import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from model.utils import weight_init def drop_path(x, drop_prob: float = 0., training: bool = False): if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class CrossAttention(nn.Module): def __init__(self, dim1, dim2, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim1 // num_heads self.scale = head_dim ** -0.5 self.q = nn.Linear(dim1, dim1, bias=qkv_bias) self.kv = nn.Linear(dim2, dim1 * 2, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim1, dim1) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, y): B1, N1, C1 = x.shape B2, N2, C2 = y.shape q = self.q(x).reshape(B1, N1, self.num_heads, C1 // self.num_heads).permute(0, 2, 1, 3) kv = self.kv(y).reshape(B2, N2, 2, self.num_heads, C1 // self.num_heads).permute(2, 0, 3, 1, 4) k, v = kv[0], kv[1] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B1, N1, C1) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim1, dim2, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim1) self.norm2 = norm_layer(dim2) self.attn = CrossAttention(dim1, dim2, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm3 = norm_layer(dim1) mlp_hidden_dim = int(dim1 * mlp_ratio) self.mlp = Mlp(in_features=dim1, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, y): x = x + self.drop_path(self.attn(self.norm1(x), self.norm2(y))) x = x + self.drop_path(self.mlp(self.norm3(x))) return x class ContentAwareAggregation(nn.Module): def __init__(self, low_dim, high_dim): super().__init__() self.project = nn.Sequential( nn.Conv2d(high_dim, low_dim, kernel_size=1), nn.BatchNorm2d(low_dim), nn.ReLU(inplace=True) ) self.attn_gen = nn.Sequential( nn.Conv2d(low_dim, low_dim, kernel_size=3, padding=1, groups=low_dim), nn.BatchNorm2d(low_dim), nn.ReLU(inplace=True), nn.Conv2d(low_dim, low_dim, kernel_size=1), nn.Sigmoid() ) def forward(self, low_feat, high_feat): high_feat = F.interpolate(high_feat, size=low_feat.shape[2:], mode='bilinear', align_corners=False) high_feat = self.project(high_feat) attn = self.attn_gen(low_feat + high_feat) out = attn * low_feat + high_feat return out class FeatureInjector(nn.Module): def __init__(self, dim1=384, dim2=[64, 128, 256], num_heads=8, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., drop_path=0., act_layer=nn.ReLU, norm_layer=nn.LayerNorm): super().__init__() self.c2_c5 = Block(dim1, dim2[0], num_heads, mlp_ratio, qkv_bias, drop, attn_drop, drop_path, act_layer, norm_layer) self.c3_c5 = Block(dim1, dim2[1], num_heads, mlp_ratio, qkv_bias, drop, attn_drop, drop_path, act_layer, norm_layer) self.c4_c5 = Block(dim1, dim2[2], num_heads, mlp_ratio, qkv_bias, drop, attn_drop, drop_path, act_layer, norm_layer) self.fuse = nn.Conv2d(dim1*3, dim1, 1, bias=False) self.caa = ContentAwareAggregation(dim1, dim1) weight_init(self) def base_forward(self, c2, c3, c4, c5): H, W = c5.shape[2:] c2 = rearrange(c2, 'b c h w -> b (h w) c') c3 = rearrange(c3, 'b c h w -> b (h w) c') c4 = rearrange(c4, 'b c h w -> b (h w) c') c5 = rearrange(c5, 'b c h w -> b (h w) c') _c2 = self.c2_c5(c5, c2) _c2 = rearrange(_c2, 'b (h w) c -> b c h w', h=H, w=W) _c3 = self.c3_c5(c5, c3) _c3 = rearrange(_c3, 'b (h w) c -> b c h w', h=H, w=W) _c4 = self.c4_c5(c5, c4) _c4 = rearrange(_c4, 'b (h w) c -> b c h w', h=H, w=W) _c5 = self.fuse(torch.cat([_c2, _c3, _c4], dim=1)) return _c5 def forward(self, fx, fy): _c5x = self.base_forward(fx[0], fx[1], fx[2], fx[3]) _c5y = self.base_forward(fy[0], fy[1], fy[2], fy[3]) _c5x = self.caa(_c5x, _c5y) _c5y = self.caa(_c5y, _c5x) return _c5x, _c5y class DualAttentionGate(nn.Module): def __init__(self, channels, ratio=8): super().