File size: 10,062 Bytes
4eb488b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
/**
* VibeVoice TTS for Browser
*
* Loads ONNX models from HuggingFace and runs TTS inference.
*
* Models required:
* - tts_llm_int4.onnx (702 MB) - Text → Hidden States
* - diffusion_head_int4.onnx (25 MB) - Hidden States → Latents
* - vocoder_int4.onnx (339 MB) - Latents → Audio
*/
// ONNX Runtime Web will be loaded from CDN
let ort = null;
export class VibeVoiceTTS {
constructor() {
this.sessions = {};
this.config = null;
this.loaded = false;
}
/**
* Load model from HuggingFace
*/
static async from_pretrained(modelId, options = {}) {
const {
dtype = 'int4',
progress_callback = null,
} = options;
// Load ONNX Runtime if not already loaded
if (!ort) {
ort = await import('https://cdn.jsdelivr.net/npm/[email protected]/dist/esm/ort.min.js');
}
const instance = new VibeVoiceTTS();
// Build base URL
const baseUrl = modelId.startsWith('http')
? modelId
: `https://huggingface.co/${modelId}/resolve/main`;
// Load config
progress_callback?.({ status: 'loading', component: 'config', progress: 0 });
try {
const configResp = await fetch(`${baseUrl}/config.json`);
instance.config = await configResp.json();
} catch (e) {
console.warn('Could not load config, using defaults');
instance.config = {
audio: { sample_rate: 24000, vae_dim: 64 },
diffusion: { num_inference_steps: 20, latent_size: 64, hidden_size: 896 }
};
}
// Session options
const sessionOptions = {
executionProviders: ['wasm'],
graphOptimizationLevel: 'all',
};
// Model files to load
const models = {
tts_llm: dtype === 'fp32' ? 'tts_llm.onnx' : `tts_llm_${dtype}.onnx`,
diffusion_head: dtype === 'fp32' ? 'diffusion_head.onnx' : `diffusion_head_${dtype}.onnx`,
vocoder: dtype === 'fp32' ? 'vocoder.onnx' : `vocoder_${dtype}.onnx`,
};
// Load each model
const totalModels = Object.keys(models).length;
let loadedCount = 0;
for (const [name, filename] of Object.entries(models)) {
progress_callback?.({
status: 'loading',
component: name,
progress: (loadedCount / totalModels) * 100
});
try {
console.log(`Loading ${name} from ${baseUrl}/${filename}...`);
const response = await fetch(`${baseUrl}/${filename}`);
if (!response.ok) {
throw new Error(`HTTP ${response.status}: ${response.statusText}`);
}
const buffer = await response.arrayBuffer();
instance.sessions[name] = await ort.InferenceSession.create(buffer, sessionOptions);
console.log(`✓ Loaded ${name} (${(buffer.byteLength / 1024 / 1024).toFixed(1)} MB)`);
loadedCount++;
} catch (e) {
console.error(`✗ Failed to load ${name}: ${e.message}`);
throw e;
}
}
progress_callback?.({ status: 'ready', progress: 100 });
instance.loaded = true;
return instance;
}
/**
* Simple tokenizer (character-level fallback)
* For production, use the actual Qwen2 tokenizer
*/
tokenize(text) {
// This is a placeholder - real implementation needs Qwen2 tokenizer
// For now, use simple character codes (won't produce good audio)
const tokens = [];
for (const char of text) {
tokens.push(char.charCodeAt(0) % 1000); // Simple mapping
}
return tokens;
}
/**
* Generate speech from text
*/
async generate(text, options = {}) {
if (!this.loaded) {
throw new Error('Model not loaded. Call from_pretrained first.');
}
const {
num_inference_steps = 20,
progress_callback = null,
} = options;
console.log(`Generating speech for: "${text.substring(0, 50)}..."`);
// Step 1: Tokenize
progress_callback?.({ stage: 'tokenize', progress: 0 });
const tokens = this.tokenize(text);
const seqLen = tokens.length;
// Step 2: Run LLM
progress_callback?.({ stage: 'llm', progress: 10 });
const inputIds = new ort.Tensor('int64', BigInt64Array.from(tokens.map(BigInt)), [1, seqLen]);
const attentionMask = new ort.Tensor('int64', BigInt64Array.from(Array(seqLen).fill(1n)), [1, seqLen]);
const positionIds = new ort.Tensor('int64', BigInt64Array.from([...Array(seqLen).keys()].map(BigInt)), [1, seqLen]);
const llmOutput = await this.sessions.tts_llm.run({
input_ids: inputIds,
attention_mask: attentionMask,
