File size: 22,033 Bytes
d2693e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
import torch
import torch.nn.functional as F
import torch.nn as nn
import pytorch_lightning as pl
import time
from transformers import AutoModel, AutoConfig, AutoTokenizer
import xgboost as xgb
import esm

class UnpooledBindingPredictor(nn.Module):
    def __init__(self, 
                 esm_model_name="facebook/esm2_t33_650M_UR50D",
                 hidden_dim=512,
                 kernel_sizes=[3, 5, 7],
                 n_heads=8,
                 n_layers=3,
                 dropout=0.1,
                 freeze_esm=True):
        super().__init__()
        
        # Define binding thresholds
        self.tight_threshold = 7.5    # Kd/Ki/IC50 ≤ ~30nM
        self.weak_threshold = 6.0     # Kd/Ki/IC50 > 1μM
        
        # Load ESM model for computing embeddings on the fly
        self.esm_model = AutoModel.from_pretrained(esm_model_name)
        self.config = AutoConfig.from_pretrained(esm_model_name)
        
        # Freeze ESM parameters if needed
        if freeze_esm:
            for param in self.esm_model.parameters():
                param.requires_grad = False
        
        # Get ESM hidden size
        esm_dim = self.config.hidden_size
        
        # Output channels for CNN layers
        output_channels_per_kernel = 64
        
        # CNN layers for handling variable length sequences
        self.protein_conv_layers = nn.ModuleList([
            nn.Conv1d(
                in_channels=esm_dim,
                out_channels=output_channels_per_kernel,
                kernel_size=k,
                padding='same'
            ) for k in kernel_sizes
        ])
        
        self.binder_conv_layers = nn.ModuleList([
            nn.Conv1d(
                in_channels=esm_dim,
                out_channels=output_channels_per_kernel,
                kernel_size=k,
                padding='same'
            ) for k in kernel_sizes
        ])
        
        # Calculate total features after convolution and pooling
        total_features_per_seq = output_channels_per_kernel * len(kernel_sizes) * 2
        
        # Project to same dimension after CNN processing
        self.protein_projection = nn.Linear(total_features_per_seq, hidden_dim)
        self.binder_projection = nn.Linear(total_features_per_seq, hidden_dim)
        
        self.protein_norm = nn.LayerNorm(hidden_dim)
        self.binder_norm = nn.LayerNorm(hidden_dim)
        
        # Cross attention blocks with layer norm
        self.cross_attention_layers = nn.ModuleList([
            nn.ModuleDict({
                'attention': nn.MultiheadAttention(hidden_dim, n_heads, dropout=dropout),
                'norm1': nn.LayerNorm(hidden_dim),
                'ffn': nn.Sequential(
                    nn.Linear(hidden_dim, hidden_dim * 4),
                    nn.ReLU(),
                    nn.Dropout(dropout),
                    nn.Linear(hidden_dim * 4, hidden_dim)
                ),
                'norm2': nn.LayerNorm(hidden_dim)
            }) for _ in range(n_layers)
        ])
        
        # Prediction heads
        self.shared_head = nn.Sequential(
            nn.Linear(hidden_dim * 2, hidden_dim),
            nn.ReLU(),
            nn.Dropout(dropout),
        )
        
        # Regression head
        self.regression_head = nn.Linear(hidden_dim, 1)
        
        # Classification head (3 classes: tight, medium, loose binding)
        self.classification_head = nn.Linear(hidden_dim, 3)
        
    def get_binding_class(self, affinity):
        """Convert affinity values to class indices
        0: tight binding (>= 7.5)
        1: medium binding (6.0-7.5)
        2: weak binding (< 6.0)
        """
        if isinstance(affinity, torch.Tensor):
            tight_mask = affinity >= self.tight_threshold
            weak_mask = affinity < self.weak_threshold
            medium_mask = ~(tight_mask | weak_mask)
            
            classes = torch.zeros_like(affinity, dtype=torch.long)
            classes[medium_mask] = 1
            classes[weak_mask] = 2
            return classes
        else:
            if affinity >= self.tight_threshold:
                return 0  # tight binding
            elif affinity < self.weak_threshold:
                return 2  # weak binding
            else:
                return 1  # medium binding
    
    def compute_embeddings(self, input_ids, attention_mask=None):
        """Compute ESM embeddings on the fly"""
        esm_outputs = self.esm_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            return_dict=True
        )
        
