LoRE / scripts /eval.py
Charlie81's picture
fix hflm pretrained in eval
2b77d15
#!/usr/bin/env python3
"""
eval.py - Evaluation script for OLMoE models using lm-evaluation-harness
This script supports evaluation of both:
1. Standard Transformers OLMoE models
2. Custom MyOLMoE models (uses top-k routing by default)
Usage Examples:
# Evaluate standard OLMoE model
python eval.py --model_type transformers --tasks mmlu hellaswag
# Evaluate custom MyOLMoE model
python eval.py --model_type custom --tasks mmlu
"""
import argparse
import json
import os
import sys
import logging
from typing import Dict, List, Optional, Any
import numpy as np
import torch
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM
# lm-eval imports
from lm_eval import evaluator
from lm_eval.models.huggingface import HFLM
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def parse_args():
"""Parse command line arguments."""
parser = argparse.ArgumentParser(
description="Evaluate OLMoE models using lm-evaluation-harness",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Standard OLMoE evaluation
python eval.py --model_type transformers --tasks mmlu arc_easy
# Custom MyOLMoE evaluation (uses top-k routing by default)
python eval.py --model_type custom --tasks mmlu hellaswag
"""
)
# Model arguments
parser.add_argument(
"--model_path",
type=str,
default="allenai/OLMoE-1B-7B-0924",
help="Path or name of the pretrained model"
)
parser.add_argument(
"--model_type",
type=str,
default="transformers",
choices=["transformers", "custom"],
help="Model type: 'transformers' for standard OLMoE, 'custom' for MyOLMoE"
)
parser.add_argument(
"--custom_model_path",
type=str,
default="./myolmoe_model",
help="Path to custom MyOLMoE model code (when using --model_type custom)"
)
# Evaluation arguments
parser.add_argument(
"--tasks",
type=str,
nargs="+",
default=["mmlu"],
help="Tasks to evaluate on (e.g., mmlu, hellaswag, arc_easy, gsm8k)"
)
parser.add_argument(
"--num_fewshot",
type=int,
default=0,
help="Number of few-shot examples"
)
parser.add_argument(
"--batch_size",
type=int,
default=8,
help="Batch size for evaluation"
)
parser.add_argument(
"--max_batch_size",
type=int,
default=None,
help="Maximum batch size (auto if None)"
)
parser.add_argument(
"--device",
type=str,
default="auto",
help="Device to use ('auto', 'cuda', 'cpu')"
)
parser.add_argument(
"--dtype",
type=str,
default="auto",
choices=["auto", "float16", "bfloat16", "float32"],
help="Data type for model weights"
)
# Output arguments
parser.add_argument(
"--output_dir",
type=str,
default="./eval_results",
help="Directory to save evaluation results"
)
parser.add_argument(
"--output_filename",
type=str,
default=None,
help="Custom filename for results (auto-generated if not provided)"
)
# Additional arguments
parser.add_argument(
"--limit",
type=int,
default=None,
help="Limit number of examples per task (for testing)"
)
parser.add_argument(
"--write_out",
action="store_true",
help="Write out individual predictions to files"
)
parser.add_argument(
"--trust_remote_code",
action="store_true",
help="Trust remote code when loading model"
)
parser.add_argument(
"--verbosity",
type=str,
default="INFO",
choices=["DEBUG", "INFO", "WARNING", "ERROR"],
help="Logging verbosity level"
)
return parser.parse_args()
def load_transformers_model(args) -> HFLM:
"""
Load standard Transformers OLMoE model.
Args:
args: Parsed command line arguments
Returns:
HFLM: Wrapped model ready for evaluation
"""
logger.info(f"Loading Transformers OLMoE model: {args.model_path}")
# Create HFLM model directly
model = HFLM(
pretrained=args.model_path,
device=args.device,
batch_size=args.batch_size,
max_batch_size=args.max_batch_size,
dtype=args.dtype,
trust_remote_code=args.trust_remote_code
)
logger.info("Transformers model loaded successfully")
return model
def load_custom_model(args) -> HFLM:
"""
Load custom MyOLMoE model (uses top-k routing by default).
