QWen2.5-eval-NEWA800 / remaining_eval_multi_process_api.py
Xin-Rui's picture
Upload folder using huggingface_hub
a80200a verified
import random
import os
import argparse
import time
from datetime import datetime
from tqdm import tqdm
from transformers import AutoTokenizer
import logging
import json
from openai import OpenAI
from eval_tools import apply_RL_prompt, solve_final_answer
from evaluate import evaluate
from utils import set_seed, load_jsonl, save_jsonl, construct_prompt
from parser import *
from trajectory import *
from data_loader import load_data
from python_executor import PythonExecutor
# Initialize OpenAI client
client = OpenAI(
base_url='https://api.apikey.vip/v1',
api_key='sk-SZvcdq0lrEx3uqgYEs2QuxJ5Eft7ANYK5JPEjHSVAOJHGEzV'
)
## Setup logging
if not os.path.exists(f'{os.environ["modelname"]}'):
os.mkdir(f'{os.environ["modelname"]}')
if not os.path.exists(f'{os.environ["model"]}'):
os.mkdir(f'{os.environ["model"]}')
DATA_NAME = os.environ["DATA_NAME"]
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S', filename=f'{os.environ["model"]}/{os.environ["mode"]}-{DATA_NAME}.log', filemode='a')
print(f"logging in {os.environ['model']}/{os.environ['mode']}-{DATA_NAME}.log")
logging.info(f"modelname's infor: {os.environ['modelname']}")
logging.info(f"mode's infor: {os.environ['mode']}")
logging.info(f"model's infor: {os.environ['model']}")
with open('./special_tokens.json') as f:
special_tokens = json.load(f)
bins_tokens = [
special_tokens[f"{i}"] for i in range(400)
]
def clean_code(code):
for bin_token in bins_tokens:
if bin_token in code:
code = code.replace(bin_token, "")
return code
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--ratio", type=float, default=-1, help="ratio of cot to use for generation")
parser.add_argument("--data_names", default="math", type=str)
parser.add_argument("--data_dir", default="./data", type=str)
parser.add_argument("--model_name_or_path", default="Qwen/QwQ-32B-Preview", type=str)
parser.add_argument("--output_dir", default="Qwen/QwQ-32B-Preview/math_eval", type=str)
parser.add_argument("--prompt_type", default="qwen25-math-cot", type=str)
parser.add_argument("--split", default="test", type=str)
parser.add_argument("--num_test_sample", default=-1, type=int) # -1 for full data
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--start", default=0, type=int)
parser.add_argument("--end", default=-1, type=int)
parser.add_argument("--temperature", default=0, type=float)
parser.add_argument("--n_sampling", default=1, type=int)
parser.add_argument("--top_p", default=1, type=float)
parser.add_argument("--max_tokens_per_call", default=4096, type=int)
parser.add_argument("--shuffle", action="store_true")
parser.add_argument("--use_vllm", action="store_true")
parser.add_argument("--save_outputs", action="store_true")
parser.add_argument("--overwrite", action="store_true")
parser.add_argument("--use_safetensors", action="store_true")
parser.add_argument("--num_shots", type=int, default=0)
parser.add_argument("--apply_chat_template", action="store_true", help="Apply chat template to prompt.",)
parser.add_argument("--pipeline_parallel_size", type=int, default=1)
parser.add_argument("--adapt_few_shot", action="store_true", help="Few shot for multiple-choice questions, zero shot for others.",)
args = parser.parse_args()
args.top_p = (1 if args.temperature == 0 else args.top_p)
return args
def set_output_path(args, data_name):
model_name_list = args.model_name_or_path.split('/')[-1]
model_name = model_name_list
for part in model_name_list:
if 'models' in part:
model_name = part
output_dir = os.path.join(args.output_dir, model_name, args.prompt_type)
out_file_prefix = f"{args.split}_{args.prompt_type}_{args.num_test_sample}_seed{args.seed}_t{args.temperature}"
out_file = f"{output_dir}/{data_name}/{out_file_prefix}_s{args.start}_e{args.end}_b{int(args.max_tokens_per_call)}_original.jsonl"
print(out_file)
os.makedirs(f"{output_dir}/{data_name}", exist_ok=True)
return out_file_prefix, output_dir, out_file
def prepare_data(data_name, args):
examples = load_data(data_name, args.split, args.data_dir)
if args.num_test_sample > 0:
examples = examples[: args.num_test_sample]
if args.shuffle:
random.seed(datetime.now().timestamp())
random.shuffle(examples)
examples = examples[args.start : len(examples) if args.end == -1 else args.end]
dt_string = datetime.now().strftime("%m-%d_%H-%M")
model_name = "/".join(args.model_name_or_path.split("/")[-2:])
out_file_prefix, output_dir, out_file = set_output_path(args, data_name)
processed_samples = []
if not args.overwrite:
processed_files = [
f
for f in os.listdir(f"{output_dir}/{data_name}/")
