Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,67 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## 🛠️ Requirements
|
| 2 |
+
|
| 3 |
+
### Environment
|
| 4 |
+
- **Linux system**,
|
| 5 |
+
- **Python** 3.8+, recommended 3.10
|
| 6 |
+
- **PyTorch** 2.0 or higher, recommended 2.1.0
|
| 7 |
+
- **CUDA** 11.7 or higher, recommended 12.1
|
| 8 |
+
|
| 9 |
+
### Environment Installation
|
| 10 |
+
|
| 11 |
+
It is recommended to use Miniconda for installation. The following commands will create a virtual environment named `stnr` and install PyTorch. In the following installation steps, the default installed CUDA version is 12.1. If your CUDA version is not 12.1, please modify it according to the actual situation.
|
| 12 |
+
|
| 13 |
+
```bash
|
| 14 |
+
# Create conda environment
|
| 15 |
+
conda create -n stnr python=3.8 -y
|
| 16 |
+
conda activate stnr
|
| 17 |
+
|
| 18 |
+
# Install PyTorch
|
| 19 |
+
pip install -r requirements.txt
|
| 20 |
+
```
|
| 21 |
+
|
| 22 |
+
## 📁 Dataset Preparation
|
| 23 |
+
|
| 24 |
+
We evaluate our method on five remote sensing change detection datasets: **WHU-CD**, **LEVIR-CD**, **SYSU-CD**.
|
| 25 |
+
|
| 26 |
+
| Dataset | Link |
|
| 27 |
+
|---------|------|
|
| 28 |
+
| WHU-CD | [Download](https://aistudio.baidu.com/datasetdetail/251669) |
|
| 29 |
+
| LEVIR-CD | [Download](https://opendatalab.org.cn/OpenDataLab/LEVIR-CD) |
|
| 30 |
+
| SYSU-CD | [Download](https://mail2sysueducn-my.sharepoint.com/personal/liumx23_mail2_sysu_edu_cn/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fliumx23%5Fmail2%5Fsysu%5Fedu%5Fcn%2FDocuments%2FSYSU%2DCD&ga=1) |
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
### Example of Training on LEVIR-CD Dataset
|
| 35 |
+
|
| 36 |
+
```bash
|
| 37 |
+
python main.py --file_root LEVIR --max_steps 80000 --model_type small --batch_size 16 --lr 2e-4 --gpu_id 0
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
### Example of Training on LEVIR-CD Dataset
|
| 41 |
+
|
| 42 |
+
```bash
|
| 43 |
+
python eval.py --file_root LEVIR --max_steps 80000 --model_type small --batch_size 16 --lr 2e-4 --gpu_id 0
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
## 📂 DATA Structure
|
| 47 |
+
|
| 48 |
+
```
|
| 49 |
+
├─Train
|
| 50 |
+
├─A jpg/png
|
| 51 |
+
├─B jpg/png
|
| 52 |
+
└─label jpg/png
|
| 53 |
+
├─Val
|
| 54 |
+
├─A
|
| 55 |
+
├─B
|
| 56 |
+
└─label
|
| 57 |
+
├─Test
|
| 58 |
+
├─A
|
| 59 |
+
├─B
|
| 60 |
+
└─label
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
## 🙏 Acknowledgement
|
| 64 |
+
|
| 65 |
+
We sincerely thank the following works for their contributions:
|
| 66 |
+
|
| 67 |
+
- [ChangeViT](https://arxiv.org/pdf/2406.12847) – A state-of-the-art method for remote sensing change detection that inspired and influenced parts of this work.
|