Args:
args: Parsed command line arguments
Returns:
HFLM: Wrapped model ready for evaluation
"""
logger.info(f"Loading custom MyOLMoE model: {args.model_path}")
logger.info("Using top-k routing (default)")
# Add custom model path to Python path
if os.path.exists(args.custom_model_path):
sys.path.insert(0, args.custom_model_path)
logger.info(f"Added {args.custom_model_path} to Python path")
else:
logger.warning(f"Custom model path not found: {args.custom_model_path}")
try:
# Import custom model class
from modeling_myolmoe import MyOlmoeForCausalLM
logger.info("Successfully imported MyOlmoeForCausalLM")
except ImportError as e:
logger.error(f"Failed to import custom model: {e}")
logger.error("Make sure the custom model code is available in the specified path")
raise
# Load model configuration
config = AutoConfig.from_pretrained(
args.model_path,
trust_remote_code=args.trust_remote_code
)
logger.info("Model will use default top-k routing configuration")
# Determine torch dtype
if args.dtype == "auto":
torch_dtype = "auto"
else:
torch_dtype = {
"float16": torch.float16,
"bfloat16": torch.bfloat16,
"float32": torch.float32
}[args.dtype]
# Load the custom model
hf_model = MyOlmoeForCausalLM.from_pretrained(
args.model_path,
config=config,
torch_dtype=torch_dtype,
device_map="auto" if args.device == "auto" else None,
trust_remote_code=args.trust_remote_code
).eval()
# Wrap in HFLM
model = HFLM(
pretrained=args.model_path,
device=args.device,
batch_size=args.batch_size,
max_batch_size=args.max_batch_size,
dtype=args.dtype
)
logger.info("Custom model loaded successfully")
return model
def validate_model_config(model_path: str, trust_remote_code: bool = False) -> Dict[str, Any]:
"""
Validate model configuration and return key information.
Args:
model_path: Path to the model
trust_remote_code: Whether to trust remote code
Returns:
Dict containing model configuration information
"""
try:
config = AutoConfig.from_pretrained(model_path, trust_remote_code=trust_remote_code)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=trust_remote_code)
model_info = {
"model_type": getattr(config, "model_type", "unknown"),
"vocab_size": getattr(config, "vocab_size", "unknown"),
"hidden_size": getattr(config, "hidden_size", "unknown"),
"num_layers": getattr(config, "num_hidden_layers", "unknown"),
"num_experts": getattr(config, "num_experts", "not specified"),
}
logger.info("Model validation successful:")
for key, value in model_info.items():
logger.info(f" {key}: {value}")
return model_info
except Exception as e:
logger.error(f"Model validation failed: {e}")
raise
def make_serializable(obj: Any) -> Any:
"""
Convert objects to JSON-serializable format.
Args:
obj: Object to convert
Returns:
JSON-serializable version of the object
"""
if isinstance(obj, dict):
return {k: make_serializable(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [make_serializable(v) for v in obj]
elif isinstance(obj, tuple):
return tuple(make_serializable(v) for v in obj)
elif isinstance(obj, (np.integer, np.floating)):
return obj.item()
elif isinstance(obj, np.dtype):
return str(obj)
elif isinstance(obj, torch.Tensor):
return obj.tolist()
elif isinstance(obj, torch.dtype):
return str(obj)
else:
return obj
def run_evaluation(args) -> Dict[str, Any]:
"""
Run evaluation on the specified model.
Args:
args: Parsed command line arguments
Returns:
Dict containing evaluation results
"""
logger.info("Starting evaluation...")
