{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "lLC1wTwghgKr", "outputId": "fadf5c4c-5ec6-496d-c0ee-3aadde7be24c" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "[*********************100%***********************] 1 of 1 completed\n", "\n", "1 Failed download:\n", "['AAPL']: YFRateLimitError('Too Many Requests. Rate limited. Try after a while.')\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Empty DataFrame\n", "Columns: [Close_AAPL]\n", "Index: []\n" ] } ], "source": [ "import yfinance as yf\n", "import pandas as pd\n", "\n", "data = yf.download(\"AAPL\", start=\"2015-01-01\", end=\"2023-01-01\", auto_adjust=True)\n", "\n", "data.columns = ['_'.join(col).strip() if isinstance(col, tuple) else col for col in data.columns]\n", "\n", "\n", "data = data[['Close_AAPL']].copy() \n", "\n", "data.dropna(subset=['Close_AAPL'], inplace=True)\n", "\n", "print(data.head())\n", "\n", "data.to_csv(\"AAPL_stock_data.csv\", index_label=\"Date\")\n", "\n", "data.to_excel(\"AAPL_stock_data.xlsx\", index_label=\"Date\")\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "IcCo4MeeI_kC", "outputId": "85159790-5809-4f8d-b8cc-4f03efe5d992" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Close\n", "Date \n", "2015-01-02 24.261055\n", "2015-01-05 23.577574\n", "2015-01-06 23.579790\n", "2015-01-07 23.910435\n", "2015-01-08 24.829126\n", "\n", "DatetimeIndex: 2014 entries, 2015-01-02 to 2022-12-30\n", "Data columns (total 1 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 Close 2014 non-null float64\n", "dtypes: float64(1)\n", "memory usage: 31.5 KB\n", "None\n" ] } ], "source": [ "import pandas as pd\n", "\n", "df = pd.read_csv(\"AAPL_stock_data.csv\", skiprows=0, parse_dates=['Date'], index_col='Date')\n", "\n", "df.columns = ['Close']\n", "\n", "df['Close'] = pd.to_numeric(df['Close'], errors='coerce')\n", "\n", "df = df.dropna(subset=['Close'])\n", "\n", "print(df.head())\n", "print(df.info())" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "UFUNbSQ1JKSP", "outputId": "4172b22d-75f2-40b6-dbd4-4555f4f387ee" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9oAAAH7CAYAAAAzeOf9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACyKUlEQVR4nOzdd3iT5foH8G92uidtKR2UPVqGbFCGLEEQQUTEget3cItbnOAAxS2oHCcoKnJUUFRkKFP23rstLV107yRN3t8fad7mzWibNuni+7muXifvftJyau/c93M/MkEQBBARERERERGRW8gbewBERERERERELQkDbSIiIiIiIiI3YqBNRERERERE5EYMtImIiIiIiIjciIE2ERERERERkRsx0CYiIiIiIiJyIwbaRERERERERG7EQJuIiIiIiIjIjRhoExEREREREbkRA20iInKbjz76CDKZDPHx8Q363OHDh2P48OFuvee6deswZswYREZGQqPRIDIyEsOHD8ebb74pOW/+/PlYvXq1W59tKykpCTKZDO+8806d71FYWIg33ngDffv2hb+/PzQaDdq2bYt77rkHBw4cEM9bunQpZDIZkpKS3DBye574WbnybJlMJn55eXmhZ8+e+OCDD2AymWp1D5lMhrlz53p2oERE1OwpG3sARETUcnz11VcAgOPHj2P37t0YMGBAI4+obpYsWYIHHngAN910ExYvXozg4GCkpKRgx44d+Omnn/Dcc8+J586fPx9Tp07FjTfe2HgDrsH58+cxZswYZGVl4f7778e8efPg6+uLpKQkrFy5En369EF+fj4CAgI8PpZPPvnE48+oTrt27fDdd98BALKysrBkyRI8/vjjSE9Px1tvvVXj9Tt37kRUVJSnh0lERM0cA20iInKLffv24fDhw7j++uvxxx9/4Msvv2y2gfaCBQswdOhQ/PTTT5L9d9xxR60zn02F0WjE5MmTkZ2djZ07d0qqDYYNG4aZM2di7dq1UKlUDTKebt26NchznPHy8sLAgQPF7XHjxqFLly5YvHgxXn/9dYffB0EQUF5ebnctERGRMywdJyIit/jyyy8BAG+++SYGDx6MFStWoLS0VHKOpQR64cKFeOONNxATEwOtVou+ffvi77//lpw7d+5cyGQyHDx4EFOmTIG/vz8CAgJw++234/LlyzWOR6/X4/XXX0eXLl2g0WjQqlUr3H333bW6NicnB61bt3Z4TC6v+k+nTCZDSUkJli1bJpYjW5dFHzt2DJMmTUJQUBC0Wi169eqFZcuW2d0zPz8fTz75JNq1aweNRoOwsDCMHz8ep06dcjpGg8GAmTNnwtfXF7///rvT81avXo2jR49izpw5Tkv6x40bB29vb6f3AMzVCj179oRWq0VwcDAmT56MkydPSs65cOECpk+fLpbbh4eHY+TIkTh06JB4jm3puHVZ/HvvvYe4uDj4+vpi0KBB2LVrl904Pv/8c3Tq1AkajQbdunXD999/j7vuugtt27atdvzOqFQq9OnTB6WlpeK/DZlMhocffhhLlixB165dodFoxJ+bo9LxS5cu4T//+Q+io6OhVqsRGRmJqVOnIjMzUzynsLAQTz31FOLi4qBWq9GmTRvMnj0bJSUlknv973//w4ABAxAQEABvb2+0a9cO99xzT53eGxERNR5mtImIqN7Kysrwww8/oF+/foiPj8c999yD++67D//73/8wc+ZMu/MXL16M2NhYcW7swoULMW7cOGzZsgWDBg2SnDt58mRMmzYN999/P44fP46XXnoJJ06cwO7du51mYU0mEyZNmoRt27bhmWeeweDBg5GcnIxXXnkFw4cPx759++Dl5eX0/QwaNAg///wz5s6di8mTJyM+Ph4KhcLuvJ07d+Laa6/FiBEj8NJLLwEA/P39AQCnT5/G4MGDERYWho8++gghISFYvnw57rrrLmRmZuKZZ54BABQVFeHqq69GUlISnn32WQwYMADFxcXYunUr0tPT0aVLF7vn5ufnY8qUKTh58iS2bNmCPn36OH0v69evB4B6lbYvWLAAzz//PG699VYsWLAAOTk5mDt3LgYNGoS9e/eiY8eOAIDx48fDaDRi4cKFiImJQXZ2Nnbs2IH8/Pwan/Hxxx+jS5cu+OCDDwAAL730EsaPH4/ExESxpP2zzz7DrFmzcNNNN+H9999HQUEB5s2bB51OV+f3BphL65VKJYKCgsR9q1evxrZt2/Dyyy8jIiICYWFhDq+9dOkS+vXrB4PBgOeffx49evRATk4O1q1bh7y8PISHh6O0tBTDhg1DamqqeM7x48fx8ssv4+jRo9i4cSNkMhl27tyJW265Bbfccgvmzp0LrVaL5ORk/PPPP/V6f0RE1AgEIiKievrmm28EAMKSJUsEQRCEoqIiwdfXV7jmmmsk5yUmJgoAhMjISKGsrEzcX1hYKAQHBwujRo0S973yyisCAOHxxx+X3OO7774TAAjLly8X9w0bNkwYNmyYuP3DDz8IAISff/5Zcu3evXsFAMInn3xS7fs5d+6cEB8fLwAQAAheXl7CyJEjhcWLFwt6vV5yro+PjzBz5ky7e0yfPl3QaDTCxYsXJfvHjRsneHt7C/n5+YIgCMKrr74qABA2bNjgdDyW79vbb78tJCYmCt26dRO6desmJCUlVfs+BEEQrrvuOgGAUF5eXuO5giAIX3/9tQBASExMFARBEPLy8gQvLy9h/PjxkvMuXrwoaDQaYcaMGYIgCEJ2drYAQPjggw+qvb/tz8ry3hISEoSKigpx/549ewQAwg8//CAIgiAYjUYhIiJCGDBggOR+ycnJgkqlEmJjY2t8b8OGDRO6d+8uGAwGwWAwCGlpacJzzz0nABBuvvlm8TwAQkBAgJCbm2t3DwDCK6+8Im7fc889gkqlEk6cOOH0uQsWLBDkcrmwd+9eyf6ffvpJACD8+eefgiAIwjvvvCMAEP9tEBFR88XScSIiqrcvv/wSXl5emD59OgDA19cXN998M7Zt24azZ8/anT9lyhRotVpx28/PDxMnTsTWrVthNBol5952222S7WnTpkGpVGLTpk1Ox/P7778jMDAQEydOREVFhfjVq1cvREREYPPmzdW+n/bt2+Pw4cPYsmUL5s2bh1GjRmHv3r14+OGHMWjQIJSXl9f0LcE///yDkSNHIjo6WrL/rrvuQmlpKXbu3AkAWLt2LTp16oRRo0bVeM8DBw5g4MCBCA8Px7///ovY2Ngar6mvnTt3oqysDHfddZdkf3R0NK699lqx5D84OBjt27fH22+/jffeew8HDx50aT779ddfL6ka6NGjBwAgOTkZgLlCICMjA9OmTZNcFxMTgyFDhtT6OcePH4dKpYJKpUJkZCTeffdd3Hbbbfj8888l51177bWSDLcza9euxYgRI9C1a1en5/z++++Ij49Hr169JP8ex44dC5lMJv577NevHwDzv/GVK1fi0qVLtX5fRETUtDDQJiKiejl37hy2bt2K66+/HoIgID8/H/n5+Zg6dSqAqk7k1iIiIhzu0+v1KC4urvZcpVKJkJAQ5OTkOB1TZmYm8vPzoVarxaDK8pWRkYHs7Owa35dcLsfQoUPx8ssv47fffkNaWhpuueUW7N+/3+F7suVsnndkZKR4HAAuX75c6y7WGzZsQGZmJu677z4EBgbW6pqYmBgAQGJiYq3Ot2UZp7P3Yjkuk8nw999/Y+zYsVi4cCGuuuoqtGrVCo8++iiKiopqfE5ISIhkW6PRADBPS7AeR3h4uN21jvY50759e+zduxf79u3DsWPHkJ+fj+XLl9t1XHc2R99WbX5+mZmZOHLkiN2/RT8/PwiCIP57HDp0KFavXo2KigrceeediIqKQnx8PH744Ydavz8iImoaOEebiIjq5auvvoIgCPjpp5/sunQDwLJly/D6669LspUZGRl252VkZECtVsPX19duf5s2bcTtiooK5OTk2AVm1kJDQxESEoK//vrL4XE/P78a35ctHx8fzJkzBz/++COOHTtW4/khISFIT0+325+WliaOEQBatWqF1NTUWo3h6aefxvnz53HnnXeKwVhNxo4di88++wyrV6+WLEtWW5bvs7P3YnkfABAbGys2xTtz5gxWrlyJuXPnQq/XY8mSJS4/29E4rBuMWTj69+SMpfleTWQyWa3uV5ufX2hoKLy8vJx+QGP9PZw0aRImTZoEnU6HXbt2YcGCBZgxYwbatm1r17+AiIiaLma0iYiozoxGI5YtW4b27dtj06ZNdl9PPvkk0tPTsXbtWsl1v/zyi6T8uqioCGvWrME111xj13TMsuaxxcqVK1FRUSHpXG1rwoQJyMnJgdFoRN++fe2+OnfuXO37chRUAhC7bFuy0oA582rJulobOXIk/vnnHzGwtvjmm2/g7e0tLhM1btw4nDlzplYNr+RyOf773//isccew1133YVPP/20xmsmTZqEhIQELFiwwOkHBOvWrbPrEG8xaNAgeHl5Yfny5ZL9qampYnm8I506dcKLL76IhIQEHDhwoMZx1qRz586IiIjAypUrJfsvXryIHTt21Pv+dTVu3Dhs2rQJp0+fdnrOhAkTcP78eYSEhDj89+ioY7pGo8GwYcPEtb0PHjzoqbdAREQewIw2ERHV2dq1a5GWloa33nrLYeAbHx+PxYsX48svv8SECRPE/QqFAqNHj8YTTzwBk8mEt956C4WFhZg3b57dPX755RcolUqMHj1a7Dres2dPu7m61qZPn47vvvsO48ePx2OPPYb+/ftDpVIhNTUVmzZtwqRJkzB58mSn13fv3h0jR47EuHHj0L59e5SXl2P37t149913ER4ejnvvvVc8NyEhAZs3b8aaNWvQunVr+Pn5oXPnznjllVfw+++/Y8SIEXj55ZcRHByM7777Dn/88QcWLlwolirPnj0bP/74IyZNmoTnnnsO/fv3R1lZGbZs2YIJEyZgxIgRduN799134efnhwcffBDFxcV4+umnnb4XhUKBVatWYcyYMRg0aBAeeOABjBgxAj4+PkhOTsZPP/2ENWvWIC8vz+H1gYGBeOmll/D888/jzjvvxK233oqcnBzMmzcPWq0Wr7zyCgDgyJEjePjhh3HzzTejY8eOUKvV+Oeff3DkyJE6ZdJtyeVyzJs3D7NmzcLUqVNxzz33ID8/H/PmzUPr1q0ly641pFdffRVr167F0KFD8fzzzyMhIQH5+fn466+/8MQTT6BLly6YPXs2fv75ZwwdOhSPP/44evToAZPJhIsXL2L9+vV48sknMWDAALz88stITU3FyJEjERUVhfz8fHz44YdQqVQYNmxYo7w/IiKqo0ZuxkZERM3YjTfeKKjVaiErK8vpOdOnTxeUSqWQkZEhdph+6623hHnz5glRUVGCWq0WevfuLaxbt05ynaXr+P79+4WJEycKvr6+gp+fn3DrrbcKmZmZknNtO1kLgiAYDAbhnXfeEXr27ClotVrB19dX6NKlizBr1izh7Nmz1b6v//73v8KUKVOEdu3aCd7e3oJarRbat28v3H///UJKSork3EOHDglDhgwRvL29BQCScRw9elSYOHGiEBAQIKjVaqFnz57C119/bfe8vLw84bHHHhNiYmIElUolhIWFCddff71w6tQpQRCkXcetvf322wIA4eWXX672/QiCIOTn5wuvvfaacNVVVwm+vr6CSqUSYmJihNtvv134999/xfNsu45bfPHFF0KPHj0EtVotBAQECJMmTRKOHz8uHs/MzBTuuusuoUuXLoKPj4/g6+sr9OjRQ3j//fcl3cSddR23fW+CYN/hWxAE4bPPPhM6dOggqNVqoVOnTsJXX30lTJo0Sejdu3eN3wNL1/GaABAeeughp8dsx5SSkiLcc889QkREhKBSqYTIyEhh2rRpkn+nxcXFwosvvih07txZ/B4mJCQIjz/+uJCRkSEIgiD8/vvvwrhx44Q2bdoIarVaCAsLE8aPHy9s27atxjETEVHTIhMEQWisIJ+IiK4sSUlJiIuLw9tvv42nnnqq2nPnzp2LefPm4fLly5I5rETW8vPz0alTJ9x444347LPPGns4REREAFg6TkRERM1ERkYG3njjDYwYMQIhISFITk7G+++/j6KiIjz22GONPTwiIiIRA20iIiJqFjQaDZKSkvDggw8iNzdXbCq3ZMkSdO/evbGHR0REJGLpOBEREREREZEbcXkvIiIiIiIiIjdioE1ERERERETkRgy0iYiIiIiIiNyoWTZDM5lMSEtLg5+fH2QyWWMPh4iIiIiIiFo4QRBQVFSEyMhIyOXV56ybZaCdlpaG6Ojoxh4GERERERERXWFSUlIQFRVV7TnNMtD28/MDYH6D/v7+jTwaIiIiIiIiaukKCwsRHR0txqPVaZaBtqVc3N/fn4E2ERERERERNZjaTF9mMzQiIiIiIiIiN2KgTURERERERORGDLSJiIiIiIiI3IiBNhEREREREZEbMdAmIiIiIiIiciMG2kRERERERERuxECbiIiIiIiIyI0YaBMRERERERG5kcuB9tatWzFx4kRERkZCJpNh9erVkuPFxcV4+OGHERUVBS8vL3Tt2hWffvqp5BydTodHHnkEoaGh8PHxwQ033IDU1NR6vREiIiIiIiKipsDlQLukpAQ9e/bE4sWLHR5//PHH8ddff2H58uU4efIkHn/8cTzyyCP49ddfxXNmz56NVatWYcWKFdi+fTuKi4sxYcIEGI3Gur8TIiIiIiIioiZAJgiCUOeLZTKsWrUKN954o7gvPj4et9xyC1566SVxX58+fTB+/Hi89tprKCgoQKtWrfDtt9/illtuAQCkpaUhOjoaf/75J8aOHVvjcwsLCxEQEICCggL4+/vXdfhEREREREREteJKHOr2OdpXX301fvvtN1y6dAmCIGDTpk04c+aMGEDv378fBoMBY8aMEa+JjIxEfHw8duzY4fCeOp0OhYWFki8iIiIiIiKipsjtgfZHH32Ebt26ISoqCmq1Gtdddx0++eQTXH311QCAjIwMqNVqBAUFSa4LDw9HRkaGw3suWLAAAQEB4ld0dLS7h01ERERERETkFh4JtHft2oXffvsN+/fvx7vvvosHH3wQGzdurPY6QRAgk8kcHpszZw4KCgrEr5SUFHcPm4iIiIiIiMgtlO68WVlZGZ5//nmsWrUK119/PQCgR48eOHToEN555x2MGjUKERER0Ov1yMvLk2S1s7KyMHjwYIf31Wg00Gg07hwqERERERFdAdLyy/DV9kTMHNwW0cHejT0cukK4NaNtMBhgMBggl0tvq1AoYDKZAJgbo6lUKmzYsEE8np6ejmPHjjkNtImIiIiIiOri/77Zhy+2J+L/vtnX2EOhK4jLGe3i4mKcO3dO3E5MTMShQ4cQHByMmJgYDBs2DE8//TS8vLwQGxuLLVu24JtvvsF7770HAAgICMC9996LJ598EiEhIQgODsZTTz2FhIQEjBo1yn3vjIiIiIiIrnjH08yNlE9lFDXySOhK4nKgvW/fPowYMULcfuKJJwAAM2fOxNKlS7FixQrMmTMHt912G3JzcxEbG4s33ngD999/v3jN+++/D6VSiWnTpqGsrAwjR47E0qVLoVAo3PCWiIiIiIiIiBpPvdbRbixcR5uIiIiIiKpzIq0QH2w8g/UnMsV9SW9e34gjoubOlTjUrc3QiIiIiIiImoKZX+/B5SKduC13vMARkUe4fXkvIiIiIiKihpSSW4pHfjiIlXtTcOxSAQBIgmwA0Cg9N021wmhCqb7CY/en5ocZbSIiIiIiatae/ukwdl3IxZrDaQCAE6+OtTvHR+O50OfOr/Zgb1Iuds0ZiRBfLktMzGgTEREREVEzl5JbJtkuLKuwKxVXerB2fMf5HBiMAvq8vhHz1hz32HOo+WCgTUREREREzVqgt0qynVuih8mm5bPeaGqQsXz9b1KDPIeaNgbaRERERETUrAV5qyXbF3NL7M7RV3gm0DbaRvREYKBNRERERETNXIBNRjspp9TuHE8F2roKo90+E4PvKx4DbSIiIiIiata8VdKO4sk55oz2qK5hmNCjNQBz6bgguD8ALtPbB9rlDoJvurIw0CYiIiIiombNYDP/OjHbHGh3ifDHG5MTrM6rPtBe9PdZjH5vC/JK9LV+dpnBPqh2FHzTlYWBNhERERERNWu2AfSFy+ZAOyrICxplVcjjrCFack4J/jmViXc3nMHZrGIs35Vc62eXG+zvWe6hMnVqPriONhERERERNWs6m8A2q0gHAOgc4Qe1oirQ/m5XMrKLdXh+fFfIZFXLfQ17e7PkerkLS4FlFpbb7WuKGW1BEFBhEqBSMNfaEBhoExERERFRs7bxZKbD/XGhPpDLZVDKZagwCViw9hQAYHLvKHSL9Hd6Pz9t7cOkH/ZctNtX7qCcvDEZjCaM+3AbNEo5fn1oCJQMtj2O32EiIiIiImq2isoNTo95q80Bs20W17qE/MDFPLvr1LUMRIvKDfjrWIbdfkfzthtTRkE5zmUV43haIQ6m5Df2cK4IDLSJiIiIiKjZcjRHGgCUchnUlfOzvdTSruTWGed1x+0DZWdzuW0dTytEhYOlvJpaRjvXqrmbo1J3cj8G2kRERERE1Gw5C4qtg2svm+W/rDPOjta8rm2gnJpXBgC4pmMo3pxS1d28qc3R/u/W8+LrUl3TGltLxUCbiIiIiIiaLX1lIzRfjRLtWvmI+72tAm1vm4y2ziqQzim2X8pL5yRLbnde5XrZXioFpvePweD2IQCaVum4IAj482hV1r5YV9GIo7lyMNAmIiIiIqJmy7KGtkohg59WJe63zM82v5YG2pamaACQ42DN7Hc3nMETKw85zHZbswTk2sqMueV/axuoN4QjqQWS7VI9A+2GwECbiIiIiIiaLUtGW62UQ2W1LJd1ubjtHO3knFLxdU6JzuF9fzlwCXuScqt9dnllRtuyVrflmUk5JbUdvsdtOXNZsl3SxMraWyoG2kRERERE1GxZ5mirlXIorAJt6yx2Wr59A7CKyusclY5b5DrIdluzZK41KnNY9cfRdADAJ5vPO72moRWWSbuyl7B0vEEw0CYiIiIiombLktFWKeQI9K4qHbfOYlvmTltLzSuDIAgOS8ctamqKpqt8tkZpftaAuODaD7yBWLLuvhpzKX1eqfPl0Mh9GGgTEREREVGzJZaOK+RoHeAl7rfOaD8+uhPmT07A/hdHoXO4HwDgQnYxinUV4vVbnh5ud29nS4dVHTcHsdrKjPZTYzsDAEJ9NXV8N+5neQ9RQebvTRaX92oQDLSJiIiIiKjZMliVjluCSUDaDC3cX4sZA2IQ4qtBhzBfAMD5rBKxbNxbrUBsiA9evzFecm9XM9oR/loAQHaxDhtPZDaJ9bQtY4gO9gYA7E7MxRt/nGhyS5C1NAy0iYiIiIio2bLOaPe3Kt1WKxyHOu0rlwC7kF0slo2H+KoBVHUNt7AE0s7obJqh+Vt1Pb/vm32Yt+Z4rd+Hp1gy2jGVgTYAfL4tEZ9tvdBYQ7oiMNAmIiIiIqJmy7oZWvfIAHH/mawih+e3a1WV0bY0CgvwMgfIloDZoqaMdGGZubGYT+X8Z1+tErKqfmz4YU9Kbd+GRwiCgI0nMwEA0VbZfgBIzm06ndFbIgbaRERERETUbFk3Q1PIZVBWdh5vE+jl8Py2oeaM9sXcUlRUrpOtkJvDItuMtqWRmDPZxealwSxzshVyGYK81XV5Gx5xKb9MfO2tVkJt9UGC7YcK5F787hIRERERUbNlndEGgL9mD8VtA2IwZ3xXh+f7ac3Z5xJ9BUxCZaBdmYW2DT51NTRDswTarfyqgusQn6rXSqvlxhqDsfKDBAAoKDOglVWTNsu8cvIMBtpERERERNRsGSqkgXaHMF+8MTnBaUbbkrXWGUwwiRltc0Bs3akcAIrKq19zOr9yqSzrLLZ1x3GVk3niDUVvNcd88lVtEOZvHWgzFPQkfneJiIiIiKjZEjPatQxqtZUBpt5ogqEy0JZXTqzuGR2I6f2ixcZh+aXO19gGgLLKOdzWHc4tjdUAQKVo3Iy2pZlbuL8Gob4ayQcCDLQ9i99dIiIiIiJqtgxGc7Bc60Dbah52md6csbZktFUKOd68qQdeuN5cdm7pSu74uSaxNNuyjjYgzWgXllfgz6PpYua8odkuP9Y6QCse06pZOu5JDLSJiIiIiKjZsgSTKmXtssfWgXaJzpyRVtjMpbbMs84p0Tm9j3VHcut7Ws/RBoAHvzuAT7ecr9XY3M2y/JilrP6RazuKx4TGif2vGAy0iYiIiIio2apaR7t2GVqFXCaWdJdWZrTlMmmgHV1ZOn4prwzlBiOSskvww56LkuZilrJxmUxahh3qp4Gtn/an1vbtuI3JJKBML13nOyJAi1v7xwAAKoyMtD1JWfMpRERERERETZPBput4bWiVChiMFSjRO85oh/lp4K9VorC8Ahcul+C5X47gSGoBTmcUYe4N3QFUdSTXKOWQWQXqlq7m1rIKywGYg98T6YXoEuEHpQcbpekqjBj13hak5JqX97L+3lg+ZKgwVd9RneqHGW0iIiIiImq2qjLatW88ZpmfXKJznNGWyWToFO4HADibVYQjqQUAgO93XxTPsZSOe9msve2o07glEf7xpnOYsGg7nvn5SK3HWhfp+eVikA1I568rK9cMNzCj7VEMtImIiIiIqFkqLDdUBdouZLT9NOass2V5LkfLXXesDLTPZBaJ+wTYl45rbQLtrhH+dveyjG3RP+cAAL8cuFTrsdaFbbbaOmMvZrSNzGh7EgNtIiIiIiJqdg5ezEPvVzfgx30pAFxbs9rfSwUAyKtcvsu2dBwAOoX7AgA+3lTVyMy6gVhyTikAINim+VlMiDeeHttZsk9ZeX/rQN2TbLPV7Vr5VI1FLB1nRtuTOEebiIiIiIiaHdvmZEE2AW91LIG2mNF2GGj72e2zDk23n80GAAxsF2J33gPD2sNbrcC8NScAVK313VCxrWXeup9WiY9u7Y3B7avGWFU6zoy2J7mc0d66dSsmTpyIyMhIyGQyrF692u6ckydP4oYbbkBAQAD8/PwwcOBAXLxYNZ9Bp9PhkUceQWhoKHx8fHDDDTcgNbXhO/EREREREVHzFBviI9mO8Nc6OdNeQGWgnVu5TrZCZh9odwzztdsnVKa0BUHA9nPmQPvqjqF258nlMtw9JA7bnx0BoGoeudBAa2pZMtqB3iqM6BwmrqMNWJeOW5XB6434+2Sm2KWc6s/lQLukpAQ9e/bE4sWLHR4/f/48rr76anTp0gWbN2/G4cOH8dJLL0GrrfqHP3v2bKxatQorVqzA9u3bUVxcjAkTJsBo5A+WiIiIiIhqprGZk906wJVA21zYW13peKC3fYbcEprmlOhxKb8MMhkwIC7Y6XMsTch0FSY88sPBBstoW+Zfq+T24Z5v5fz03Mr3DgBzfjmCe5ftw4urjzXMAK8ALpeOjxs3DuPGjXN6/IUXXsD48eOxcOFCcV+7du3E1wUFBfjyyy/x7bffYtSoUQCA5cuXIzo6Ghs3bsTYsWNdHRIREREREV1h9DalzxEuBdrmjHZpZQbXtus4UJX5tSYIQEZBOXQV5uu8VQp4q52HVNYN2tYcTqv1+OrLMv9a6eA9dAir7KZu1eRt9SHz2H4+kIp3p/VsgBG2fG5thmYymfDHH3+gU6dOGDt2LMLCwjBgwABJefn+/fthMBgwZswYcV9kZCTi4+OxY8cOh/fV6XQoLCyUfBERERER0ZXLUCFND/tpVbW+1t/mXEd91GQOgm8AGLjgb/xxNB2AfcdxW650QneXc1lFeGzFQQCOG8RZmrxdzC0Vlygj93PrTz4rKwvFxcV48803cd1112H9+vWYPHkypkyZgi1btgAAMjIyoFarERQUJLk2PDwcGRkZDu+7YMECBAQEiF/R0dHuHDYRERERETUz+npMO7VktC0clY5b89NKs9bvrT8DoBaBtgud0N1l7m8nkF1sLgtXOnh+Kz8NAr1VMAnA+cvFkmM+6urfD9We2zPaADBp0iQ8/vjj6NWrF5577jlMmDABS5YsqfZaQRCcfmo0Z84cFBQUiF8pKSnuHDYRERERETUj+5PzcOxS3atcbZfkclQ6bq1TuJ84txmoKs3WqqoPpxwFup5WWG4QX5fpK+yOy2QydBLLx6WBtreGi1K5i1t/8qGhoVAqlejWrZtkf9euXcWu4xEREdDr9cjLy5Ock5WVhfDwcIf31Wg08Pf3l3wREREREdGVJym7BDd9ugNbzlyu8z0GdwiVZLVrCrRVChnC/DR2+72aYAa4g1W39DM2gbRF+zBzx/aknBLJfma03cetgbZarUa/fv1w+vRpyf4zZ84gNjYWANCnTx+oVCps2LBBPJ6eno5jx45h8ODB7hwOERERERG1MH8dt59uuvzeAS7dw1ejxIwBMeJ2TaXjKoUcrRwE2lplzYHp9/e5Nrb6Mhhrbm0e4GXO6BeWSTPePsxou43L38ni4mKcO3dO3E5MTMShQ4cQHByMmJgYPP3007jlllswdOhQjBgxAn/99RfWrFmDzZs3AwACAgJw77334sknn0RISAiCg4Px1FNPISEhQexCTkREREREZEtfYbLr3v3MdZ0drmVdk3ahVetw15zRljtc7qs2Ge1B7UNcHlt9GCpMNZ7jX7m8WZFVmTkA+FTTQZ1c4/J3ct++fRgxYoS4/cQTTwAAZs6ciaVLl2Ly5MlYsmQJFixYgEcffRSdO3fGzz//jKuvvlq85v3334dSqcS0adNQVlaGkSNHYunSpVAoWKpARERERESOfbsrGcfTpHOz69pwzDpwrukWzkrHfWuRAXbWh8pTDMaaA21Lh/bCcoOk87iPhvGYu7gcaA8fPhyCUH05wj333IN77rnH6XGtVotFixZh0aJFrj6eiIiIiIiuULZdsgFAU8cltCRztGsoHR/YLgQ6B5niNoFedXq2J1mvL/7sdV0cnuOvtWS0K1BUXlU+3hTnnDdXrA0gIiIiIqJmoVRn30Xb0dzp2rC+7lJemcNz/nlyGHZeyMEtfaPxm03JOgC0boqBduUHAu/c3BNT+0Q5PMeyjnhReYWkS7mp5mQ41RIDbSIiIiIiahZK9PZrZ0cE1C3YjbOao52W7zjQbtfKF+1ambt4OwrofZtgqbWldNx27W9rlmOF5QYUllUF2sYaKpep9hp+YTciIiIiIqI6KHWwLnTrAG2d7/flzL6IC/XB8+O71niudam5hbqOZeueZOk6Xt3cdf/K95KcU4qLuaXifpOJgba7MKNNRERERETNQonOPqMd6lu30nEAGNk1HCO7htfq3EAv+67j6jo2c64u21xfltLx6j4EsH7+u+vPiK8rGGi7TdP7CIaIiIiIiMgBRxntmtbAdhdHGe26NmIrKq+oscF0XVlKx1XVZLQtXccBSDPagoALl4sl87apbhhoExERERFRs1BmsM9oNxRHWej6lI7vS86rz3AcMpoEZBXpADj+YMDCx6q7uLfV65PpRbj23S0Y/vZmt4/tSsNAm4iIiIiImgW9gyW2GopcLsOMATGSffUJtIvL7bPz9ZWSW4piXQU0Sjk6hPk6PU8mk+H/rokDAJRaNZjLLjYH6bklereP7UrDQJuIiIiIiNxu0+kszPp2Hy5XZljdwbKWdadwcxB5TcdQt927NiYktJZs1zbQjqxs2DapV6S4r8RBGXx9WTL+flpVjSX1/lrnGe/aEAQBn209jx3nsut1n5aKzdCIiIiIiMjt7v56LwCgdYAX5t7Q3S33tGS03725Fw6n5mNCj9Y1XOFeGpU0sK6us7e1Px69Bt/tTsbUPtHILdFj29ls5JW6dx60rsKIjMLyynHVPG89vB7d2gFg54UczP/zFAAg6c3r63WvloiBNhERERERuZV1iXdeqfvKkC33beWnwe0DY91239rSKBU227ULtIN81Hj42o4AgMjKdb8L3Ph9AYApn+zA8bRCAICqFuMa0y0cz1Rz3GgSqs2Kl1vNly/WVcBXw9DSGkvHiYiIiIjIrc5kFomvrZtt1YfRJIjLT9W123d92T7XNvCujUBvc8n2oZR8dwxJZAmygeo7jleNQ43YEG+nx8traDzno64KrC9cLq7FCK8sDLSJiIiIiMitjqQWiK/dNUfbOktenyZk9WEbWNdlHIHe5vW4N57MwtYzl90yLtulwmoTaAPAgikJTo/V1OHdaPXM8wy07TDQJiIiIiIitzqSmi++dlegrauoCvwaK6Ntu2RW3QLtqnv8b39qvccESDuHA7Wbow0Ag9uH4ucHBqFnVIDdsTJ99YG2yaoB/Pmsklo970rCQJuIiIiIiNzqsFVGO8vNGW25DFDWMmPrbv5e0nnIdQq0rYJ1rZs+MCiyWSrMlXH1iQ3GD/8ZaLc/p4Ylvqwz2ueymNG2xUCbiIiIiIjcpkxvlMzRdlczNMvSXo1VNg6Y15+2bvpV267j1iyl4wCgVbln/npRubSDuasfbnirlRjYLliyLzWvtNprTKaqQDunxH1LuLUUDLSJiIiIiMhtlmw5D6NVEGY9t7o+LM253BWc1pW/tirQVtWyRNuadem4VuWecKzQJqOdnFN9kOyIl833NaOgvNrz31l/Wnxdoqu+zPxKxECbiIiIiIjcotxgxId/nwUA+FR2GzcJkATetZFdrENitnTeb7GuovK+jbuMlL9V6bdMVr9Auy5dyx2xfG/qw7Yc/++TWbjoJGBPyS2VdDkv1df/+S0NA20iIiIiInKLXKt5vV5WAbHB6FpWu+/rGzHinc2SrKola9rY6zXbNkRzVaBXVem4l5uWPrMtHa8L25/Rzgs5GPr2JofnltgE1iVWjdMMRhPuXboXT//vMLacuezyhywtBQNtIiIiIiJyC+tA2zpzq6tj+bh193Ixo61p5NLxegbaXmoFIvy1ABx3T1++KxmrDrrWjdy2GVp162M748qHIbbBc6lVRn3rmcv4+1QW/rc/FTO/2oMf96a4PJaWgIE2ERERERG5RXZxVVOs6f2ixdeuBHHWa0L/59v9aPvcHzibWYQSMdBu5NJxbf0CbQAY0iEUgH3AmpZfhhdXH8PjPx6WNBuriSWjPbpbOF68viu+u2+Ay2MyGB0/r8LBz67cZo3tUoNR/Lml5ErLzX8+4J4lzJobBtpERERERFQnRpOAGZ/vwqxv90EQBElG++4hcWKzMFcCbUfZ79Hvb8XuxBwATWGOdv2fr5Sbvy8VNsF0TnHV989gqt33zGQScCrD3OW9lZ8G913TDlFBrme054zrArkMCPfXSPbbNloD7NftFgTzzy23RI+5a05Ijnm7qTy+uWGgTUREREREdXIyvRA7zudg3fFM5JcaxEBxUq9IKOQycfkrQ0Xts7M6g+MAc+U+c2Y0zCYQbGgTekQCgFj+XReKyg8gbDPauoqqALbCSYbZ1pt/ncIvBy4BcFyKXlu9Y4JwZO5YrJs9FBN7Ror7C8rs53/bBtqAuZrhqtc21Pn5LU3jfhxERERERETNlvV62cm5pcipzGgH+5gbfqmUckBvhN5Y++WfrINNR6KCvOowUvfpExuEPx69Gm0C6z4O64y2wWiCSiHHO+tOY/Gmc+I5ta0C+GzrBfF1fbuYWxrNLbq1N3ZfyEFWkc5hR/EyB4H2qfQiu33Ozr0SMKNNRERERER1csJqiadXfj2GJVvOAwBCfc1ZZ1VlRtt6KajqlOorkG1VPg0Atito9YkNqutw3aZ7ZAACvdU1n+iEojLQ/ujvs+j+8jqcSCuUBNmA8znT1alPRtuW5cMAR13DL+WX2e1z1vAut1TvcH9Lx0CbiIiIiIjq5GRGVQB9OLVAfG3JaFvmbD+24hAKSqtfgqrcYMSERdsx/qNtkv2dw/3E1/cPa48+scH1HndjswSxAKA3mrBg7Um7IPnGj//Fuaxil+6rVblvPrRlXW3beeQAcDrDPnvtqMQcAC5cLsHwtzdh6b+Jbhtbc8BAm4iIiIiI7Kw7noEx72/BibRCCIKAlftSsOtCjni8qNyAQxfzHV4bUhloW2dD7/tmb7XP23w6Cxcul9jtD7eaC905wteVt9BkKeTSMEylkItVABaX8svwn2/2uXRfT2S0Hc0Vt54yYOEs0AaApJxSuyZpLR0DbSIiIiIisjPr2/04k1mMu5fuwbw1J/DMT0fw2IqD4vHjaYUocTL/NsTXHGjPHBQr7tublCdZusvWoZQCu32+GiUm9apqzOWOpbWaAuuMtmXb0ZzsC9n2HzxUx/Vic+cU4jxy6bgMRhPOX7bPtFsC7R