        # Get the unpooled last hidden states (batch_size x seq_length x hidden_size)
        return esm_outputs.last_hidden_state
    
    def process_sequence(self, unpooled_emb, conv_layers, attention_mask=None):
        """Process a sequence through CNN layers and pooling"""
        # Transpose for CNN: [batch_size, hidden_size, seq_length]
        x = unpooled_emb.transpose(1, 2)
        
        # Apply CNN layers and collect outputs
        conv_outputs = []
        for conv in conv_layers:
            conv_out = F.relu(conv(x))
            conv_outputs.append(conv_out)
        
        # Concatenate along channel dimension
        conv_output = torch.cat(conv_outputs, dim=1)
        
        # Global pooling (both max and average)
        # If attention mask is provided, use it to create a proper mask for pooling
        if attention_mask is not None:
            # Create a mask for pooling (1 for valid positions, 0 for padding)
            # Expand mask to match conv_output channels
            expanded_mask = attention_mask.unsqueeze(1).expand(-1, conv_output.size(1), -1)
            
            # Apply mask (set padding to large negative value for max pooling)
            masked_output = conv_output.clone()
            masked_output = masked_output.masked_fill(expanded_mask == 0, float('-inf'))
            
            # Max pooling along sequence dimension
            max_pooled = torch.max(masked_output, dim=2)[0]
            
            # Average pooling (sum divided by number of valid positions)
            sum_pooled = torch.sum(conv_output * expanded_mask, dim=2)
            valid_positions = torch.sum(expanded_mask, dim=2)
            valid_positions = torch.clamp(valid_positions, min=1.0)  # Avoid division by zero
            avg_pooled = sum_pooled / valid_positions
        else:
            # If no mask, use standard pooling
            max_pooled = torch.max(conv_output, dim=2)[0]
            avg_pooled = torch.mean(conv_output, dim=2)
        
        # Concatenate the pooled features
        pooled = torch.cat([max_pooled, avg_pooled], dim=1)
        
        return pooled
        
    def forward(self, protein_input_ids, binder_input_ids, protein_mask=None, binder_mask=None):
        # Compute embeddings on the fly using the ESM model
        protein_unpooled = self.compute_embeddings(protein_input_ids, protein_mask)
        binder_unpooled = self.compute_embeddings(binder_input_ids, binder_mask)
        
        # Process protein and binder sequences through CNN layers
        protein_features = self.process_sequence(protein_unpooled, self.protein_conv_layers, protein_mask)
        binder_features = self.process_sequence(binder_unpooled, self.binder_conv_layers, binder_mask)
        
        # Project to same dimension
        protein = self.protein_norm(self.protein_projection(protein_features))
        binder = self.binder_norm(self.binder_projection(binder_features))
        
        # Reshape for attention: from [batch_size, hidden_dim] to [1, batch_size, hidden_dim]
        protein = protein.unsqueeze(0)
        binder = binder.unsqueeze(0)
        
        # Cross attention layers
        for layer in self.cross_attention_layers:
            # Protein attending to binder
            attended_protein = layer['attention'](
                protein, binder, binder
            )[0]
            protein = layer['norm1'](protein + attended_protein)
            protein = layer['norm2'](protein + layer['ffn'](protein))
            
            # Binder attending to protein
            attended_binder = layer['attention'](
                binder, protein, protein
            )[0]
            binder = layer['norm1'](binder + attended_binder)
            binder = layer['norm2'](binder + layer['ffn'](binder))
        
        # Remove sequence dimension
        protein_pool = protein.squeeze(0)
        binder_pool = binder.squeeze(0)
        
        # Concatenate both representations
        combined = torch.cat([protein_pool, binder_pool], dim=-1)
        
        # Shared features
        shared_features = self.shared_head(combined)
        
        regression_output = self.regression_head(shared_features)
        # classification_logits = self.classification_head(shared_features)
        