if f.endswith(".jsonl") and f.startswith(out_file_prefix)
]
for f in processed_files:
processed_samples.extend(
list(load_jsonl(f"{output_dir}/{data_name}/{f}"))
)
processed_samples = {sample["idx"]: sample for sample in processed_samples}
processed_idxs = list(processed_samples.keys())
processed_samples = list(processed_samples.values())
examples = [example for example in examples if example["idx"] not in processed_idxs]
return examples, processed_samples, out_file
def is_multi_choice(answer):
for c in answer:
if c not in ["A", "B", "C", "D", "E"]:
return False
return True
def get_api_response(prompt, max_tokens=4096, temperature=0.5):
try:
prompt = prompt.replace("<|User|>", "")
prompt = prompt.replace("<|Assistant|>", "")
print("API call:", prompt)
completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": "who are you",
# "content": prompt,
}
],
model="o1-mini",
timeout=200,
temperature=temperature,
max_tokens=max_tokens,
)
print("API completion:", completion) # 打印完整的返回内容
answer = completion.choices[0].message.content
print("API response:", answer)
return answer
except Exception as e:
print(f"Error in API call: {e}")
return ""
def main(llm, tokenizer, data_name, args):
examples, processed_samples, out_file = prepare_data(data_name, args)
print(examples[0])
print("\n" + "-" * 50)
print("data:", data_name, ", remain samples:", len(examples))
if len(examples) > 0:
print(examples[0])
# init python executor
if "pal" in args.prompt_type:
executor = PythonExecutor(get_answer_expr="solution()")
else:
executor = PythonExecutor(get_answer_from_stdout=True)
# load done samples
if args.ratio > 0:
done_samples_path = out_file.replace("_r" + str(args.ratio), "")
done_samples = list(load_jsonl(done_samples_path))
else:
done_samples = []
done_samples = {sample["idx"]: sample for sample in done_samples}
samples = []
print("\nProcessing", len(examples), "examples", "=" * 50)
for example in tqdm(examples, total=len(examples)):
idx = example["idx"]
# parse question and answer
example["question"] = parse_question(example, data_name)
if example["question"] == "":
continue
gt_cot, gt_ans = parse_ground_truth(example, data_name)
example["gt_ans"] = gt_ans
full_prompt = construct_prompt(example, data_name, args)
if args.ratio > 0:
done_cot = done_samples[idx]["code"][0]
cut_cot = done_cot[:int(len(done_cot)*args.ratio)]
full_prompt = full_prompt + cut_cot + "\n\nFinal answer within \\boxed{{}}:\n"
if idx == args.start:
print(full_prompt)
sample = {
"idx": idx,
"question": example["question"],
"gt_cot": gt_cot,
"gt": gt_ans,
"prompt": full_prompt,
}
# add remain fields
for key in [
"level",
"type",
"unit",
"solution_type",
"choices",
"solution",
"ques_type",
"ans_type",
"answer_type",
"dataset",
"subfield",
"filed",
"theorem",
"answer",
]:
if key in example:
sample[key] = example[key]
samples.append(sample)
# repeat n times
input_prompts = [sample["prompt"] for sample in samples for _ in range(args.n_sampling)]
input_prompts = apply_RL_prompt(input_prompts, args, budget=args.max_tokens_per_call)
if args.apply_chat_template:
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path, trust_remote_code=True, max_length=16000,
)
input_prompts = [
tokenizer.apply_chat_template(
[{"role": "user", "content": prompt.strip()}],
tokenize=False,
add_generation_prompt=True,
)
for prompt in input_prompts
]
remain_prompts = input_prompts
remain_prompts = [(i, prompt) for i, prompt in enumerate(remain_prompts)]
end_prompts = []
max_func_call = 1 if args.prompt_type in ["cot", "pal", "qwen25-math-cot"] else 4
stop_words = ["</s>", "<|im_end|>", "<|endoftext|>"]
if args.prompt_type in ["cot"]:
stop_words.append("\n\nQuestion:")
if args.prompt_type in ["pal", "tool-integrated", "jiuzhang_tora"]:
stop_words.extend(["\n\n---", "```output"])
elif args.prompt_type in ["wizard_zs", "platypus_fs"]:
stop_words.extend(["Instruction", "Response"])
elif "jiuzhang" in args.prompt_type:
stop_words.append("\n\n## Question")
elif "numina" in args.prompt_type:
stop_words.append("\n### Problem")
elif "pure" in args.prompt_type:
stop_words.append("\n\n\n")
# start inference
start_time = time.time()
print(f"start_time: {start_time}")
for epoch in range(max_func_call):
print("-" * 20, "Epoch", epoch)
current_prompts = remain_prompts
if len(current_prompts) == 0:
break
prompts = [item[1] for item in current_prompts]
# Call API for each prompt
outputs = []
for prompt in tqdm(prompts, desc="Calling API"):
response = get_api_response(prompt, max_tokens=args.max_tokens_per_call, temperature=args.temperature)
outputs.append(response)
print('stage one finished!!!\n' * 20)
print(outputs[:3])
if os.environ['stage'] == "2":
