HA2F / main.py
InPeerReview's picture
Upload main.py
34ea8e9 verified
import sys
from model.trainer import Trainer
sys.path.insert(0, '.')
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.nn.parallel import gather
import torch.optim.lr_scheduler
import dataset.dataset as myDataLoader
import dataset.Transforms as myTransforms
from model.metric_tool import ConfuseMatrixMeter
from model.utils import BCEDiceLoss, init_seed, adjust_learning_rate
import os, time
import numpy as np
from argparse import ArgumentParser
@torch.no_grad()
def val(args, val_loader, model):
model.eval()
salEvalVal = ConfuseMatrixMeter(n_class=2)
epoch_loss = []
total_batches = len(val_loader)
print(len(val_loader))
for iter, batched_inputs in enumerate(val_loader):
img, target = batched_inputs
pre_img = img[:, 0:3]
post_img = img[:, 3:6]
start_time = time.time()
if args.onGPU == True:
pre_img = pre_img.cuda()
target = target.cuda()
post_img = post_img.cuda()
pre_img_var = torch.autograd.Variable(pre_img).float()
post_img_var = torch.autograd.Variable(post_img).float()
target_var = torch.autograd.Variable(target).float()
# run the mdoel
output = model(pre_img_var, post_img_var)
loss = BCEDiceLoss(output, target_var)
pred = torch.where(output > 0.5, torch.ones_like(output), torch.zeros_like(output)).long()
# torch.cuda.synchronize()
time_taken = time.time() - start_time
epoch_loss.append(loss.data.item())
# compute the confusion matrix
if args.onGPU and torch.cuda.device_count() > 1:
output = gather(pred, 0, dim=0)
# salEvalVal.addBatch(pred, target_var)
f1 = salEvalVal.update_cm(pr=pred.cpu().numpy(), gt=target_var.cpu().numpy())
if iter % 5 == 0:
print('\r[%d/%d] F1: %3f loss: %.3f time: %.3f' % (iter, total_batches, f1, loss.data.item(), time_taken),
end='')
average_epoch_loss_val = sum(epoch_loss) / len(epoch_loss)
scores = salEvalVal.get_scores()
return average_epoch_loss_val, scores
def train(args, train_loader, model, optimizer, epoch, max_batches, cur_iter=0, lr_factor=1.):
# switch to train mode
model.train()
salEvalVal = ConfuseMatrixMeter(n_class=2)
epoch_loss = []
for iter, batched_inputs in enumerate(train_loader):
img, target = batched_inputs
pre_img = img[:, 0:3]
post_img = img[:, 3:6]
start_time = time.time()
# adjust the learning rate
lr = adjust_learning_rate(args, optimizer, epoch, iter + cur_iter, max_batches, lr_factor=lr_factor)
if args.onGPU == True:
pre_img = pre_img.cuda()
target = target.cuda()
post_img = post_img.cuda()
pre_img_var = torch.autograd.Variable(pre_img).float()
post_img_var = torch.autograd.Variable(post_img).float()
target_var = torch.autograd.Variable(target).float()
# run the model
output = model(pre_img_var, post_img_var)
loss = BCEDiceLoss(output, target_var)
pred = torch.where(output > 0.5, torch.ones_like(output), torch.zeros_like(output)).long()
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_loss.append(loss.data.item())
time_taken = time.time() - start_time
res_time = (max_batches * args.max_epochs - iter - cur_iter) * time_taken / 3600
if args.onGPU and torch.cuda.device_count() > 1:
output = gather(pred, 0, dim=0)
# Computing F-measure and IoU on GPU
with torch.no_grad():
f1 = salEvalVal.update_cm(pr=pred.cpu().numpy(), gt=target_var.cpu().numpy())
if iter % 5 == 0:
print('\riteration: [%d/%d] f1: %.3f lr: %.7f loss: %.3f time:%.3f h' % (
iter + cur_iter, max_batches * args.max_epochs, f1, lr, loss.data.item(),
res_time),
end='')
average_epoch_loss_train = sum(epoch_loss) / len(epoch_loss)
scores = salEvalVal.get_scores()
return average_epoch_loss_train, scores, lr
def trainValidateSegmentation(args):
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu_id)
torch.backends.cudnn.benchmark = True
init_seed(args.seed)
args.savedir = args.savedir + '_' + args.file_root + '_iter_' + str(args.max_steps) + '_lr_' + str(args.lr) + '/'
if args.file_root == 'LEVIR':
args.file_root = './levir_cd_256'
elif args.file_root == 'WHU':
args.file_root = './whu_cd_256'
elif args.file_root == 'CLCD':
args.file_root = './clcd_256'
elif args.file_root == 'SYSU':
args.file_root = './sysu_256'
elif args.file_root == 'OSCD':
args.file_root = 'oscd_256'
else:
raise TypeError('%s has not defined' % args.file_root)
if not os.path.exists(args.savedir):
os.makedirs(args.savedir)
model = Trainer(args.model_type).float()
if args.onGPU:
model = model.cuda()
# mean = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
# std = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5]
mean = [0.406, 0.456, 0.485, 0.406, 0.456, 0.485]
std = [0.225, 0.224, 0.229, 0.225, 0.224, 0.229]
# compose the data with transforms
trainDataset_main = myTransforms.Compose([
myTransforms.Normalize(mean=mean, std=std),
myTransforms.Scale(args.inWidth, args.inHeight),
myTransforms.RandomCropResize(int(7. / 224. * args.inWidth)),
myTransforms.RandomFlip(),
myTransforms.RandomExchange(),
myTransforms.ToTensor()
])
valDataset = myTransforms.Compose([
myTransforms.Normalize(mean=mean, std=std),