# Validate model first
validate_model_config(args.model_path, args.trust_remote_code)
# Load appropriate model
if args.model_type == "transformers":
model = load_transformers_model(args)
elif args.model_type == "custom":
model = load_custom_model(args)
else:
raise ValueError(f"Unknown model type: {args.model_type}")
# Run evaluation
logger.info(f"Running evaluation on tasks: {args.tasks}")
logger.info(f"Few-shot examples: {args.num_fewshot}")
logger.info(f"Batch size: {args.batch_size}")
results = evaluator.simple_evaluate(
model=model,
tasks=args.tasks,
num_fewshot=args.num_fewshot,
limit=args.limit,
write_out=args.write_out,
)
logger.info("Evaluation completed successfully")
return results
def save_results(results: Dict[str, Any], args) -> str:
"""
Save evaluation results to file.
Args:
results: Evaluation results
args: Parsed command line arguments
Returns:
str: Path to saved results file
"""
os.makedirs(args.output_dir, exist_ok=True)
# Generate filename if not provided
if args.output_filename is None:
model_name = os.path.basename(args.model_path.rstrip('/'))
tasks_str = "_".join(args.tasks[:3])
if len(args.tasks) > 3:
tasks_str += f"_and_{len(args.tasks)-3}_more"
if args.model_type == "custom":
filename = f"{model_name}_custom_{tasks_str}_results.json"
else:
filename = f"{model_name}_transformers_{tasks_str}_results.json"
else:
filename = args.output_filename
if not filename.endswith('.json'):
filename += '.json'
output_path = os.path.join(args.output_dir, filename)
# Prepare metadata
metadata = {
"model_path": args.model_path,
"model_type": args.model_type,
"tasks": args.tasks,
"num_fewshot": args.num_fewshot,
"batch_size": args.batch_size,
"device": args.device,
"dtype": args.dtype,
"limit": args.limit,
}
# Add routing info for custom models
if args.model_type == "custom":
metadata["routing_type"] = "top-k (default)"
results_with_metadata = {
"metadata": metadata,
"results": results
}
# Convert to JSON-serializable format
serializable_results = make_serializable(results_with_metadata)
# Save to file
with open(output_path, 'w') as f:
json.dump(serializable_results, f, indent=2)
logger.info(f"Results saved to {output_path}")
return output_path
def print_summary(results: Dict[str, Any], args) -> None:
"""
Print a formatted summary of evaluation results.
Args:
results: Evaluation results
args: Parsed command line arguments
"""
print(f"\n{'='*80}")
print(f"EVALUATION SUMMARY")
print(f"Model: {args.model_path}")
print(f"Type: {args.model_type.upper()}")
if args.model_type == "custom":
print(f"Routing: TOP-K (default)")
print(f"Tasks: {', '.join(args.tasks)}")
print(f"{'='*80}")
if "results" in results:
for task, metrics in results["results"].items():
if isinstance(metrics, dict):
print(f"\n📊 {task.upper()}:")
for metric, value in metrics.items():
if isinstance(value, (int, float)) and not metric.endswith('_stderr'):
stderr_key = f"{metric}_stderr"
stderr = metrics.get(stderr_key, 0)
print(f" {metric:.<20} {value:.4f}{stderr:.4f})")
else:
print("\n⚠️ No results found in evaluation output")
print(f"\n{'='*80}")
def main():
"""Main evaluation function."""
args = parse_args()
# Set logging level
numeric_level = getattr(logging, args.verbosity.upper(), None)
if isinstance(numeric_level, int):
logging.getLogger().setLevel(numeric_level)
logger.setLevel(numeric_level)
try:
logger.info("="*80)
logger.info("Starting OLMoE Model Evaluation")
logger.info("="*80)
# Run evaluation
results = run_evaluation(args)
# Save results
output_path = save_results(results, args)
# Print summary
print_summary(results, args)
logger.info(f"✅ Evaluation completed successfully!")
logger.info(f"📁 Results saved to: {output_path}")
except KeyboardInterrupt:
logger.info("Evaluation interrupted by user")
sys.exit(1)
except Exception as e:
logger.error(f"❌ Evaluation failed: {e}")
logger.debug("Full traceback:", exc_info=True)
sys.exit(1)
if __name__ == "__main__":
main()