position_ids: positionIds,
});
// Get hidden states [batch, seq_len, hidden_size]
const hiddenStates = llmOutput.hidden_states;
console.log('LLM output shape:', hiddenStates.dims);
// Step 3: Run Diffusion for each frame
progress_callback?.({ stage: 'diffusion', progress: 30 });
const latentSize = this.config.diffusion?.latent_size || 64;
const numFrames = seqLen; // One latent frame per token (simplified)
// Initialize latents with noise
const allLatents = new Float32Array(numFrames * latentSize);
for (let frame = 0; frame < numFrames; frame++) {
// Get hidden state for this frame
const hiddenSize = this.config.diffusion?.hidden_size || 896;
const frameHidden = new Float32Array(hiddenSize);
for (let i = 0; i < hiddenSize; i++) {
frameHidden[i] = hiddenStates.data[frame * hiddenSize + i];
}
// Run diffusion denoising
let latent = new Float32Array(latentSize);
for (let i = 0; i < latentSize; i++) {
latent[i] = this.randomNormal();
}
const timesteps = this.getTimesteps(num_inference_steps);
for (let step = 0; step < timesteps.length; step++) {
const t = timesteps[step];
const diffusionOutput = await this.sessions.diffusion_head.run({
noisy_latent: new ort.Tensor('float32', latent, [1, latentSize]),
timestep: new ort.Tensor('float32', [t], [1]),
hidden_states: new ort.Tensor('float32', frameHidden, [1, hiddenSize]),
});
const vPred = diffusionOutput.v_prediction.data;
latent = this.denoisingStep(latent, vPred, t, timesteps[step + 1] || 0);
}
// Store frame latent
for (let i = 0; i < latentSize; i++) {
allLatents[frame * latentSize + i] = latent[i];
}
progress_callback?.({
stage: 'diffusion',
progress: 30 + (frame / numFrames) * 50
});
}
// Step 4: Run Vocoder
progress_callback?.({ stage: 'vocoder', progress: 80 });
// Reshape latents to [batch, vae_dim, seq_len]
const latentsTensor = new ort.Tensor('float32', allLatents, [1, latentSize, numFrames]);
const vocoderOutput = await this.sessions.vocoder.run({
latents: latentsTensor,
});
const audioData = vocoderOutput.audio.data;
console.log('Audio output length:', audioData.length);
progress_callback?.({ stage: 'done', progress: 100 });
return new Float32Array(audioData);
}
/**
* Get timesteps for diffusion (linear spacing from 999 to 0)
*/
getTimesteps(numSteps) {
const timesteps = [];
for (let i = 0; i < numSteps; i++) {
timesteps.push(Math.floor(999 * (1 - i / (numSteps - 1))));
}
return timesteps;
}
/**
* V-prediction denoising step
*/
denoisingStep(latent, vPred, t, tNext) {
const alpha = this.getAlphaCumprod(t);
const alphaNext = this.getAlphaCumprod(tNext);
const sigma = Math.sqrt(1 - alpha);
const sigmaNext = Math.sqrt(1 - alphaNext);
const result = new Float32Array(latent.length);
for (let i = 0; i < latent.length; i++) {
// V-prediction: v = alpha * noise - sigma * x0
// So: x0 = (alpha * latent - sigma * v) / (alpha^2 + sigma^2)
// Simplified: x0_pred = sqrt(alpha) * latent - sqrt(1-alpha) * v
const sqrtAlpha = Math.sqrt(alpha);
const x0Pred = sqrtAlpha * latent[i] - sigma * vPred[i];
// Move to next timestep
const sqrtAlphaNext = Math.sqrt(alphaNext);
result[i] = sqrtAlphaNext * x0Pred + sigmaNext * this.randomNormal() * 0.1;
}
return result;
}
/**
* Cosine schedule alpha_cumprod
*/
getAlphaCumprod(t) {
const s = 0.008;
const tNorm = t / 1000;
const f = Math.cos(((tNorm + s) / (1 + s)) * Math.PI / 2);
return f * f;
}
/**
* Random normal (Box-Muller)
*/
randomNormal() {
const u1 = Math.random();
const u2 = Math.random();
return Math.sqrt(-2 * Math.log(u1)) * Math.cos(2 * Math.PI * u2);
}
/**
* Play audio data
*/
static playAudio(audioData, sampleRate = 24000) {
const audioContext = new (window.AudioContext || window.webkitAudioContext)();
const buffer = audioContext.createBuffer(1, audioData.length, sampleRate);
buffer.copyToChannel(audioData, 0);
const source = audioContext.createBufferSource();
source.buffer = buffer;
source.connect(audioContext.destination);
source.start(0);
return { audioContext, buffer };
}
}
export default VibeVoiceTTS;
|