## ๐Ÿ› ๏ธ Requirements ### Environment - **Linux system**, - **Python** 3.8+, recommended 3.10 - **PyTorch** 2.0 or higher, recommended 2.1.0 - **CUDA** 11.7 or higher, recommended 12.1 ### Environment Installation It is recommended to use Miniconda for installation. The following commands will create a virtual environment named `stnr` and install PyTorch. In the following installation steps, the default installed CUDA version is 12.1. If your CUDA version is not 12.1, please modify it according to the actual situation. ```bash # Create conda environment conda create -n stnr python=3.8 -y conda activate stnr # Install PyTorch pip install -r requirements.txt ``` ## ๐Ÿ“ Dataset Preparation We evaluate our method on five remote sensing change detection datasets: **WHU-CD**, **LEVIR-CD**, **SYSU-CD**. | Dataset | Link | |---------|------| | WHU-CD | [Download](https://aistudio.baidu.com/datasetdetail/251669) | | LEVIR-CD | [Download](https://opendatalab.org.cn/OpenDataLab/LEVIR-CD) | | SYSU-CD | [Download](https://mail2sysueducn-my.sharepoint.com/personal/liumx23_mail2_sysu_edu_cn/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fliumx23%5Fmail2%5Fsysu%5Fedu%5Fcn%2FDocuments%2FSYSU%2DCD&ga=1) | ### Example of Training on LEVIR-CD Dataset ```bash python main.py --file_root LEVIR --max_steps 80000 --model_type small --batch_size 16 --lr 2e-4 --gpu_id 0 ``` ### Example of Training on LEVIR-CD Dataset ```bash python eval.py --file_root LEVIR --max_steps 80000 --model_type small --batch_size 16 --lr 2e-4 --gpu_id 0 ``` ## ๐Ÿ“‚ DATA Structure ``` โ”œโ”€Train โ”œโ”€A jpg/png โ”œโ”€B jpg/png โ””โ”€label jpg/png โ”œโ”€Val โ”œโ”€A โ”œโ”€B โ””โ”€label โ”œโ”€Test โ”œโ”€A โ”œโ”€B โ””โ”€label ``` ## ๐Ÿ™ Acknowledgement We sincerely thank the following works for their contributions: - [ChangeViT](https://arxiv.org/pdf/2406.12847) โ€“ A state-of-the-art method for remote sensing change detection that inspired and influenced parts of this work.