5RATg+byzGJ0TYnXPBwXUtFQNtIiIiIiJyKrNQh6U7ksTXlmDZUZMsizA/cxZ63qR4yX5n83gBoKCsai5vKz8NNj81HEdeGYNOVqXjfi0k0FbYBNoqhdxhiXZNBEGQzGHPsVrHvL4speO2c7QTs0sczh8vrFzLu02gF3w0SnxyWx+0DpB2Zl93PNNt42vqGGgTEREREVGtWbLYjpZ4soiwCrDmTuxWda3OeXBuWa/5lYndsPeFUWgb6gO5XIb2rXwRF+qDAC8VOoS1jNJx24y2Qi6DoZoPIRz55UAq+r6+EdZFAtX9TFzlrHT8cpHjYL6o8udnPU+8lZ+0HH79iQy3ja+p4/JeRERERERUa8t2JOFEWiEGtnPclEwuq+o2DgB3DYnDgrWnoKswIb2gHOkF5YhvE2B3XXFloGZZYsrCS63A308Mg8FkqvfyVU2FZR1tC6VCBkNlibZMBlRTYS96YuVhyXYrPw3uvTrOfWOsDLTn/HIUwT5qrLx/EHw1SqfLr5UbjJLrANjNO09z0K28pWKgTUREREREdtQKOfQO5g2/ve40AOCPo+l2x357eIhdcAWgMkDTY8Ki7QCAn+4fhL5tpYF6UWXpsaPycLlcBo28ZQTZAKCybYYml4vl2N4qhdO5786oFXLseX4kZLZrodVnjJUfBmQUliOjsBx7EnNwbZdw6AyOM++WaQEKmXWgrbY7JzmnBOkF5RjYLsRtY22KWDpORERERER2VArXg7YeUYGIDPSy2++tkQbJm05n2Z1jWQrMX9vyc4EalTQMUyhk4lxo6yA7yLt2c9L1RpNbg2zAfh55ekE5AOfz7HWVGW3rzxBsS8fLDUYMe3szpn+2C+ey7DuXtyQMtImIiIiIyI6mlmsyxwR7w1utwHvTejo9x0ctDZ73JOZKtgtKDUjKKQUAdI7wQ0tnuwyX7ZxtC18nHzpUOKg0cDelTdY9q9A8N9tSIm7LEoDLZc5Lx8utsuHnHSzl1pIw0CYiIiIiIju2GU1nRncLx/F5YzHlqiin59hmNg+nFEgCtkOp+QCAtiHeCHFQet7SWM9ht91+YXxX+KjNH3IYKhxP1i63ySp39ECTOKVNRYNl+TGnGW1L6Xg1c7Ql96/lv6/mioE2ERERERFJ/LDnotPu0oB57u3CqT1wfUJrPDqyY41ly1FB0nJyvdGEpJyqjOaB5DwAQO+YoHqMuvmQ23y/yqw+dLh7SFusemgIADhcWxuQZpW9VAp8MbOv28doGwhbxmJ5do+oAIzqGg7vyg8FLE3SqstoWyuupgN9S8BAm4iIiIiIREnZJZjzy9Fqz1lyex9M6xuNj2+7CgFeNc8jbuNg3naZ1VzkY5cKAAC9ogNdG2wzZfu5hHXgrJDLxAy3o2Z0QNX3TquS49AroxEb4uP2MdpWNBiMAkwmAQvWngIA+GmV+GJmX/SOCQQAsUmadaBt20HemmU5sJbK5UB769atmDhxIiIjIyGTybB69Wqn586aNQsymQwffPCBZL9Op8MjjzyC0NBQ+Pj44IYbbkBqaqqrQyEiIiIiIjeb8ukOh/t/+L+BmNgzEpufGm7XMbwmbYIcBNpWweWlymWf2oa6P2BsDixBqkohg0wmExvROctoW7LHWpXCY0ueKW3K2/VGE85mFYvb5ypfWz4UqCodr7rGS+083GRG20ZJSQl69uyJxYsXV3ve6tWrsXv3bkRGRtodmz17NlatWoUVK1Zg+/btKC4uxoQJE2A0um+BdSIiIiIicp2l+7et3jGBWHRr7zoFw20Cve32WS8TZQm02wRqXb53c2Rbam9ZKs0SNKsro1XLkl+2yvTm751XLRvW1YVt6fiKPRcx9oOt4vbcid0rz7ME2val415q5xltZ8uEtRQu984fN24cxo0bV+05ly5dwsMPP4x169bh+uuvlxwrKCjAl19+iW+//RajRo0CACxfvhzR0dHYuHEjxo4d6+qQiIiIiIjIA+4a3BZLdyQBsO+U7QpHGe1ygxFPrjyM/FK9WEYc7NPyG6EBgLMZ7ZYsryVLbDQJMJoEuzLuUr35PM8G2tKft8kq5u8bG4RxCa0rx2oem1g6bjXW6sZXYWKg7RKTyYQ77rgDTz/9NLp37253fP/+/TAYDBgzZoy4LzIyEvHx8dixY4fDQFun00Gnq2rGUFhY6O5hExERERG5lb7CBHU9gtOmwN9q/nV91mkO97MPoB/47oDdPktjrZauSw1LmFl3/DYYTVDIpd+XnMqqg2AftfsHV6m6ddTD/bVW50nnkyus/p1U9/N0lq1vKdz+//y33noLSqUSjz76qMPjGRkZUKvVCAqSdhQMDw9HRkaGw2sWLFiAgIAA8Ss6OtrdwyYiIiIicptlO5LQ9eW/8PfJzMYeissCvc3B9eOjOsHfyTrOrlIq5Ljv6jgM79yq2vPqkzVvTjqG++G7+wZgcu82Do9bL/dlmad9LqsIr/9+Al9uTxQ7wtsum+ZO1X1IFOpbFeDbLgNmnXyv7udpZEa79vbv348PP/wQBw4ccPkTL0EQnF4zZ84cPPHEE+J2YWEhg20iIiIiarJe+e04AOCrfxMxsmt4I4/GNZaS4dHdwlFYbnDbfV+c0A0A0Pa5P5yeU5+seXMzpEOo2G3dljTQNmd+31l3Bn8dNycmr+kYCqD65bPqq7og2TrAV9s0TbMuHa/u58mMtgu2bduGrKwsxMTEQKlUQqlUIjk5GU8++STatm0LAIiIiIBer0deXp7k2qysLISHO/4lpNFo4O/vL/kiIiIiImqKBKEqgCgoc1+g2hD0FSYUVo7ZT6vEwHYheHNKAlbOGuS2Z1iCRLJfQst6v+WYJaOdW1rVpG53Yi4AoH0rz3Vpry6jbR1o22a0FTbB9cczrsLz47vgkWs7AAA6hPkCaPlztN0aaN9xxx04cuQIDh06JH5FRkbi6aefxrp16wAAffr0gUqlwoYNG8Tr0tPTcezYMQwePNidwyEiIiIianB5pVXBtdDMknZHUvOhN5oQ4qNGVGUDs+n9Y9A/zrXlvKqz5PY+brtXc2fb2duaZY60vnLZLOu1ti37urcJ8NjYqls2zDrQVlWT0QaA63u0xn+GtscTozth34ujMKmneVWqihae0Xa5dLy4uBjnzp0TtxMTE3Ho0CEEBwcjJiYGISEhkvNVKhUiIiLQuXNnAEBAQADuvfdePPnkkwgJCUFwcDCeeuopJCQkiF3IiYiIiIiaq8zCcvG10dS8gglLprR/XLDHyrh9NErMu6G7WF4f6qtGdrHjJcVaOq1NV+7rukeIr1UKOcoNJlRU/hsq09svhVxTU7X6qDaj7WvfDM1C7uTfjUwmQ6ivRlyfu6KZ/X/DVS4H2vv27cOIESPEbcvc6ZkzZ2Lp0qW1usf7778PpVKJadOmoaysDCNHjsTSpUuhUFwZXQaJiIiIqOXKKqpaLcdS9ttcWAfantQ9smoq6GMjOyK/1IBB7UOquaJlsg20P5jeS3xdtZa2+d9QmUEaaLcN8YafVgVPsU5MB3qrkG9VqSHNaEsDa8t62s5Yzq9oZv/fcJXLgfbw4cMl805qkpSUZLdPq9Vi0aJFWLRokauPJyIiIiJq0rKsMtrNqeFThdGE/UnmQHtAnGeDXuvloQK91bhjUFuPPq+p0qqqssGzhrWTBN7islkOSscBoHuk58rGAaC4cm1zAFh6d3/c+PG/4naIdddxm/W2LeN1xlIub2jhGe0ro38+EREREVEDsc5o1xR0NCXpBeUo0RuhVsg9WpIMSAPt5lZe707WgXWAlzQ7rVJKm6GV2pSOd4v0bIPoQqtAOzJAKzlmXS7uZ7MEXE0/T4WldLyFZ7QZaBMRERERudHlZlo6bgnk/LRKu4ZW7mY9/zfA23Plz01dtYG2WDouQBAEu9LxyEBp8Otu1hn06tbrHp/QGkFWP8OaqjhUlf+2WvoHLAy0iYiIiIjcyLoZWnPKaJfozRlMb03D9E369Lar8ODw9hjeqVWDPK8psg60A73UkmPWc7R1FSa7Dva+Gs9+QHH/sPbw1yrx0Ij2kMlkeP+WngCAb+7pLzkvMtALu54fKW4ba1i2S2n1AUJL5vIcbSIiIiIici63pKqDtr45ZbR15gymj7phQoRxCa0xLqF1gzyrqbKeo+0so603muzmZwOAr8azP6e2oT44+PIYcT3vyb2jMLl3lMNzrZcCq6mbuNgMjetoExERERFRbZVbZbGbU+m4mNFWcyWghhLiU1WS3d1mzrX1Otq287Otj3uSog5TCGpaH9tyT2a0iYiIiIio1nRW2UeTYG76pFQ0/fxWaWWg7ePhTClVaeWnwXf3DUCgtwpBPtLSccvPoURXIc7P9tMoUaQz/5xs169uKmrKaKttuqm3VPx/ERERERGRG+lsAohnfz6Ki7kleHtqT7QN9WmkUdXsTGYxAPNyW9RwhnQIdbjfUkqeX2oQy/q9NQpM7BWJS3llSGjj2eW96qqmOdqWtb+LdRXIKdYhxNd5o7XmrGl+DEJERERE1IRlFZYjJbfU4THb+bQ/H0jF3qQ8DH9nM85lFTfE8Opkx/kcAMC1Xa7c5mRNSWBlJ++knBJ8uf0CACCzUIf5kxOw7J7+Hu8MX1c1ZbT9vcy53nNZxejz+kb8sOdiQwyrwTHQJiIiIiJygSAI6D//b1yzcBMKygx2x20z2tb2JOZ6cmh1JggCTqUXAgB6RgU27mAIABBUWVnwzc5krD6U1sijqb2alu3y10qbvs355agnh9NoGGgTEREREbnAOri+mGOf1XbUIdriTGaRR8ZUX4XlFeIHBJGBXo08GgLsu5ADQFg161k3tv5xwQCA6f1jqj3vSlk3nXO0iYiIiIhckF5QtU52kU6a0RYEodpAe+mOJDxybYcmNy81r3JJMm+1QrK2MzWeIAdz5T+/s28jjKR2lt87ABkF5YgJ8a72PF+1El4qhdjgraViRpuIiIiIyAUZhVWBdk6xXnKswiTAUjnrbGmkjzedr/cYCssN+HZnEvJL9TiXVVRjuW5NcioD7WAfNkJrKgIdZH7bBDXdagO1Ul5jkA0AcrkMncJ9G2BEjYsZbSIiIiIiF2RYZbRzS6SBtnU220+rRH5pVcZbJgMEATiSml/nZxtNAh5Yvh/rT2QCAF769TgA4InRnfDoyI51vu/5yiZtLBtvOmwDbbVSjpAW8kFI5wg/HE4taOxheBQz2kRERETUbAhC/TK37mAdaOcU6yTHyg1VjdB81NKc1h+PXAMAOJleiApj3dYQ/vlAqhhkW/t2V3Kd7icIAm79bBee+fkIAOCqmKA63Yfcz3aZtcgALWSyptlp3FWdI/wbewgex0CbiIiIiJqFcoMRo9/fiidWHmrUcWRalY5n22S0dRXmjLZGKYdGJf1Tu3OEH/w0SpTojTiVUbemaKedXHe5SIdSfYXL9yvWVWDnhRxxu08sA+2mItCmGVpLqjboEuHX2EPwOAbaRERERNQsbD1zGeeyivHLgUuNOg7rZmiXixxntLUqBXRW2e0JPVpDIZehd2Uguz85z+XnCoKA42nOy23XHs1w+Z7Wpe0AcFVMoMv3IM+w7TrekgLt3jb/zurbY6ApYqBNRERERM2CdXOxxiwht85op+WXSY5Z5mhrVXJcsjq26NbeAIAebQIAAKfrsMzX6kOXsOuC83W4dyfmuByw5JVWZeQn9oxsct3Qr2RKhTRUiwzQNtJI3M9brcSRuWPE7aOXWt58bQbaRERERNQsqKwCD8uaz43BOqOdmicNtC3j0iilS2RZ5tZaGlwVl7te5r1sR/XzsFfuS8XSHUku3dPSNb1LhJ/4YQA1Hd1aV81lbt2CMtoA4K9V4bruEQCAbWcuN/Jo3I+BNhERERE1C0qrjHaJzvVA1R0KSg0oKKsqty4oM2DN4TS88ccJ6CtM0FlltC1a+VVlif205gZpxXUYf4ewmpdEWvjXqVrfb09iLu5euhcAEBfq4/J4yPO+vruf+DrMr+VVG1zTKRQAsO1sdiOPxP0YaBMRERFRs1BhVRZdqjdWc6bnTF2yQ3zdurKU95EfDuLzbYn4fneymNHWqhRQKcwfDIyLjxCv8dVUZrTrEGh7q6VZ8ql9ogBIg+QB7UJqfT/rpnI9ogJdHg95nkZZFa45Wle7uRvasRUAYE9SLn49dKnO3fibIgbaRERERNQsGKz+CG+sQPts5XrTANC+lTTDfDqzWJyjrVHKserBIXhoRHvMGddVPMfXktGuQ+m4dXDeJzYIC2/qgR3PXYu3bupRdX+NwtGlDlmX3/eICnB5POR51vO0/bUtL9CODvZGcOXa4I+tOIR9dWgS2FQx0CYiIiKiZkFvFRiWGRon0LbWvpW03PqHPRfx0T/nAJgz2vFtAvD02C7wsspE+2rMgXZhubTbd21Yl8u/fmM85HIZIgO90D8uGHcOigUArD2WgSyrZm3OXMwplXRMj2/DQLsp0lpltNsEtaw52ha5VkvkDYgLbsSRuBcDbSIiIiJqFvRWGW2jqXFKTC2dz2cMiEG7VvZzpk+mFwKQlvxas8yzTc0rc7lzuiWL//4tPdHVqkkWAPSsLP0WBGDGF7trvNcnm89Jtm2XkqKmQamQ49/nrsW2Z0bAW61s7OF4nKVpYEvAQJuIiIiImgWDsSowbaypnDHB3gCAyb3b2JWOW9OoHJdwh/lXNbRacyTdpWdbSscdBVxqq8D+nFV5uzPW1QFrHr7apXFQw2oT6IXoyn931Hww0CYiIiKiZsE6OHR1vWh3EdfJVirQPsx5p26t0nGgbb3s1/4k52tiO2IpHbeUn1tT22TQTTV8f0xW2fRukf7VnElEdcFAm4iIiIiaBetmaCYXy67dpdxq+a4If63T8zQq539m3zEwtvJerqXlS3TmZ/vUItDOLtHZnWMtLd88j/vD6b3Ecngich8G2kRERETULDRmRrtMb8TY97cir9TcxEyjVEAmk8HLSYm4s4w2AMS3MWeQs4pqblpmrURvyWjb31ujkP5ZbwmknbmUXwYAiGqhDbaIGhsDbSIiIiJqFvJKq7oTGxs4o/3H0XScziwSt7WVGesEJ8tiaavJaIf5mTPhWUU6FJQZsCcxt1aN0UqqmaOtUtoG2s6brVUYTcio7EzeJpBzf4k8oeW3riMiIiKiFiG7uKocuqY5yO4297fj4mu5DPB30KU72EctLlWkqSaj3aqy83hmoQ5TP92Bs1nF+OjW3rihZ6TTa3QVRrEZnKPScduu4Q9+dwDDO7eCv1aFCT1a49ouYeKazGezimE0CVApZGIXdCJyL2a0iYiIiKhZyC62ymg3cKAdY9X1uV