        # return regression_output, classification_logits
        return regression_output

class ImprovedBindingPredictor(nn.Module):
    def __init__(self, 
                 esm_dim=1280,
                 smiles_dim=1280,
                 hidden_dim=512,
                 n_heads=8,
                 n_layers=5,
                 dropout=0.1):
        super().__init__()
        
        # Define binding thresholds
        self.tight_threshold = 7.5    # Kd/Ki/IC50 ≤ ~30nM
        self.weak_threshold = 6.0     # Kd/Ki/IC50 > 1μM
        
        # Project to same dimension
        self.smiles_projection = nn.Linear(smiles_dim, hidden_dim)
        self.protein_projection = nn.Linear(esm_dim, hidden_dim)
        self.protein_norm = nn.LayerNorm(hidden_dim)
        self.smiles_norm = nn.LayerNorm(hidden_dim)
        
        # Cross attention blocks with layer norm
        self.cross_attention_layers = nn.ModuleList([
            nn.ModuleDict({
                'attention': nn.MultiheadAttention(hidden_dim, n_heads, dropout=dropout),
                'norm1': nn.LayerNorm(hidden_dim),
                'ffn': nn.Sequential(
                    nn.Linear(hidden_dim, hidden_dim * 4),
                    nn.ReLU(),
                    nn.Dropout(dropout),
                    nn.Linear(hidden_dim * 4, hidden_dim)
                ),
                'norm2': nn.LayerNorm(hidden_dim)
            }) for _ in range(n_layers)
        ])
        
        # Prediction heads
        self.shared_head = nn.Sequential(
            nn.Linear(hidden_dim * 2, hidden_dim),
            nn.ReLU(),
            nn.Dropout(dropout),
        )
        
        # Regression head
        self.regression_head = nn.Linear(hidden_dim, 1)
        
        # Classification head (3 classes: tight, medium, loose binding)
        self.classification_head = nn.Linear(hidden_dim, 3)
        
    def get_binding_class(self, affinity):
        """Convert affinity values to class indices
        0: tight binding (>= 7.5)
        1: medium binding (6.0-7.5)
        2: weak binding (< 6.0)
        """
        if isinstance(affinity, torch.Tensor):
            tight_mask = affinity >= self.tight_threshold
            weak_mask = affinity < self.weak_threshold
            medium_mask = ~(tight_mask | weak_mask)
            
            classes = torch.zeros_like(affinity, dtype=torch.long)
            classes[medium_mask] = 1
            classes[weak_mask] = 2
            return classes
        else:
            if affinity >= self.tight_threshold:
                return 0  # tight binding
            elif affinity < self.weak_threshold:
                return 2  # weak binding
            else:
                return 1  # medium binding
        
    def forward(self, protein_emb, binder_emb):
        
        protein = self.protein_norm(self.protein_projection(protein_emb))
        smiles = self.smiles_norm(self.smiles_projection(binder_emb))
        
        protein = protein.transpose(0, 1)
        smiles = smiles.transpose(0, 1)
        
        # Cross attention layers
        for layer in self.cross_attention_layers:
            # Protein attending to SMILES
            attended_protein = layer['attention'](
                protein, smiles, smiles
            )[0]
            protein = layer['norm1'](protein + attended_protein)
            protein = layer['norm2'](protein + layer['ffn'](protein))
            
            # SMILES attending to protein
            attended_smiles = layer['attention'](
                smiles, protein, protein
            )[0]
            smiles = layer['norm1'](smiles + attended_smiles)
            smiles = layer['norm2'](smiles + layer['ffn'](smiles))
        
        # Get sequence-level representations
        protein_pool = torch.mean(protein, dim=0)
        smiles_pool = torch.mean(smiles, dim=0)
        
        # Concatenate both representations
        combined = torch.cat([protein_pool, smiles_pool], dim=-1)
        
        # Shared features
        shared_features = self.shared_head(combined)
        
        regression_output = self.regression_head(shared_features)
        
        return regression_output

class PooledAffinityModel(nn.Module):
    def __init__(self, affinity_predictor, target_sequence):
        super(PooledAffinityModel, self).__init__()
        self.affinity_predictor = affinity_predictor
        self.target_sequence = target_sequence
        self.esm_model = AutoModel.from_pretrained("facebook/esm2_t33_650M_UR50D").to(self.target_sequence.device)
        for param in self.esm_model.parameters():
            param.requires_grad = False
    
    def compute_embeddings(self, input_ids, attention_mask=None):
        """Compute ESM embeddings on the fly"""
        esm_outputs = self.esm_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            return_dict=True
        )
        
