File size: 23,014 Bytes
fe6c2e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
# Copyright (c) Facebook, Inc. and its affiliates.
import contextlib
import copy
import io
import itertools
import json
import logging
import numpy as np
import os
import datetime
import pickle
from collections import OrderedDict
import pycocotools.mask as mask_util
import torch
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from pycocotools import mask
from tabulate import tabulate

import detectron2.utils.comm as comm
from detectron2.config import CfgNode
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.data.datasets.coco import convert_to_coco_json
from detectron2.evaluation.coco_evaluation import COCOEvaluator, _evaluate_predictions_on_coco
from detectron2.evaluation.fast_eval_api import COCOeval_opt
from detectron2.structures import Boxes, BoxMode, pairwise_iou, PolygonMasks, RotatedBoxes
from detectron2.utils.file_io import PathManager
from detectron2.utils.logger import create_small_table
from iopath.common.file_io import file_lock
import shutil
from tqdm import tqdm

logger = logging.getLogger(__name__)


# modified from COCOEvaluator for instance segmetnat
class InstanceSegEvaluator(COCOEvaluator):
    """
    Evaluate AR for object proposals, AP for instance detection/segmentation, AP
    for keypoint detection outputs using COCO's metrics.
    See http://cocodataset.org/#detection-eval and
    http://cocodataset.org/#keypoints-eval to understand its metrics.
    The metrics range from 0 to 100 (instead of 0 to 1), where a -1 or NaN means
    the metric cannot be computed (e.g. due to no predictions made).

    In addition to COCO, this evaluator is able to support any bounding box detection,
    instance segmentation, or keypoint detection dataset.
    """

    def _eval_predictions(self, predictions, img_ids=None):
        """
        Evaluate predictions. Fill self._results with the metrics of the tasks.
        """
        self._logger.info("Preparing results for COCO format ...")
        coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))
        tasks = self._tasks or self._tasks_from_predictions(coco_results)

        # unmap the category ids for COCO
        if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"):
            dataset_id_to_contiguous_id = self._metadata.thing_dataset_id_to_contiguous_id
            # all_contiguous_ids = list(dataset_id_to_contiguous_id.values())
            # num_classes = len(all_contiguous_ids)
            # assert min(all_contiguous_ids) == 0 and max(all_contiguous_ids) == num_classes - 1

            reverse_id_mapping = {v: k for k, v in dataset_id_to_contiguous_id.items()}
            for result in coco_results:
                category_id = result["category_id"]
                # assert category_id < num_classes, (
                #     f"A prediction has class={category_id}, "
                #     f"but the dataset only has {num_classes} classes and "
                #     f"predicted class id should be in [0, {num_classes - 1}]."
                # )
                assert category_id in reverse_id_mapping, (
                    f"A prediction has class={category_id}, "
                    f"but the dataset only has class ids in {dataset_id_to_contiguous_id}."
                )
                result["category_id"] = reverse_id_mapping[category_id]

        if self._output_dir:
            file_path = os.path.join(self._output_dir, "coco_instances_results.json")
            self._logger.info("Saving results to {}".format(file_path))
            with PathManager.open(file_path, "w") as f:
                f.write(json.dumps(coco_results))
                f.flush()

        if not self._do_evaluation:
            self._logger.info("Annotations are not available for evaluation.")
            return

        self._logger.info(
            "Evaluating predictions with {} COCO API...".format(
                "unofficial" if self._use_fast_impl else "official"
            )
        )
        for task in sorted(tasks):
            assert task in {"bbox", "segm", "keypoints"}, f"Got unknown task: {task}!"
            coco_eval = (
                _evaluate_predictions_on_coco(
                    self._coco_api,
                    coco_results,
                    task,
                    kpt_oks_sigmas=self._kpt_oks_sigmas,
                    use_fast_impl=self._use_fast_impl,
                    img_ids=img_ids,
                    max_dets_per_image=self._max_dets_per_image,
                )
                if len(coco_results) > 0
                else None  # cocoapi does not handle empty results very well
            )

            res = self._derive_coco_results(
                coco_eval, task, class_names=self._metadata.get("thing_classes")
            )
            self._results[task] = res


class my_coco_evaluator(COCOEvaluator):

    def __init__(self, dataset_name, tasks=None, distributed=True, output_dir=None, *, max_dets_per_image=None,
                 use_fast_impl=True, kpt_oks_sigmas=(), allow_cached_coco=True):

