|
|
import numpy as np |
|
|
|
|
|
|
|
|
|
|
|
class AverageMeter(object): |
|
|
"""Computes and stores the average and current value""" |
|
|
|
|
|
def __init__(self): |
|
|
self.initialized = False |
|
|
self.val = None |
|
|
self.avg = None |
|
|
self.sum = None |
|
|
self.count = None |
|
|
|
|
|
def initialize(self, val, weight): |
|
|
self.val = val |
|
|
self.avg = val |
|
|
self.sum = val * weight |
|
|
self.count = weight |
|
|
self.initialized = True |
|
|
|
|
|
def update(self, val, weight=1): |
|
|
if not self.initialized: |
|
|
self.initialize(val, weight) |
|
|
else: |
|
|
self.add(val, weight) |
|
|
|
|
|
def add(self, val, weight): |
|
|
self.val = val |
|
|
self.sum += val * weight |
|
|
self.count += weight |
|
|
self.avg = self.sum / self.count |
|
|
|
|
|
def value(self): |
|
|
return self.val |
|
|
|
|
|
def average(self): |
|
|
return self.avg |
|
|
|
|
|
def get_scores(self): |
|
|
scores_dict = cm2score(self.sum) |
|
|
return scores_dict |
|
|
|
|
|
def clear(self): |
|
|
self.initialized = False |
|
|
|
|
|
|
|
|
|
|
|
class ConfuseMatrixMeter(AverageMeter): |
|
|
"""Computes and stores the average and current value""" |
|
|
|
|
|
def __init__(self, n_class): |
|
|
super(ConfuseMatrixMeter, self).__init__() |
|
|
self.n_class = n_class |
|
|
|
|
|
def update_cm(self, pr, gt, weight=1): |
|
|
"""获得当前混淆矩阵,并计算当前F1得分,并更新混淆矩阵""" |
|
|
val = get_confuse_matrix(num_classes=self.n_class, label_gts=gt, label_preds=pr) |
|
|
self.update(val, weight) |
|
|
current_score = cm2F1(val) |
|
|
return current_score |
|
|
|
|
|
def get_scores(self): |
|
|
scores_dict = cm2score(self.sum) |
|
|
return scores_dict |
|
|
|
|
|
|
|
|
def harmonic_mean(xs): |
|
|
harmonic_mean = len(xs) / sum((x + 1e-6) ** -1 for x in xs) |
|
|
return harmonic_mean |
|
|
|
|
|
|
|
|
def cm2F1(confusion_matrix): |
|
|
hist = confusion_matrix |
|
|
tp = hist[1, 1] |
|
|
fn = hist[1, 0] |
|
|
fp = hist[0, 1] |
|
|
tn = hist[0, 0] |
|
|
|
|
|
recall = tp / (tp + fn + np.finfo(np.float32).eps) |
|
|
|
|
|
precision = tp / (tp + fp + np.finfo(np.float32).eps) |
|
|
|
|
|
f1 = 2 * recall * precision / (recall + precision + np.finfo(np.float32).eps) |
|
|
return f1 |
|
|
|
|
|
|
|
|
def cm2score(confusion_matrix): |
|
|
hist = confusion_matrix |
|
|
tp = hist[1, 1] |
|
|
fn = hist[1, 0] |
|
|
fp = hist[0, 1] |
|
|
tn = hist[0, 0] |
|
|
|
|
|
oa = (tp + tn) / (tp + fn + fp + tn + np.finfo(np.float32).eps) |
|
|
|
|
|
recall = tp / (tp + fn + np.finfo(np.float32).eps) |
|
|
|
|
|
precision = tp / (tp + fp + np.finfo(np.float32).eps) |
|
|
|
|
|
f1 = 2 * recall * precision / (recall + precision + np.finfo(np.float32).eps) |
|
|
|
|
|
iou = tp / (tp + fp + fn + np.finfo(np.float32).eps) |
|
|
|
|
|
pre = ((tp + fn) * (tp + fp) + (tn + fp) * (tn + fn)) / (tp + fp + tn + fn) ** 2 |
|
|
|
|
|
kappa = (oa - pre) / (1 - pre) |
|
|
score_dict = {'Kappa': kappa, 'IoU': iou, 'F1': f1, 'OA': oa, 'recall': recall, 'precision': precision, 'Pre': pre} |
|
|
return score_dict |
|
|
|
|
|
|
|
|
def get_confuse_matrix(num_classes, label_gts, label_preds): |
|
|
"""计算一组预测的混淆矩阵""" |
|
|
|
|
|
def __fast_hist(label_gt, label_pred): |
|
|
""" |
|
|
Collect values for Confusion Matrix |
|
|
For reference, please see: https://en.wikipedia.org/wiki/Confusion_matrix |
|
|
:param label_gt: <np.array> ground-truth |
|
|
:param label_pred: <np.array> prediction |
|
|
:return: <np.ndarray> values for confusion matrix |
|
|
""" |
|
|
mask = (label_gt >= 0) & (label_gt < num_classes) |
|
|
hist = np.bincount(num_classes * label_gt[mask].astype(int) + label_pred[mask], |
|
|
minlength=num_classes ** 2).reshape(num_classes, num_classes) |
|
|
return hist |
|
|
|
|
|
confusion_matrix = np.zeros((num_classes, num_classes)) |
|
|
for lt, lp in zip(label_gts, label_preds): |
|
|
confusion_matrix += __fast_hist(lt.flatten(), lp.flatten()) |
|
|
return confusion_matrix |
|
|
|