print("stage 2")
modified_outputs = []
for output in outputs:
if "" in output:
start_index = output.index("")
output = output[:start_index]
modified_output = output + "\n</think>\n\n**Final Answer**\\boxed"
modified_outputs.append(modified_output)
# Call API again for stage 2
stage2_outputs = []
for prompt in tqdm(modified_outputs, desc="Stage 2 API calls"):
response = get_api_response(prompt, max_tokens=20, temperature=args.temperature)
stage2_outputs.append(response)
outputs = stage2_outputs
assert len(outputs) == len(current_prompts)
# process all outputs
remain_prompts = []
remain_codes = []
for (i, query), output in zip(current_prompts, outputs):
output = output.rstrip()
query += output
if args.prompt_type == "pal":
remain_prompts.append((i, query))
if "```python" in output:
output = extract_program(query)
remain_codes.append(output)
elif args.prompt_type == "cot":
end_prompts.append((i, query))
elif "boxed" not in output and output.endswith("```"):
program = extract_program(query)
remain_prompts.append((i, query))
remain_codes.append(program)
else:
end_prompts.append((i, query))
# execute the remain prompts
remain_results = executor.batch_apply(remain_codes)
for k in range(len(remain_prompts)):
i, query = remain_prompts[k]
res, report = remain_results[k]
exec_result = res if res else report
if "pal" in args.prompt_type:
exec_result = "\\boxed{" + exec_result + "}"
exec_result = f"\n```output\n{exec_result}\n```\n"
query += exec_result
if epoch == max_func_call - 1:
query += "\nReach max function call limit."
remain_prompts[k] = (i, query)
# unsolved samples
print("Unsolved samples:", len(remain_prompts))
end_prompts.extend(remain_prompts)
end_prompts = sorted(end_prompts, key=lambda x: x[0])
# remove input_prompt from end_prompt
codes = []
assert len(input_prompts) == len(end_prompts)
for i in range(len(input_prompts)):
_, end_prompt = end_prompts[i]
code = end_prompt.split(input_prompts[i])[-1].strip()
for stop_word in stop_words:
if stop_word in code:
code = code.split(stop_word)[0].strip()
if args.prompt_type == "deepseek3":
if '```' in code:
code = code.split("```")[1]
codes.append(code)
results = [
run_execute(executor, clean_code(code), args.prompt_type, data_name) for code in codes
]
time_use = time.time() - start_time
# put results back to examples
all_samples = []
for i, sample in enumerate(samples):
code = codes[i * args.n_sampling : (i + 1) * args.n_sampling]
result = results[i * args.n_sampling : (i + 1) * args.n_sampling]
preds = [item[0] for item in result]
reports = [item[1] for item in result]
for j in range(len(preds)):
if sample["gt"] in ["A", "B", "C", "D", "E"] and preds[j] not in [
"A",
"B",
"C",
"D",
"E",
]:
preds[j] = choice_answer_clean(code[j])
elif is_multi_choice(sample["gt"]) and not is_multi_choice(preds[j]):
preds[j] = "".join(
[c for c in preds[j] if c in ["A", "B", "C", "D", "E"]]
)
sample.update({"code": code, "pred": preds, "report": reports})
all_samples.append(sample)
# add processed samples
all_samples.extend(processed_samples)
all_samples, result_json = evaluate(
samples=all_samples,
data_name=data_name,
prompt_type=args.prompt_type,
execute=True,
)
# save outputs
if len(processed_samples) < len(all_samples) and args.save_outputs:
save_jsonl(all_samples, out_file)
result_json["time_use_in_second"] = time_use
result_json["time_use_in_minite"] = (
f"{int(time_use // 60)}:{int(time_use % 60):02d}"
)
with open(
out_file.replace(".jsonl", "_metrics.json"), "w"
) as f:
json.dump(result_json, f, indent=4)
return result_json
def setup(args):
tokenizer = None
if args.apply_chat_template:
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path, trust_remote_code=True, max_length=16000,
)
# infer & eval
data_list = args.data_names.split(",")
results = []
for data_name in data_list:
results.append(main(None, tokenizer, data_name, args))
# add "avg" result
data_list.append("avg")
results.append(
{
"acc": sum([result["acc"] for result in results]) / len(results),
}
)
# print all results
pad = max([len(data_name) for data_name in data_list])
print("\t".join(data_name.ljust(pad, " ") for data_name in data_list))
print("\t".join([f"{result['acc']:.1f}".ljust(pad, " ") for result in results]))
logging.info("\t".join(data_name.ljust(pad, " ") for data_name in data_list))
logging.info(f"os.environ['PE_MODE'] = {os.environ['PE_MODE']}")
logging.info(f"path = {args.model_name_or_path}")
logging.info(f"tip = {os.environ['tip']}")
logging.info(f"BUDGET = {os.environ['BUDGET']}")
logging.info("\t".join([f"{result['acc']:.1f}".ljust(pad, " ") for result in results]))
if __name__ == "__main__":
args = parse_args()
set_seed(args.seed)
setup(args)