBoard writer.add_text('Config', json.dumps(config, indent=2), 0) # ============== DATASET ============== transform = transforms.Compose([ transforms.ToTensor(), transforms.Lambda(lambda x: x.view(-1)) ]) train_dataset = datasets.EMNIST(root="./data", split='byclass', train=True, transform=transform, download=True) test_dataset = datasets.EMNIST(root="./data", split='byclass', train=False, transform=transform, download=True) num_classes = len(train_dataset.classes) config["num_classes"] = num_classes train_loader = DataLoader(train_dataset, batch_size=config["batch_size"], pin_memory=True, shuffle=True, num_workers=4, prefetch_factor=8) test_loader = DataLoader(test_dataset, batch_size=config["batch_size"], pin_memory=True, shuffle=False, num_workers=4, prefetch_factor=8) print(f"Train: {len(train_dataset)} samples, Test: {len(test_dataset)} samples") print(f"Classes: {num_classes}") # ============== MODEL DEFINITIONS ============== class AdaptiveEncoder(nn.Module): """Multi-layer encoder with normalization and multi-scale outputs""" def __init__(self, input_dim, base_dim=128): super().__init__() self.fc1 = nn.Linear(input_dim, 512) self.bn1 = nn.BatchNorm1d(512) self.dropout1 = nn.Dropout(0.2) self.fc2 = nn.Linear(512, 256) self.bn2 = nn.BatchNorm1d(256) self.dropout2 = nn.Dropout(0.2) self.fc3 = nn.Linear(256, 128) self.bn3 = nn.BatchNorm1d(128) self.fc_coarse = nn.Linear(256, base_dim // 4) self.fc_medium = nn.Linear(128, base_dim // 2) self.fc_fine = nn.Linear(128, base_dim) self.norm_coarse = nn.LayerNorm(base_dim // 4) self.norm_medium = nn.LayerNorm(base_dim // 2) self.norm_fine = nn.LayerNorm(base_dim) def forward(self, x): h1 = F.relu(self.bn1(self.fc1(x))) h1 = self.dropout1(h1) h2 = F.relu(self.bn2(self.fc2(h1))) h2 = self.dropout2(h2) h3 = F.relu(self.bn3(self.fc3(h2))) coarse = self.norm_coarse(self.fc_coarse(h2)) medium = self.norm_medium(self.fc_medium(h3)) fine = self.norm_fine(self.fc_fine(h3)) return coarse, medium, fine def init_perfect_pentachora(num_classes, latent_dim, device='cuda'): """Initialize as regular 4-simplices in orthogonal subspaces""" pentachora = torch.zeros(num_classes, 5, latent_dim, device=device) sqrt15 = np.sqrt(15) sqrt10 = np.sqrt(10) sqrt5 = np.sqrt(5) simplex = torch.tensor([ [1.0, 0.0, 0.0, 0.0], [-0.25, sqrt15/4, 0.0, 0.0], [-0.25, -sqrt15/12, sqrt10/3, 0.0], [-0.25, -sqrt15/12, -sqrt10/6, sqrt5/2], [-0.25, -sqrt15/12, -sqrt10/6, -sqrt5/2] ], dtype=torch.float32, device=device) simplex = F.normalize(simplex, dim=1) dims_per_class = latent_dim // num_classes for c in range(num_classes): if dims_per_class >= 4: start = c * dims_per_class pentachora[c, :, start:start+4] = simplex else: rotation = torch.randn(4, latent_dim, device=device) rotation = F.normalize(rotation, dim=1) pentachora[c] = torch.mm(simplex, rotation[:4]) return nn.Parameter(pentachora * 2.0) class PerfectPentachoron(nn.Module): """Multi-scale pentachoron with learnable metric and vertex weights""" def __init__(self, num_classes, base_dim, device='cuda'): super().__init__() self.device = device self.num_classes = num_classes self.base_dim = base_dim self.penta_coarse = init_perfect_pentachora(num_classes, base_dim // 4, device) self.penta_medium = init_perfect_pentachora(num_classes, base_dim // 2, device) self.penta_fine = init_perfect_pentachora(num_classes, base_dim, device) self.vertex_weights = nn.Parameter(torch.ones(num_classes, 5, device=device) / 5) self.metric_coarse = nn.Parameter(torch.eye(base_dim // 4, device=device)) self.metric_medium = nn.Parameter(torch.eye(base_dim // 2, device=device)) self.metric_fine = nn.Parameter(torch.eye(base_dim, device=device)) self.scale_weights = nn.Parameter(torch.tensor([0.2, 0.3, 0.5], device=device)) def mahalanobis_distance(self, x, pentachora, metric): x_trans = torch.matmul(x, metric) p_trans = torch.einsum('cpd,de->cpe', pentachora, metric) diffs = p_trans.unsqueeze(0) - x_trans.unsqueeze(1).unsqueeze(2) dists = torch.norm(diffs, dim=-1) return dists def forward(self, x_coarse, x_medium, x_fine): dists_c = self.mahalanobis_distance(x_coarse, self.penta_coarse, self.metric_coarse) dists_m = self.mahalanobis_distance(x_medium, self.penta_medium, self.metric_medium) dists_f = self.mahalanobis_distance(x_fine, self.penta_fine, self.metric_fine) weights = F.softmax(self.vertex_weights, dim=1).unsqueeze(0) dists_c = dists_c * weights dists_m = dists_m * weights dists_f = dists_f * weights scores_c = -dists_c.sum(dim=-1) scores_m = -dists_m.sum(dim=-1) scores_f = -dists_f.sum(dim=-1) w = F.softmax(self.scale_weights, dim=0) scores = w[0] * scores_c + w[1] * scores_m + w[2] * scores_f return scores, (dists_c, dists_m, dists_f) def regularization_loss(self): mask = torch.triu(torch.ones(5, 5, device=self.device), diagonal=1).bool() diffs_c = self.penta_coarse.unsqueeze(2) - self.penta_coarse.unsqueeze(1) dists_c = torch.norm(diffs_c, dim=-1) edges_c = dists_c[:, mask] diffs_m = self.penta_medium.unsqueeze(2) - self.penta_medium.unsqueeze(1) dists_m = torch.norm(diffs_m, dim=-1) edges_m = dists_m[:, mask] diffs_f = self.penta_fine.unsqueeze(2) - self.penta_fine.unsqueeze(1) dists_f = torch.norm(diffs_f, dim=-1) edges_f = dists_f[:, mask] all_edges = torch.stack([edges_c, edges_m, edges_f], dim=0) edge_var = torch.var(all_edges, dim=2).mean() min_edges = torch.min(all_edges, dim=2)[0] collapse_penalty = torch.relu(0.5 - min_edges).mean() return edge_var + collapse_penalty def contrastive_pentachoron_loss_batched(latents, targets, pentachora, temp=0.1): batch_size = latents.size(0) num_classes = pentachora.size(0) diffs = latents.unsqueeze(1).unsqueeze(2) - pentachora.unsqueeze(0) dists = torch.norm(diffs, dim=-1) min_dists, _ = torch.min(dists, dim=2) sims = -min_dists / temp targets_one_hot = F.one_hot(targets, num_classes).float() max_sims, _ = torch.max(sims, dim=1, keepdim=True) exp_sims = torch.exp(sims - max_sims) pos_sims = torch.sum(exp_sims * targets_one_hot, dim=1) all_sims = torch.sum(exp_sims, dim=1) loss = -torch.log(pos_sims / all_sims).mean() return loss # ============== TRAINING SETUP ============== encoder = AdaptiveEncoder(config["input_dim"], config["base_dim"]).to(device) classifier = PerfectPentachoron(num_classes, config["base_dim"], device).to(device) # Try to compile if available try: encoder = torch.compile(encoder) classifier = torch.compile(classifier) print("Models compiled successfully") except: print("Torch compile not available, using eager mode") optimizer = torch.optim.AdamW([ {'params': encoder.parameters(), 'lr': config["initial_lr"]}, {'params': classifier.parameters(), 'lr': config["initial_lr"] * 0.5} ], weight_decay=1e-5) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=config["epochs"]) # ============== CHECKPOINT FUNCTIONS ============== def save_checkpoint(epoch, encoder, classifier, optimizer, scheduler, metrics, is_best=False): """Save checkpoint as safetensors with proper organization""" # Prepare state dict for safetensors encoder_state = {f"encoder.{k}": v.cpu() for k, v in encoder.state_dict().items()} classifier_state = {f"classifier.