        # super().__init__(dataset_name, tasks, distributed, output_dir, max_dets_per_image=max_dets_per_image,
        #                  use_fast_impl=use_fast_impl, kpt_oks_sigmas=kpt_oks_sigmas,
        #                  allow_cached_coco=allow_cached_coco)
        self._logger = logging.getLogger(__name__)
        self._distributed = distributed
        self._output_dir = output_dir

        if use_fast_impl and (COCOeval_opt is COCOeval):
            self._logger.info("Fast COCO eval is not built. Falling back to official COCO eval.")
            use_fast_impl = False
        self._use_fast_impl = use_fast_impl

        # COCOeval requires the limit on the number of detections per image (maxDets) to be a list
        # with at least 3 elements. The default maxDets in COCOeval is [1, 10, 100], in which the
        # 3rd element (100) is used as the limit on the number of detections per image when
        # evaluating AP. COCOEvaluator expects an integer for max_dets_per_image, so for COCOeval,
        # we reformat max_dets_per_image into [1, 10, max_dets_per_image], based on the defaults.
        if max_dets_per_image is None:
            max_dets_per_image = [1, 10, 100]
        else:
            max_dets_per_image = [1, 10, max_dets_per_image]
        self._max_dets_per_image = max_dets_per_image

        if tasks is not None and isinstance(tasks, CfgNode):
            kpt_oks_sigmas = (
                tasks.TEST.KEYPOINT_OKS_SIGMAS if not kpt_oks_sigmas else kpt_oks_sigmas
            )
            self._logger.warn(
                "COCO Evaluator instantiated using config, this is deprecated behavior."
                " Please pass in explicit arguments instead."
            )
            self._tasks = None  # Infering it from predictions should be better
        else:
            self._tasks = tasks

        self._cpu_device = torch.device("cpu")

        self._metadata = MetadataCatalog.get(dataset_name)
        if not hasattr(self._metadata, "json_file"):
            if output_dir is None:
                raise ValueError(
                    "output_dir must be provided to COCOEvaluator "
                    "for datasets not in COCO format."
                )
            self._logger.info(f"Trying to convert '{dataset_name}' to COCO format ...")

            cache_path = os.path.join(output_dir, f"{dataset_name}_coco_format.json")
            self._metadata.json_file = cache_path
            self.convert_to_coco_json(dataset_name, cache_path, allow_cached=allow_cached_coco)

        json_file = PathManager.get_local_path(self._metadata.json_file)
        with contextlib.redirect_stdout(io.StringIO()):
            self._coco_api = COCO(json_file)

        # Test set json files do not contain annotations (evaluation must be
        # performed using the COCO evaluation server).
        self._do_evaluation = "annotations" in self._coco_api.dataset
        if self._do_evaluation:
            self._kpt_oks_sigmas = kpt_oks_sigmas

    def convert_to_coco_json(self, dataset_name, output_file, allow_cached=True):
        PathManager.mkdirs(os.path.dirname(output_file))
        with file_lock(output_file):
            if PathManager.exists(output_file) and allow_cached:
                logger.warning(
                    f"Using previously cached COCO format annotations at '{output_file}'. "
                    "You need to clear the cache file if your dataset has been modified."
                )
            else:
                logger.info(f"Converting annotations of dataset '{dataset_name}' to COCO format ...)")
                coco_dict = self.convert_to_coco_dict(dataset_name)

                logger.info(f"Caching COCO format annotations at '{output_file}' ...")
                tmp_file = output_file + ".tmp"
                with PathManager.open(tmp_file, "w") as f:
                    json.dump(coco_dict, f)
                shutil.move(tmp_file, output_file)

    def convert_to_coco_dict(self, dataset_name):
        """
        Convert an instance detection/segmentation or keypoint detection dataset
        in detectron2's standard format into COCO json format.