myTransforms.Scale(args.inWidth, args.inHeight),
myTransforms.ToTensor()
])
train_data = myDataLoader.Dataset(file_root=args.file_root, mode="train", transform=trainDataset_main)
trainLoader = torch.utils.data.DataLoader(
train_data,
batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, pin_memory=True, drop_last=False
)
test_data = myDataLoader.Dataset(file_root=args.file_root, mode="test", transform=valDataset)
testLoader = torch.utils.data.DataLoader(
test_data, shuffle=False,
batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=True)
max_batches = len(trainLoader)
print('For each epoch, we have {} batches'.format(max_batches))
if args.onGPU:
cudnn.benchmark = True
args.max_epochs = int(np.ceil(args.max_steps / max_batches))
start_epoch = 0
cur_iter = 0
max_F1_val = 0
if args.resume is not None:
args.resume = args.savedir + 'checkpoint.pth.tar'
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
start_epoch = checkpoint['epoch']
cur_iter = start_epoch * len(trainLoader)
# args.lr = checkpoint['lr']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
logFileLoc = args.savedir + args.logFile
if os.path.isfile(logFileLoc):
logger = open(logFileLoc, 'a')
else:
logger = open(logFileLoc, 'w')
logger.write(
"\n%s\t%s\t%s\t%s\t%s\t%s\t%s" % ('Epoch', 'Kappa (val)', 'IoU (val)', 'F1 (val)', 'R (val)', 'P (val)', 'OA (val)'))
logger.flush()
optimizer = torch.optim.Adam(model.parameters(), args.lr, (0.9, 0.99), eps=1e-08, weight_decay=1e-4)
for epoch in range(start_epoch, args.max_epochs):
lossTr, score_tr, lr = \
train(args, trainLoader, model, optimizer, epoch, max_batches, cur_iter)
cur_iter += len(trainLoader)
torch.cuda.empty_cache()
# evaluate on validation set
if epoch == 0:
continue
lossVal, score_val = val(args, testLoader, model)
torch.cuda.empty_cache()
logger.write("\n%d\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f" % (epoch, score_val['Kappa'], score_val['IoU'],
score_val['F1'], score_val['recall'],
score_val['precision'], score_val['OA']))
logger.flush()
torch.save({
'epoch': epoch + 1,
'arch': str(model),
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lossTr': lossTr,
'lossVal': lossVal,
'F_Tr': score_tr['F1'],
'F_val': score_val['F1'],
'lr': lr
}, args.savedir + 'checkpoint.pth.tar')
# save the model also
model_file_name = args.savedir + 'best_model.pth'
if epoch % 1 == 0 and max_F1_val <= score_val['F1']:
max_F1_val = score_val['F1']
torch.save(model.state_dict(), model_file_name)
print("Epoch " + str(epoch) + ': Details')
print("\nEpoch No. %d:\tTrain Loss = %.4f\tVal Loss = %.4f\t F1(tr) = %.4f\t F1(val) = %.4f" \
% (epoch, lossTr, lossVal, score_tr['F1'], score_val['F1']))
torch.cuda.empty_cache()
state_dict = torch.load(model_file_name)
model.load_state_dict(state_dict)
loss_test, score_test = val(args, testLoader, model)
print("\nTest :\t Kappa (te) = %.4f\t IoU (te) = %.4f\t F1 (te) = %.4f\t R (te) = %.4f\t P (te) = %.4f" \
% (score_test['Kappa'], score_test['IoU'], score_test['F1'], score_test['recall'], score_test['precision']))
logger.write("\n%s\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f" % ('Test', score_test['Kappa'], score_test['IoU'],
score_test['F1'], score_test['recall'],
score_test['precision'], score_test['OA']))
logger.flush()
logger.close()
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--file_root', default="LEVIR", help='Data directory | LEVIR | WHU | CLCD | SYSU | OSCD ')
parser.add_argument('--inWidth', type=int, default=256, help='Width of RGB image')
parser.add_argument('--inHeight', type=int, default=256, help='Height of RGB image')
parser.add_argument('--max_steps', type=int, default=80000, help='Max. number of iterations')
parser.add_argument('--num_workers', type=int, default=4, help='No. of parallel threads')
parser.add_argument('--model_type', type=str, default='small', help='select vit model type | tiny | small')
parser.add_argument('--batch_size', type=int, default=16, help='Batch size')
parser.add_argument('--step_loss', type=int, default=100, help='Decrease learning rate after how many epochs')
parser.add_argument('--lr', type=float, default=2e-4, help='Initial learning rate')
parser.add_argument('--lr_mode', default='poly', help='Learning rate policy, step or poly')
parser.add_argument('--seed', default=16, help='initialization seed number')
parser.add_argument('--savedir', default='./results', help='Directory to save the results')
parser.add_argument('--resume', default=None, help='Use this checkpoint to continue training | '
'./results_ep100/checkpoint.pth.tar')
parser.add_argument('--logFile', default='trainValLog.txt',
help='File that stores the training and validation logs')
parser.add_argument('--onGPU', default=True, type=lambda x: (str(x).lower() == 'true'),
help='Run on CPU or GPU. If TRUE, then GPU.')
parser.add_argument('--gpu_id', default=0, type=int, help='GPU id number')
args = parser.parse_args()
print('Called with args:')
print(args)
trainValidateSegmentation(args)