        # Get the unpooled last hidden states (batch_size x seq_length x hidden_size)
        return esm_outputs.last_hidden_state
    
    def forward(self, x):
        target_sequence = self.target_sequence.repeat(x.shape[0], 1)

        protein_emb = self.compute_embeddings(input_ids=target_sequence)
        binder_emb = self.compute_embeddings(input_ids=x)
        return self.affinity_predictor(protein_emb=protein_emb, binder_emb=binder_emb).squeeze(-1)  

class AffinityModel(nn.Module):
    def __init__(self, affinity_predictor, target_sequence):
        super(AffinityModel, self).__init__()
        self.affinity_predictor = affinity_predictor
        self.target_sequence = target_sequence
    
    def forward(self, x):
        target_sequence = self.target_sequence.repeat(x.shape[0], 1)
        affinity = self.affinity_predictor(protein_input_ids=target_sequence, binder_input_ids=x).squeeze(-1) 
        return affinity / 10

class HemolysisModel:
    def __init__(self, device):
        self.predictor = xgb.Booster(model_file='./classifier_ckpt/best_model_hemolysis.json')
        
        self.model = EsmModel.from_pretrained("facebook/esm2_t33_650M_UR50D").to(device)
        self.model.eval()

        self.device = device
    
    def generate_embeddings(self, sequences):
        """Generate ESM embeddings for protein sequences"""
        with torch.no_grad():
            embeddings = self.model(input_ids=sequences).last_hidden_state.mean(dim=1)
            embeddings = embeddings.cpu().numpy()
        
        return embeddings
    
    def get_scores(self, input_seqs):
        scores = np.ones(len(input_seqs))
        features = self.generate_embeddings(input_seqs)
        
        if len(features) == 0:
            return scores
        
        features = np.nan_to_num(features, nan=0.)
        features = np.clip(features, np.finfo(np.float32).min, np.finfo(np.float32).max)
        
        features = xgb.DMatrix(features)
        
        probs = self.predictor.predict(features)
        # return the probability of it being not hemolytic
        return torch.from_numpy(scores - probs).to(self.device)
    
    def __call__(self, input_seqs: list):
        scores = self.get_scores(input_seqs)
        return scores

class NonfoulingModel:
    def __init__(self, device):
        # change model path
        self.predictor = xgb.Booster(model_file='./classifier_ckpt/best_model_nonfouling.json')
        
        self.model = EsmModel.from_pretrained("facebook/esm2_t33_650M_UR50D").to(device)
        self.model.eval()

        self.device = device
    
    def generate_embeddings(self, sequences):
        """Generate ESM embeddings for protein sequences"""
        with torch.no_grad():
            embeddings = self.model(input_ids=sequences).last_hidden_state.mean(dim=1)
            embeddings = embeddings.cpu().numpy()
        
        return embeddings
    
    def get_scores(self, input_seqs):
        scores = np.zeros(len(input_seqs))
        features = self.generate_embeddings(input_seqs)
        
        if len(features) == 0:
            return scores
        
        features = np.nan_to_num(features, nan=0.)
        features = np.clip(features, np.finfo(np.float32).min, np.finfo(np.float32).max)
        
        features = xgb.DMatrix(features)
        
        scores = self.predictor.predict(features)
        return torch.from_numpy(scores).to(self.device)
    
    def __call__(self, input_seqs: list):
        scores = self.get_scores(input_seqs)
        return scores

class SolubilityModel:
    def __init__(self, device):
        # change model path
        self.predictor = xgb.Booster(model_file='./classifier_ckpt/best_model_solubility.json')
        
        self.model = EsmModel.from_pretrained("facebook/esm2_t33_650M_UR50D").to(device)
        self.model.eval()

        self.device = device
    
    def generate_embeddings(self, sequences):
        """Generate ESM embeddings for protein sequences"""
        with torch.no_grad():
            embeddings = self.model(input_ids=sequences).last_hidden_state.mean(dim=1)
            embeddings = embeddings.cpu().numpy()
        
