Kevin Li
commited on
Upload folder using huggingface_hub
Browse files- __pycache__/models.cpython-310.pyc +0 -0
- decoder.pt +3 -0
- decoder.pth +3 -0
- decoder_earlystop_55.pt +3 -0
- decoder_earlystop_82.pt +3 -0
- models.py +74 -0
__pycache__/models.cpython-310.pyc
ADDED
|
Binary file (2 kB). View file
|
|
|
decoder.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:73c42a41e9a9bf115ea236aa5dfe7690d07123270c362217d0adc4d18ce2a4e8
|
| 3 |
+
size 802465833
|
decoder.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dc47dc8c28c257501ee1e843d76772fca1b803c25d196b122d65b549967c22c9
|
| 3 |
+
size 2406851328
|
decoder_earlystop_55.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:db2cfe59b08c6b05178d213901e71c07e8d843318caaf198ccba1661283372f9
|
| 3 |
+
size 802465833
|
decoder_earlystop_82.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9656b7cb181a8a6cc3af9fe9381a5137fe6249e2e03cf27abfce79bc7062db9c
|
| 3 |
+
size 802465833
|
models.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
class Decoder(nn.Module):
|
| 5 |
+
def __init__(self, input_dim, hidden_dim, gamma=0.1):
|
| 6 |
+
super().__init__()
|
| 7 |
+
self.input_dim = input_dim
|
| 8 |
+
self.hidden_dim = hidden_dim
|
| 9 |
+
self.gamma = gamma
|
| 10 |
+
self.float()
|
| 11 |
+
|
| 12 |
+
#should be 512, 1024
|
| 13 |
+
self.fc = nn.Sequential(
|
| 14 |
+
nn.Linear(input_dim, hidden_dim),
|
| 15 |
+
nn.BatchNorm1d(hidden_dim),
|
| 16 |
+
nn.ReLU(),
|
| 17 |
+
nn.Linear(hidden_dim, hidden_dim * 2),
|
| 18 |
+
nn.BatchNorm1d(hidden_dim * 2),
|
| 19 |
+
nn.ReLU(),
|
| 20 |
+
nn.Linear(hidden_dim * 2, hidden_dim * 4),
|
| 21 |
+
nn.BatchNorm1d(hidden_dim * 4),
|
| 22 |
+
nn.ReLU(),
|
| 23 |
+
nn.Linear(hidden_dim * 4, hidden_dim * 8),
|
| 24 |
+
nn.BatchNorm1d(hidden_dim * 8),
|
| 25 |
+
nn.ReLU(),
|
| 26 |
+
nn.Linear(hidden_dim * 8, hidden_dim * 4 * 4),
|
| 27 |
+
nn.BatchNorm1d(hidden_dim * 4 * 4),
|
| 28 |
+
nn.ReLU()
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
self.decoder = nn.Sequential(
|
| 32 |
+
nn.ConvTranspose2d(1024, 768, kernel_size=4, stride=2, padding=1),
|
| 33 |
+
nn.BatchNorm2d(768),
|
| 34 |
+
nn.ReLU(),
|
| 35 |
+
nn.ConvTranspose2d(768, 512, kernel_size=4, stride=2, padding=1),
|
| 36 |
+
nn.BatchNorm2d(512),
|
| 37 |
+
nn.ReLU(),
|
| 38 |
+
nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),
|
| 39 |
+
nn.BatchNorm2d(256),
|
| 40 |
+
nn.ReLU(),
|
| 41 |
+
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
|
| 42 |
+
nn.BatchNorm2d(128),
|
| 43 |
+
nn.ReLU(),
|
| 44 |
+
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
|
| 45 |
+
nn.BatchNorm2d(64),
|
| 46 |
+
nn.ReLU(),
|
| 47 |
+
nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1),
|
| 48 |
+
nn.BatchNorm2d(32),
|
| 49 |
+
nn.ReLU(),
|
| 50 |
+
nn.Conv2d(32, 3, kernel_size=3, padding=1),
|
| 51 |
+
nn.Sigmoid()
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
def forward(self, z):
|
| 55 |
+
batch_size = z.shape[0]
|
| 56 |
+
# adding noise to inputs
|
| 57 |
+
gamma = 0.05
|
| 58 |
+
z = z + self.gamma * torch.randn_like(z)
|
| 59 |
+
z = self.fc(z)
|
| 60 |
+
z = z.view(batch_size, 1024, 4, 4)
|
| 61 |
+
return self.decoder(z)
|
| 62 |
+
|
| 63 |
+
def get_loss(self, emb, x):
|
| 64 |
+
x_hat = self.forward(emb)
|
| 65 |
+
l = nn.MSELoss(reduction="mean")
|
| 66 |
+
loss = l(x_hat, x)
|
| 67 |
+
return loss
|
| 68 |
+
|
| 69 |
+
@torch.no_grad()
|
| 70 |
+
def sample(self, samples, device):
|
| 71 |
+
samples = samples.to(device)
|
| 72 |
+
x_hat = self.forward(samples)
|
| 73 |
+
|
| 74 |
+
return x_hat
|