|
|
from torch import nn |
|
|
import torch.nn.functional as F |
|
|
import torch |
|
|
import numpy as np |
|
|
import copy |
|
|
import pdb |
|
|
|
|
|
class GaussianFourierProjection(nn.Module): |
|
|
""" |
|
|
Gaussian random features for encoding time steps. |
|
|
""" |
|
|
|
|
|
def __init__(self, embed_dim, scale=30.): |
|
|
super().__init__() |
|
|
|
|
|
|
|
|
self.W = nn.Parameter(torch.randn(embed_dim // 2) * scale, requires_grad=False) |
|
|
|
|
|
def forward(self, x): |
|
|
x_proj = x[:, None] * self.W[None, :] * 2 * np.pi |
|
|
return torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1) |
|
|
|
|
|
class Dense(nn.Module): |
|
|
""" |
|
|
A fully connected layer that reshapes outputs to feature maps. |
|
|
""" |
|
|
|
|
|
def __init__(self, input_dim, output_dim): |
|
|
super().__init__() |
|
|
self.dense = nn.Linear(input_dim, output_dim) |
|
|
|
|
|
def forward(self, x): |
|
|
return self.dense(x)[...] |
|
|
|
|
|
class Swish(nn.Module): |
|
|
def __init__(self): |
|
|
super().__init__() |
|
|
|
|
|
def forward(self, x): |
|
|
return torch.sigmoid(x) * x |
|
|
|
|
|
class CNNClassifier(nn.Module): |
|
|
def __init__(self, args, alphabet_size, num_cls, classifier=False): |
|
|
super().__init__() |
|
|
self.alphabet_size = alphabet_size |
|
|
self.args = args |
|
|
self.classifier = classifier |
|
|
self.num_cls = num_cls |
|
|
|
|
|
if self.args.clean_data: |
|
|
self.linear = nn.Embedding(self.alphabet_size, embedding_dim=args.hidden_dim) |
|
|
else: |
|
|
expanded_simplex_input = args.cls_expanded_simplex or not classifier and (args.mode == 'dirichlet' or args.mode == 'riemannian') |
|
|
inp_size = self.alphabet_size * (2 if expanded_simplex_input else 1) |
|
|
if (args.mode == 'ardm' or args.mode == 'lrar') and not classifier: |
|
|
inp_size += 1 |
|
|
self.linear = nn.Conv1d(inp_size, args.hidden_dim, kernel_size=9, padding=4) |
|
|
self.time_embedder = nn.Sequential(GaussianFourierProjection(embed_dim= args.hidden_dim),nn.Linear(args.hidden_dim, args.hidden_dim)) |
|
|
|
|
|
self.num_layers = 5 * args.num_cnn_stacks |
|
|
self.convs = [nn.Conv1d(args.hidden_dim, args.hidden_dim, kernel_size=9, padding=4), |
|
|
nn.Conv1d(args.hidden_dim, args.hidden_dim, kernel_size=9, padding=4), |
|
|
nn.Conv1d(args.hidden_dim, args.hidden_dim, kernel_size=9, dilation=4, padding=16), |
|
|
nn.Conv1d(args.hidden_dim, args.hidden_dim, kernel_size=9, dilation=16, padding=64), |
|
|
nn.Conv1d(args.hidden_dim, args.hidden_dim, kernel_size=9, dilation=64, padding=256)] |
|
|
self.convs = nn.ModuleList([copy.deepcopy(layer) for layer in self.convs for i in range(args.num_cnn_stacks)]) |
|
|
self.time_layers = nn.ModuleList([Dense(args.hidden_dim, args.hidden_dim) for _ in range(self.num_layers)]) |
|
|
self.norms = nn.ModuleList([nn.LayerNorm(args.hidden_dim) for _ in range(self.num_layers)]) |
|
|
self.final_conv = nn.Sequential(nn.Conv1d(args.hidden_dim, args.hidden_dim, kernel_size=1), |
|
|
nn.ReLU(), |
|
|
nn.Conv1d(args.hidden_dim, args.hidden_dim if classifier else self.alphabet_size, kernel_size=1)) |
|
|
self.dropout = nn.Dropout(args.dropout) |
|
|
if classifier: |
|
|
self.cls_head = nn.Sequential(nn.Linear(args.hidden_dim, args.hidden_dim), |
|
|
nn.ReLU(), |
|
|
nn.Linear(args.hidden_dim, self.num_cls)) |
|
|
|
|
|
if self.args.cls_free_guidance and not self.classifier: |
|
|
self.cls_embedder = nn.Embedding(num_embeddings=self.num_cls + 1, embedding_dim=args.hidden_dim) |
|
|
self.cls_layers = nn.ModuleList([Dense(args.hidden_dim, args.hidden_dim) for _ in range(self.num_layers)]) |
|
|
def forward(self, seq, t, cls = None, return_embedding=False): |
|
|
|
|
|
if self.args.clean_data: |
|
|
feat = self.linear(seq) |
|
|
feat = feat.permute(0, 2, 1) |
|
|
else: |
|
|
time_emb = F.relu(self.time_embedder(t)) |
|
|
feat = seq.permute(0, 2, 1) |
|
|
feat = F.relu(self.linear(feat)) |
|
|
|
|
|
if self.args.cls_free_guidance and not self.classifier and cls is not None: |
|
|
|
|
|
cls_emb = self.cls_embedder(cls) |
|
|
|
|
|
for i in range(self.num_layers): |
|
|
h = self.dropout(feat.clone()) |
|
|
if not self.args.clean_data: |
|
|
h = h + self.time_layers[i](time_emb)[:, :, None] |
|
|
if self.args.cls_free_guidance and not self.classifier and cls is not None: |
|
|
h = h + self.cls_layers[i](cls_emb)[:, :, None] |
|
|
h = self.norms[i]((h).permute(0, 2, 1)) |
|
|
h = F.relu(self.convs[i](h.permute(0, 2, 1))) |
|
|
if h.shape == feat.shape: |
|
|
feat = h + feat |
|
|
else: |
|
|
feat = h |
|
|
feat = self.final_conv(feat) |
|
|
feat = feat.permute(0, 2, 1) |
|
|
if self.classifier: |
|
|
feat = feat.mean(dim=1) |
|
|
if return_embedding: |
|
|
embedding = self.cls_head[:1](feat) |
|
|
return self.cls_head[1:](embedding), embedding |
|
|
else: |
|
|
return self.cls_head(feat) |
|
|
return feat |