        return embeddings
    
    def get_scores(self, input_seqs: list):
        scores = np.zeros(len(input_seqs))
        features = self.generate_embeddings(input_seqs)
        
        if len(features) == 0:
            return scores
        
        features = np.nan_to_num(features, nan=0.)
        features = np.clip(features, np.finfo(np.float32).min, np.finfo(np.float32).max)
        
        features = xgb.DMatrix(features)
        
        scores = self.predictor.predict(features)
        return torch.from_numpy(scores).to(self.device)
    
    def __call__(self, input_seqs: list):
        scores = self.get_scores(input_seqs)
        return scores

class PeptideCNN(nn.Module):
    def __init__(self, input_dim, hidden_dims, output_dim, dropout_rate):
        super().__init__()
        self.conv1 = nn.Conv1d(input_dim, hidden_dims[0], kernel_size=3, padding=1)
        self.conv2 = nn.Conv1d(hidden_dims[0], hidden_dims[1], kernel_size=5, padding=1)
        self.fc = nn.Linear(hidden_dims[1], output_dim)
        self.dropout = nn.Dropout(dropout_rate)
        self.predictor = nn.Linear(output_dim, 1)  # For regression/classification

        self.esm_model = EsmModel.from_pretrained("facebook/esm2_t33_650M_UR50D")
        self.esm_model.eval()

    def forward(self, input_ids, attention_mask=None, return_features=False):
        with torch.no_grad():
            x = self.esm_model(input_ids, attention_mask).last_hidden_state
        # x shape: (B, L, input_dim)
        x = x.permute(0, 2, 1)  # Reshape to (B, input_dim, L) for Conv1d
        x = nn.functional.relu(self.conv1(x))
        x = self.dropout(x)
        x = nn.functional.relu(self.conv2(x))
        x = self.dropout(x)
        x = x.permute(0, 2, 1)  # Reshape back to (B, L, hidden_dims[1])
        
        # Global average pooling over the sequence dimension (L)
        x = x.mean(dim=1)  # Shape: (B, hidden_dims[1])
        
        features = self.fc(x)  # features shape: (B, output_dim)
        if return_features:
            return features
        return self.predictor(features)  # Output shape: (B, 1)

class HalfLifeModel:
    def __init__(self, device):
        input_dim = 1280
        hidden_dims = [input_dim // 2, input_dim // 4]
        output_dim = input_dim // 8
        dropout_rate = 0.3
        self.model = PeptideCNN(input_dim, hidden_dims, output_dim, dropout_rate).to(device)
        self.model.load_state_dict(torch.load('./classifier_ckpt/best_model_half_life.pth', map_location=device, weights_only=False))
        self.model.eval()

    def __call__(self, x):
        prediction = self.model(x, return_features=False)
        half_life = torch.clamp(prediction.squeeze(-1), max=2.0, min=0.0)

        return half_life / 2


def load_bindevaluator(checkpoint_path, device):
    bindevaluator = BindEvaluator.load_from_checkpoint(checkpoint_path, n_layers=8, d_model=128, d_hidden=128, n_head=8, d_k=64, d_v=128, d_inner=64).to(device)
    bindevaluator.eval()
    for param in bindevaluator.parameters():
        param.requires_grad = False

    return bindevaluator



def load_pooled_affinity_predictor(checkpoint_path, device):
    """Load trained model from checkpoint."""
    checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)

    model = ImprovedBindingPredictor().to(device)
    
    # Load the trained weights
    model.load_state_dict(checkpoint['model_state_dict'])
    model.eval()  # Set to evaluation mode
    
    return model

def load_affinity_predictor(checkpoint_path, device):
    """Load trained model from checkpoint."""
    checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)

    model = UnpooledBindingPredictor(
        esm_model_name="facebook/esm2_t33_650M_UR50D",
        hidden_dim=384,
        kernel_sizes=[3, 5, 7],
        n_heads=8,
        n_layers=4,
        dropout=0.14561457009902096,
        freeze_esm=True
    ).to(device)

    model.load_state_dict(checkpoint['model_state_dict'])
    model.eval() 
    
    return model