moPPIt / models /classifier.py
AlienChen's picture
Upload 72 files
3527383 verified
from torch import nn
import torch.nn.functional as F
import torch
import numpy as np
import copy
import pdb
class GaussianFourierProjection(nn.Module):
"""
Gaussian random features for encoding time steps.
"""
def __init__(self, embed_dim, scale=30.):
super().__init__()
# Randomly sample weights during initialization. These weights are fixed
# during optimization and are not trainable.
self.W = nn.Parameter(torch.randn(embed_dim // 2) * scale, requires_grad=False)
def forward(self, x):
x_proj = x[:, None] * self.W[None, :] * 2 * np.pi
return torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
class Dense(nn.Module):
"""
A fully connected layer that reshapes outputs to feature maps.
"""
def __init__(self, input_dim, output_dim):
super().__init__()
self.dense = nn.Linear(input_dim, output_dim)
def forward(self, x):
return self.dense(x)[...]
class Swish(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return torch.sigmoid(x) * x
class CNNClassifier(nn.Module):
def __init__(self, args, alphabet_size, num_cls, classifier=False):
super().__init__()
self.alphabet_size = alphabet_size
self.args = args
self.classifier = classifier
self.num_cls = num_cls
if self.args.clean_data:
self.linear = nn.Embedding(self.alphabet_size, embedding_dim=args.hidden_dim)
else:
expanded_simplex_input = args.cls_expanded_simplex or not classifier and (args.mode == 'dirichlet' or args.mode == 'riemannian')
inp_size = self.alphabet_size * (2 if expanded_simplex_input else 1)
if (args.mode == 'ardm' or args.mode == 'lrar') and not classifier:
inp_size += 1 # plus one for the mask token of these models
self.linear = nn.Conv1d(inp_size, args.hidden_dim, kernel_size=9, padding=4)
self.time_embedder = nn.Sequential(GaussianFourierProjection(embed_dim= args.hidden_dim),nn.Linear(args.hidden_dim, args.hidden_dim))
self.num_layers = 5 * args.num_cnn_stacks
self.convs = [nn.Conv1d(args.hidden_dim, args.hidden_dim, kernel_size=9, padding=4),
nn.Conv1d(args.hidden_dim, args.hidden_dim, kernel_size=9, padding=4),
nn.Conv1d(args.hidden_dim, args.hidden_dim, kernel_size=9, dilation=4, padding=16),
nn.Conv1d(args.hidden_dim, args.hidden_dim, kernel_size=9, dilation=16, padding=64),
nn.Conv1d(args.hidden_dim, args.hidden_dim, kernel_size=9, dilation=64, padding=256)]
self.convs = nn.ModuleList([copy.deepcopy(layer) for layer in self.convs for i in range(args.num_cnn_stacks)])
self.time_layers = nn.ModuleList([Dense(args.hidden_dim, args.hidden_dim) for _ in range(self.num_layers)])
self.norms = nn.ModuleList([nn.LayerNorm(args.hidden_dim) for _ in range(self.num_layers)])
self.final_conv = nn.Sequential(nn.Conv1d(args.hidden_dim, args.hidden_dim, kernel_size=1),
nn.ReLU(),
nn.Conv1d(args.hidden_dim, args.hidden_dim if classifier else self.alphabet_size, kernel_size=1))
self.dropout = nn.Dropout(args.dropout)
if classifier:
self.cls_head = nn.Sequential(nn.Linear(args.hidden_dim, args.hidden_dim),
nn.ReLU(),
nn.Linear(args.hidden_dim, self.num_cls))
if self.args.cls_free_guidance and not self.classifier:
self.cls_embedder = nn.Embedding(num_embeddings=self.num_cls + 1, embedding_dim=args.hidden_dim)
self.cls_layers = nn.ModuleList([Dense(args.hidden_dim, args.hidden_dim) for _ in range(self.num_layers)])
def forward(self, seq, t, cls = None, return_embedding=False):
# pdb.set_trace()
if self.args.clean_data:
feat = self.linear(seq)
feat = feat.permute(0, 2, 1)
else:
time_emb = F.relu(self.time_embedder(t))
feat = seq.permute(0, 2, 1)
feat = F.relu(self.linear(feat))
if self.args.cls_free_guidance and not self.classifier and cls is not None:
# pdb.set_trace()
cls_emb = self.cls_embedder(cls)
for i in range(self.num_layers):
h = self.dropout(feat.clone())
if not self.args.clean_data:
h = h + self.time_layers[i](time_emb)[:, :, None]
if self.args.cls_free_guidance and not self.classifier and cls is not None:
h = h + self.cls_layers[i](cls_emb)[:, :, None]
h = self.norms[i]((h).permute(0, 2, 1))
h = F.relu(self.convs[i](h.permute(0, 2, 1)))
if h.shape == feat.shape:
feat = h + feat
else:
feat = h
feat = self.final_conv(feat)
feat = feat.permute(0, 2, 1)
if self.classifier:
feat = feat.mean(dim=1)
if return_embedding:
embedding = self.cls_head[:1](feat)
return self.cls_head[1:](embedding), embedding
else:
return self.cls_head(feat)
return feat