{k}": v.cpu() for k, v in classifier.state_dict().items()} # Combine all model weights model_state = {**encoder_state, **classifier_state} # Save model weights as safetensors checkpoint_name = f"checkpoint_{run_hash}_epoch_{epoch:03d}.safetensors" if is_best: checkpoint_name = f"best_{run_hash}.safetensors" checkpoint_path = os.path.join("checkpoints", checkpoint_name) save_file(model_state, checkpoint_path) # Save training state separately (optimizer, scheduler, metrics) training_state = { 'epoch': epoch, 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), 'metrics': metrics, 'config': config } state_path = checkpoint_path.replace('.safetensors', '_state.pt') torch.save(training_state, state_path) print(f"Saved checkpoint: {checkpoint_name}") # Upload to HuggingFace try: # Create organized structure upload_folder( folder_path="checkpoints", repo_id=REPO_ID, repo_type="model", token=HF_TOKEN, path_in_repo=f"weights/{run_hash}", commit_message=f"Epoch {epoch} - Test Acc: {metrics['test_acc']:.4f}" ) # Upload tensorboard logs upload_folder( folder_path=f"tensorboard_logs/{run_hash}", repo_id=REPO_ID, repo_type="model", token=HF_TOKEN, path_in_repo=f"runs/{run_hash}", commit_message=f"TensorBoard logs - Epoch {epoch}" ) except Exception as e: print(f"HF upload error: {e}") # ============== TRAINING FUNCTIONS ============== def train_epoch(epoch): encoder.train() classifier.train() total_loss = 0.0 total_ce = 0.0 total_contr = 0.0 total_reg = 0.0 correct = 0 total = 0 pbar = tqdm(train_loader, desc=f"Epoch {epoch+1}/{config['epochs']}") for batch_idx, (inputs, targets) in enumerate(pbar): inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() x_coarse, x_medium, x_fine = encoder(inputs) scores, all_dists = classifier(x_coarse, x_medium, x_fine) ce_loss = F.cross_entropy(scores, targets) contr_c = contrastive_pentachoron_loss_batched(x_coarse, targets, classifier.penta_coarse, config["temp_contrastive"]) contr_m = contrastive_pentachoron_loss_batched(x_medium, targets, classifier.penta_medium, config["temp_contrastive"]) contr_f = contrastive_pentachoron_loss_batched(x_fine, targets, classifier.penta_fine, config["temp_contrastive"]) contr_loss = (contr_c + contr_m + contr_f) / 3 reg_loss = classifier.regularization_loss() loss = ce_loss + config["lambda_contrastive"] * contr_loss + config["lambda_cayley"] * reg_loss loss.backward() torch.nn.utils.clip_grad_norm_(encoder.parameters(), 1.0) torch.nn.utils.clip_grad_norm_(classifier.parameters(), 1.0) optimizer.step() total_loss += loss.item() * inputs.size(0) total_ce += ce_loss.item() * inputs.size(0) total_contr += contr_loss.item() * inputs.size(0) total_reg += reg_loss.item() * inputs.size(0) preds = scores.argmax(dim=1) correct += (preds == targets).sum().item() total += inputs.size(0) # Log batch metrics to TensorBoard if batch_idx % 50 == 0: global_step = epoch * len(train_loader) + batch_idx writer.add_scalar('Train/BatchLoss', loss.item(), global_step) writer.add_scalar('Train/BatchAcc', correct/total, global_step) pbar.set_postfix({ 'loss': f"{loss.item():.4f}", 'acc': f"{correct/total:.4f}", 'lr': f"{optimizer.param_groups[0]['lr']:.1e}" }) return (total_loss/total, total_ce/total, total_contr/total, total_reg/total, correct/total) @torch.no_grad() def evaluate(): encoder.eval() classifier.eval() correct = 0 total = 0 class_correct = [0] * num_classes class_total = [0] * num_classes pbar = tqdm(test_loader, desc="Evaluating") for inputs, targets in pbar: inputs, targets = inputs.to(device), targets.to(device) x_coarse, x_medium, x_fine = encoder(inputs) scores, _ = classifier(x_coarse, x_medium, x_fine) preds = scores.argmax(dim=1) correct += (preds == targets).sum().item() total += inputs.size(0) for i in range(targets.size(0)): label = targets[i].item() class_total[label] += 1 if preds[i] == targets[i]: class_correct[label] += 1 