        Generic dataset description can be found here:
        https://detectron2.readthedocs.io/tutorials/datasets.html#register-a-dataset

        COCO data format description can be found here:
        http://cocodataset.org/#format-data

        Args:
            dataset_name (str):
                name of the source dataset
                Must be registered in DatastCatalog and in detectron2's standard format.
                Must have corresponding metadata "thing_classes"
        Returns:
            coco_dict: serializable dict in COCO json format
        """

        dataset_dicts = DatasetCatalog.get(dataset_name)
        metadata = MetadataCatalog.get(dataset_name)

        # unmap the category mapping ids for COCO
        if hasattr(metadata, "thing_dataset_id_to_contiguous_id"):
            reverse_id_mapping = {v: k for k, v in metadata.thing_dataset_id_to_contiguous_id.items()}
            reverse_id_mapper = lambda contiguous_id: reverse_id_mapping[contiguous_id]  # noqa
        else:
            reverse_id_mapper = lambda contiguous_id: contiguous_id  # noqa

        categories = [
            {"id": reverse_id_mapper(id), "name": name}
            for id, name in enumerate(metadata.thing_classes)
        ]

        logger.info("Converting dataset dicts into COCO format")
        coco_images = []
        coco_annotations = []

        for image_id, image_dict in tqdm(enumerate(dataset_dicts), total=len(dataset_dicts)):
            coco_image = {
                "id": image_dict.get("image_id", image_id),
                "width": int(image_dict["width"]),
                "height": int(image_dict["height"]),
                "file_name": str(image_dict["file_name"]),
            }
            coco_images.append(coco_image)

            anns_per_image = image_dict.get("annotations", [])
            for annotation in anns_per_image:
                # create a new dict with only COCO fields
                coco_annotation = {}

                # COCO requirement: XYWH box format for axis-align and XYWHA for rotated
                bbox = annotation["bbox"]
                if isinstance(bbox, np.ndarray):
                    if bbox.ndim != 1:
                        raise ValueError(f"bbox has to be 1-dimensional. Got shape={bbox.shape}.")
                    bbox = bbox.tolist()
                if len(bbox) not in [4, 5]:
                    raise ValueError(f"bbox has to has length 4 or 5. Got {bbox}.")
                from_bbox_mode = annotation["bbox_mode"]
                to_bbox_mode = BoxMode.XYWH_ABS if len(bbox) == 4 else BoxMode.XYWHA_ABS
                bbox = BoxMode.convert(bbox, from_bbox_mode, to_bbox_mode)

                # COCO requirement: instance area
                if "segmentation" in annotation:
                    # Computing areas for instances by counting the pixels
                    segmentation = annotation["segmentation"]
                    # TODO: check segmentation type: RLE, BinaryMask or Polygon
                    if isinstance(segmentation, list):
                        polygons = PolygonMasks([segmentation])
                        area = polygons.area()[0].item()
                    elif isinstance(segmentation, dict):  # RLE
                        if isinstance(segmentation['counts'], list):
                            segmentation = mask.frPyObjects(segmentation, *segmentation['size'])
                        area = mask_util.area(segmentation).item()
                    else:
                        raise TypeError(f"Unknown segmentation type {type(segmentation)}!")
                else:
                    # Computing areas using bounding boxes
                    if to_bbox_mode == BoxMode.XYWH_ABS:
                        bbox_xy = BoxMode.convert(bbox, to_bbox_mode, BoxMode.XYXY_ABS)
                        area = Boxes([bbox_xy]).area()[0].item()
                    else:
                        area = RotatedBoxes([bbox]).area()[0].item()

                if "keypoints" in annotation:
                    keypoints = annotation["keypoints"]  # list[int]
                    for idx, v in enumerate(keypoints):
                        if idx % 3 != 2:
                            # COCO's segmentation coordinates are floating points in [0, H or W],
                            # but keypoint coordinates are integers in [0, H-1 or W-1]
                            # For COCO format consistency we substract 0.5
                            # https://github.com/facebookresearch/detectron2/pull/175#issuecomment-551202163
                            keypoints[idx] = v - 0.5
                    if "num_keypoints" in annotation:
                        num_keypoints = annotation["num_keypoints"]
                    else:
                        num_keypoints = sum(kp > 0 for kp in keypoints[2::3])

                # COCO requirement:
                #   linking annotations to images
                #   "id" field must start with 1
                coco_annotation["id"] = len(coco_annotations) + 1
                coco_annotation["image_id"] = coco_image["id"]
                coco_annotation["bbox"] = [round(float(x), 3) for x in bbox]
                coco_annotation["area"] = float(area)
                coco_annotation["iscrowd"] = int(annotation.get("iscrowd", 0))
                coco_annotation["category_id"] = int(reverse_id_mapper(annotation["category_id"]))

                # Add optional fields
                if "keypoints" in annotation:
                    coco_annotation["keypoints"] = keypoints
                    coco_annotation["num_keypoints"] = num_keypoints

                if "segmentation" in annotation:
                    seg = coco_annotation["segmentation"] = annotation["segmentation"]
                    if isinstance(seg, dict):  # RLE
                        if isinstance(seg['counts'], list):
                            seg = mask.frPyObjects(seg, *seg['size'])
                        counts = seg['counts']
                        if not isinstance(counts, str):
                            # make it json-serializable
                            seg["counts"] = counts.decode("ascii")

                coco_annotations.append(coco_annotation)

        logger.info(
            "Conversion finished, "
            f"#images: {len(coco_images)}, #annotations: {len(coco_annotations)}"
        )

        info = {
            "date_created": str(datetime.datetime.now()),
            "description": "Automatically generated COCO json file for Detectron2.",
        }
        coco_dict = {"info": info, "images": coco_images, "categories": categories, "licenses": None}
        if len(coco_annotations) > 0:
            coco_dict["annotations"] = coco_annotations
        return coco_dict

    def eval_single(self, img_ids=None):
        predictions = self._predictions
        self._results = OrderedDict()
        self._logger.info("Preparing results for COCO format ...")
        coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))
        tasks = self._tasks or self._tasks_from_predictions(coco_results)

        # unmap the category ids for COCO
        if not hasattr(self,'has_cont'):
            self.has_cont = False
        if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id") and not self.has_cont:
            dataset_id_to_contiguous_id = self._metadata.thing_dataset_id_to_contiguous_id
            all_contiguous_ids = list(dataset_id_to_contiguous_id.values())
            num_classes = len(all_contiguous_ids)
            assert min(all_contiguous_ids) == 0 and max(all_contiguous_ids) == num_classes - 1

            reverse_id_mapping = {v: k for k, v in dataset_id_to_contiguous_id.items()}
            for result in coco_results:
                category_id = result["category_id"]
                assert category_id < num_classes, (
                    f"A prediction has class={category_id}, "
                    f"but the dataset only has {num_classes} classes and "
                    f"predicted class id should be in [0, {num_classes - 1}]."
                )
                result["category_id"] = reverse_id_mapping[category_id]
        self.has_cont = True

        if self._output_dir:
            file_path = os.path.join(self._output_dir, "coco_instances_results.json")
            self._logger.info("Saving results to {}".format(file_path))
            with PathManager.open(file_path, "w") as f:
                f.write(json.dumps(coco_results))
                f.flush()

        if not self._do_evaluation:
            self._logger.info("Annotations are not available for evaluation.")
            return