__init__() self.channel_att = nn.Sequential( nn.AdaptiveAvgPool2d(1), # [B,C,1,1] nn.Conv2d(channels, channels // ratio, 1, bias=False), # [B,C/8,1,1] nn.ReLU(), nn.Conv2d(channels // ratio, channels, 1, bias=False), # [B,C,1,1] nn.Sigmoid() ) self.spatial_att = nn.Sequential( nn.Conv2d(2, 1, 7, padding=3, bias=False), # 输入2通道(mean+std) nn.Sigmoid() # 输出[B,1,H,W] ) def forward(self, x): c_att = self.channel_att(x) mean = torch.mean(x, dim=1, keepdim=True) std = torch.std(x, dim=1, keepdim=True) s_att = self.spatial_att(torch.cat([mean, std], dim=1)) return x * c_att * s_att class SimplifiedFGFM(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.down = nn.Conv2d(in_channels, out_channels, 1, bias=False) self.flow_make = nn.Conv2d(out_channels * 2, 4, 3, padding=1, bias=False) self.dual_att = DualAttentionGate(out_channels) def flow_warp(self, input, flow, size): out_h, out_w = size n, c, h, w = input.size() norm = torch.tensor([[[[out_w, out_h]]]]).type_as(input).to(input.device) grid = torch.meshgrid( torch.linspace(-1.0, 1.0, out_h), torch.linspace(-1.0, 1.0, out_w), indexing='ij' ) grid = torch.stack((grid[1], grid[0]), 2).repeat(n, 1, 1, 1).type_as(input) grid = grid + flow.permute(0, 2, 3, 1) / norm return F.grid_sample(input, grid, align_corners=True) def forward(self, lowres_feature, highres_feature): l_feature = self.down(lowres_feature) l_feature_up = F.interpolate(l_feature, size=highres_feature.shape[2:], mode='bilinear', align_corners=True) flow = self.flow_make(torch.cat([l_feature_up, highres_feature], dim=1)) flow_l, flow_h = flow[:, :2, :, :], flow[:, 2:, :, :] l_warp = self.flow_warp(l_feature, flow_l, highres_feature.shape[2:]) h_warp = self.flow_warp(highres_feature, flow_h, highres_feature.shape[2:]) fused = self.dual_att(l_warp + h_warp) return fused class Decoder(nn.Module): def __init__(self, in_dim=[64, 128, 256, 384], decay=4, num_class=1): super().__init__() c2_channel, c3_channel, c4_channel, c5_channel = in_dim self.structure_enhance = FeatureInjector(dim1=c5_channel) self.fgfm_c4 = SimplifiedFGFM(in_channels=c5_channel, out_channels=c4_channel) self.fgfm_c3 = SimplifiedFGFM(in_channels=c4_channel, out_channels=c3_channel) self.fgfm_c2 = SimplifiedFGFM(in_channels=c3_channel, out_channels=c2_channel) self.classfier = nn.Sequential( nn.ConvTranspose2d(c2_channel, c2_channel, kernel_size=4, stride=2, padding=1), nn.Conv2d(c2_channel, num_class, 3, 1, padding=1, bias=False) ) self.mlp = nn.ModuleList([ nn.Sequential( nn.Conv2d(dim * 3, dim // decay, 1, bias=False), nn.BatchNorm2d(dim // decay), nn.ReLU(), nn.Conv2d(dim // decay, dim // decay, 3, 1, padding=1, bias=False), nn.ReLU(), nn.Conv2d(dim // decay, dim // decay, 3, 1, padding=1, bias=False), nn.ReLU(), nn.Conv2d(dim // decay, dim, 3, 1, padding=1, bias=False) ) for dim in in_dim ]) def difference_modeling(self, x, y, block): f = torch.cat([x, y, torch.abs(x - y)], dim=1) return block(f) def forward(self, fx, fy): c2x, c3x, c4x = fx[:-1] c2y, c3y, c4y = fy[:-1] c5x, c5y = self.structure_enhance(fx, fy) c2 = self.difference_modeling(c2x, c2y, self.mlp[0]) c3 = self.difference_modeling(c3x, c3y, self.mlp[1]) c4 = self.difference_modeling(c4x, c4y, self.mlp[2]) c5 = self.difference_modeling(c5x, c5y, self.mlp[3]) c4f = self.fgfm_c4(c5, c4) c3f = self.fgfm_c3(c4f, c3) c2f = self.fgfm_c2(c3f, c2) pred = self.classfier(c2f) pred_mask = torch.sigmoid(pred) return pred_mask