pbar.set_postfix({'acc': f"{correct/total:.4f}"}) class_accs = [class_correct[i]/max(1, class_total[i]) for i in range(num_classes)] return correct/total, class_accs # ============== MAIN TRAINING LOOP ============== print("\n" + "="*60) print(f"PERFECT PENTACHORON TRAINING - Run {run_hash}") print("="*60 + "\n") best_acc = 0.0 train_history = [] test_history = [] patience = 7 no_improve = 0 for epoch in range(config["epochs"]): # Train train_loss, train_ce, train_contr, train_reg, train_acc = train_epoch(epoch) train_history.append(train_acc) # Evaluate test_acc, class_accs = evaluate() test_history.append(test_acc) # Log to TensorBoard writer.add_scalar('Loss/Total', train_loss, epoch) writer.add_scalar('Loss/CE', train_ce, epoch) writer.add_scalar('Loss/Contrastive', train_contr, epoch) writer.add_scalar('Loss/Regularization', train_reg, epoch) writer.add_scalar('Accuracy/Train', train_acc, epoch) writer.add_scalar('Accuracy/Test', test_acc, epoch) writer.add_scalar('Learning/LR', optimizer.param_groups[0]['lr'], epoch) writer.add_scalar('Learning/Generalization_Gap', train_acc - test_acc, epoch) # Log per-class accuracies for i, acc in enumerate(class_accs[:10]): # Log first 10 classes writer.add_scalar(f'ClassAcc/Class_{i}', acc, epoch) # Log scale weights scale_weights = F.softmax(classifier.scale_weights, dim=0) writer.add_scalar('Scales/Coarse', scale_weights[0], epoch) writer.add_scalar('Scales/Medium', scale_weights[1], epoch) writer.add_scalar('Scales/Fine', scale_weights[2], epoch) scheduler.step() # Print results print(f"\n[Epoch {epoch+1}/{config['epochs']}]") print(f"Train | Loss: {train_loss:.4f} | CE: {train_ce:.4f} | " f"Contr: {train_contr:.4f} | Reg: {train_reg:.4f} | Acc: {train_acc:.4f}") print(f"Test | Acc: {test_acc:.4f} | Best: {best_acc:.4f}") # Save checkpoint metrics = { 'train_acc': train_acc, 'test_acc': test_acc, 'train_loss': train_loss, 'class_accs': class_accs } # Check if best if test_acc > best_acc: best_acc = test_acc no_improve = 0 print(f"NEW BEST! Saving checkpoint...") save_checkpoint(epoch, encoder, classifier, optimizer, scheduler, metrics, is_best=True) else: no_improve += 1 if (epoch + 1) % 5 == 0: # Save every 5 epochs save_checkpoint(epoch, encoder, classifier, optimizer, scheduler, metrics) # Early stopping if no_improve >= patience: print(f"Early stopping triggered (no improvement for {patience} epochs)") break # ============== FINAL RESULTS ============== print("\n" + "="*60) print("FINAL RESULTS") print("="*60) print(f"Best Test Accuracy: {best_acc:.4f}") print(f"Final Train Accuracy: {train_history[-1]:.4f}") print(f"Generalization Gap: {train_history[-1] - test_history[-1]:.4f}") # Save final model save_checkpoint(epoch, encoder, classifier, optimizer, scheduler, metrics, is_best=False) # Log final pentachoron geometry with torch.no_grad(): vertex_importance = F.softmax(classifier.vertex_weights, dim=1) scale_weights = F.softmax(classifier.scale_weights, dim=0).cpu().numpy() geometry_info = { 'scale_importance': { 'coarse': float(scale_weights[0]), 'medium': float(scale_weights[1]), 'fine': float(scale_weights[2]) }, 'dominant_vertices': {} } for c in range(min(10, num_classes)): weights = vertex_importance[c].cpu().numpy() dominant = np.argmax(weights) geometry_info['dominant_vertices'][f'class_{c}'] = { 'vertex': int(dominant), 'weight': float(weights[dominant]) } writer.add_text('Final_Geometry', json.dumps(geometry_info, indent=2), epoch) writer.close() print(f"\n✨ Training Complete! Run hash: {run_hash}") print(f"Results uploaded to: https://huggingface.co/{REPO_ID}") print(f"TensorBoard: tensorboard --logdir tensorboard_logs/{run_hash}")