        self._logger.info(
            "Evaluating predictions with {} COCO API...".format(
                "unofficial" if self._use_fast_impl else "official"
            )
        )
        for task in sorted(tasks):
            assert task in {"bbox", "segm", "keypoints"}, f"Got unknown task: {task}!"
            coco_eval = (
                _evaluate_predictions_on_coco(
                    self._coco_api,
                    coco_results,
                    task,
                    kpt_oks_sigmas=self._kpt_oks_sigmas,
                    cocoeval_fn=COCOeval_opt if self._use_fast_impl else COCOeval,
                    img_ids=img_ids,
                    max_dets_per_image=self._max_dets_per_image,
                )
                if len(coco_results) > 0
                else None  # cocoapi does not handle empty results very well
            )

            res = self._derive_coco_results(
                coco_eval, task, class_names=self._metadata.get("thing_classes")
            )
            self._results[task] = res
        # print(self._results['segm'])
        return copy.deepcopy(self._results)


    def evaluate(self, img_ids=None):
        """
        Args:
            img_ids: a list of image IDs to evaluate on. Default to None for the whole dataset
        """
        if self._distributed:
            comm.synchronize()
            predictions = comm.gather(self._predictions, dst=0)
            predictions = list(itertools.chain(*predictions))

            if not comm.is_main_process():
                return {}
        else:
            predictions = self._predictions

        if len(predictions) == 0:
            self._logger.warning("[COCOEvaluator] Did not receive valid predictions.")
            return {}

        if self._output_dir:
            PathManager.mkdirs(self._output_dir)
            file_path = os.path.join(self._output_dir, "instances_predictions.pth")
            with PathManager.open(file_path, "wb") as f:
                torch.save(predictions, f)

        self._results = OrderedDict()
        if "proposals" in predictions[0]:
            self._eval_box_proposals(predictions)
        if "instances" in predictions[0]:
            self._eval_predictions(predictions, img_ids=img_ids)
        # Copy so the caller can do whatever with results
        return copy.deepcopy(self._results)

    def _eval_predictions(self, predictions, img_ids=None):
        self._logger.info("Preparing results for COCO format ...")
        coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))
        tasks = self._tasks or self._tasks_from_predictions(coco_results)

        # unmap the category ids for COCO
        if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"):
            dataset_id_to_contiguous_id = self._metadata.thing_dataset_id_to_contiguous_id
            all_contiguous_ids = list(dataset_id_to_contiguous_id.values())
            num_classes = len(all_contiguous_ids)
            assert min(all_contiguous_ids) == 0 and max(all_contiguous_ids) == num_classes - 1

            reverse_id_mapping = {v: k for k, v in dataset_id_to_contiguous_id.items()}
            for result in coco_results:
                category_id = result["category_id"]
                assert category_id < num_classes, (
                    f"A prediction has class={category_id}, "
                    f"but the dataset only has {num_classes} classes and "
                    f"predicted class id should be in [0, {num_classes - 1}]."
                )
                result["category_id"] = reverse_id_mapping[category_id]

        if self._output_dir:
            file_path = os.path.join(self._output_dir, "coco_instances_results.json")
            self._logger.info("Saving results to {}".format(file_path))
            with PathManager.open(file_path, "w") as f:
                f.write(json.dumps(coco_results))
                f.flush()

        if not self._do_evaluation:
            self._logger.info("Annotations are not available for evaluation.")
            return

        self._logger.info(
            "Evaluating predictions with {} COCO API...".format(
                "unofficial" if self._use_fast_impl else "official"
            )
        )
        for task in sorted(tasks):
            assert task in {"bbox", "segm", "keypoints"}, f"Got unknown task: {task}!"
            coco_eval = (
                _evaluate_predictions_on_coco(
                    self._coco_api,
                    coco_results,
                    task,
                    kpt_oks_sigmas=self._kpt_oks_sigmas,
                    cocoeval_fn=COCOeval_opt if self._use_fast_impl else COCOeval,
                    img_ids=img_ids,
                    max_dets_per_image=self._max_dets_per_image,
                )
                if len(coco_results) > 0
                else None  # cocoapi does not handle empty results very well
            )

            res = self._derive_coco_results(
                coco_eval, task, class_names=self._metadata.get("thing_classes")
            )
            self._results[task] = res