0rX2gdlIxbrwfcvZoGY5bO4zklOpyt7BD+26G0ap+fX1myrpDL4K+1D7Q7hfvh9Rvj0TM6UNy3+fRl/HY4Df/5dj9u/XyXOL983IfbAJi7uMs5P5saWZtA8/SF2JCWVV3BQJuIiIiImgVJRruBS8etm411ifBzeI4luO4RFYCRXcOc3ivERwO5zLzmtUVN8a4liA/0Ujlda/j2gbG46ao2Do/tTcrD/uQ8FJYbqn8QUQP79t7+mNY3Csvu7t/YQ3Erlo4TERERUZN3KCUfR1ILxO2KBs5oW3c8H9guRHwdaFWyPfeG7vjnVBYeGtHBaTAMmLPSob4aZBXpJPuqY5mfHuhtX7JuzZIddCS7WIcPN56t9nqihtaulS8WTu3Z2MNwOwbaRERERNTk3fjxv5Lthi4dr6icHx0T7I1b+kWL+1+5oTsyi3S4Z0hb9GsbjH5tg2t1v3B/rSTQllsF5ueyihET7C3Joh9OMX/I0Dqg+i7hEQHOlxzbdSEHP+xJEbfnT06o1ViJyHUMtImIiIioSTt4Mc9uX0OXjlsy2m9P7QGV1VJabQK98OtDQ1y+37VdwnD0UlWG3hJnbzyRifu+2YfrE1rj49uuEo/vS8oFgGpL0gHAT+M8420dZP/28BD0iAp0edxEVDuco01ERERETdrkT3bY7bOq5G4QBpP5gbbLaNXVqK7hkm1LRvuL7RcAmJcTs2ZZWqxba+dN1gBAq7Yfn6OqdAbZRJ7FQJuIiIiImixna0E35PJeugqjWDqukrvnz2dvjbRreVllR/BAL7XducW6CqTmlQEAOjtpxGbh5aAb+oIpLBEnamgu/6bYunUrJk6ciMjISMhkMqxevVo8ZjAY8OyzzyIhIQE+Pj6IjIzEnXfeibQ06XIFOp0OjzzyCEJDQ+Hj44MbbrgBqamp9X4zRERERNSyJOeUOtxvrEXpuMFowoK1J7HjfHadn//S6mPoNW8D0gvKAQBKhXuWw1IrpH+Gl+orAEibvFk+TDidYc5mh/trEOhtH4hbsw60Zw1rh9UPDcG0vtGYNbSdW8ZNRLXjcqBdUlKCnj17YvHixXbHSktLceDAAbz00ks4cOAAfvnlF5w5cwY33HCD5LzZs2dj1apVWLFiBbZv347i4mJMmDABRqOx7u+EiIiIiFqcY2lV85gfHN5eXFqrNs3Qvt2ZjP9uuYAZn++u07NNJgHf7koWs80AoHJToK1RSf8ML9aZn2G9/NbxtEIIgoAzlWXjnSOqLxsHAKVVAB/up0Wv6EDIZDLMGd/VHcMmolpyuRnauHHjMG7cOIfHAgICsGHDBsm+RYsWoX///rh48SJiYmJQUFCAL7/8Et9++y1GjRoFAFi+fDmio6OxceNGjB07tg5vg4iIiIhaonKDeW70sE6t8Mx1XZCUU4JTGUW1aoZ27nJxvZ59MMW+CZtK4Z7ScY1CWuJdqjNntLOtOpFPXLwd79/SU8xodw73dekZttn37+4bgNk/HsIbN8bXZchE5AKPdx0vKCiATCZDYGAgAGD//v0wGAwYM2aMeE5kZCTi4+OxY8cOh4G2TqeDTlf1S6ewsNDTwyYiIiKiJqCisuuZJZNsaRpWm4x2feZxrz54CbN/PGS3X+muQNsmo12iq4AgCEgrKJPsf+OPU+gYZg6wO4VXPz/bVoiPRrI9pEMo9r4wqg6jJSJXebQZWnl5OZ577jnMmDED/v7mUpeMjAyo1WoEBQVJzg0PD0dGRobD+yxYsAABAQHiV3R0tMPziIiIiKhlMVQGy8rKJmQKee0D7fqstf3xpnMO96sctfCuA9s52sW6CuSU6MUMvoW+wojE7BIAQIew2mW037opAbf0jcZ18RFuGSsRuc5jgbbBYMD06dNhMpnwySef1Hi+IAiQyRz/4pozZw4KCgrEr5SUFIfnEREREVHLYqiQLqulcCGjXZ9AW+9k/TB3lY7LbQL2Ur0Rj/5w0OF5GYXmRmxxoT61uvct/WLw1tQe4ocSRNTwPBJoGwwGTJs2DYmJidiwYYOYzQaAiIgI6PV65OVJ57xkZWUhPDzc9lYAAI1GA39/f8kXEREREbV8FZb1qyuDRkuAWpuu49YdvJ0tE+aMszng7uo6bqvCJGDH+Ry7/fmlVc3RArxUHnk2Ebmf2wNtS5B99uxZbNy4ESEhIZLjffr0gUqlkjRNS09Px7FjxzB48GB3D4eIiIiImjFD5frVlgDXktGuzfxr62BcV+E4Q+2MpYR7wZQExIX6QKOU48ZekfDVeLzFkVPOqj+JqOlx+TdFcXExzp2rmrOSmJiIQ4cOITg4GJGRkZg6dSoOHDiA33//HUajUZx3HRwcDLVajYCAANx777148sknERISguDgYDz11FNISEgQu5ATEREREQHmtbCBqpLtyqna+OXgJTx8bcdqr7UOxtccTsPNfWvf56e8ckmv/nHBuLV/jCtDrrVe0YE4lJLvkXsTUeNyOdDet28fRowYIW4/8cQTAICZM2di7ty5+O233wAAvXr1kly3adMmDB8+HADw/vvvQ6lUYtq0aSgrK8PIkSOxdOlSKGyWOSAiIiKiK1tFZUbbEmhfLtIDALIKdU6vsSi3Wv96f3Ke00DbaBLw5tqTiAv1xYwB5qDakgHXqjz39+kXM/siv9SAUe9t8dgziKhxuBxoDx8+vNo5LrWZ/6LVarFo0SIsWrTI1ccTERER0RXEktFWVs7Nvm1ADDaezKzVXOkSXVWgnVZQ7vS8NYfT8Pm2RADA9H7mYFxvCbSVnlukJ9RXg1Bfjd1+ZrqJmr/Gm2RCRERERFSDqjna5oA3OtgbAFCb3mbFugrxdV6J3uE5O85lS9bLzigsR5C3WtzWeDCjbbF4Rm88/L2543iIjxpL7+6Hr/5NQs+oAPholPh083nc3DfK4+MgIvdhoE1ERERETZal67i6MoPt72X+87Wo3ACTSbBbJstaid4q0C6VBtqCIODfczl4+qfDkv0puaXwsgquPZnRtmgbUrVs15Sr2iDQW40nRncS9w1sF+LoMiJqwjz/m4OIiIiIqI7E0vHKjLa/1rzElUmQBtKOlFhltHNL9JIpjrsTc3H7l7uRblNS/vKvx5FdbJ7/7aNWiM/1pCCfqgy6ugECeyLyPP4/mYiIiIiaLNvlvbQqhRiMFpZXH2hbl46X6o0oLKvaTssvc3jN6cwinL9cAgBoH+Zb94G7IMi7an3silosW0ZETR8DbSIiIiJqsixNydRWmWVLVruwzOD0ugqjSVwL21JdnpJXandfR85fLgYAtAv1cXqOO1mXqltn4Ymo+WKgTURERERNVmllebiPpqq1kGWe9oo9F51eV6Kv6jjeOcIfADBh0XZUVJai643SQPuF8V3F15aO3+1bNUxGWyarmmdu3SmdiJovBtpERERE1GRZyr8lgXZlRnvZzmRsPXNZcr4gCDiTWYSicnO2W6WQIbayUzkA7LyQAwDQGaSBdrtWPgisLOHecS67cl/DBNrWmNEmahnYdZyIiIiImixLhtdHXVVe7e9VNaf5SGo+hnZqJW5/9W8SXvv9hLjto1FKgvRnfjqCAXHBdtlqrUqBCH8t8ksNYja8XauGKR23Vpv1wYmo6WNGm4iIiIiarBJHpePaqte262lbB9kAEOClgrdVkJ5eUI7Vh9KwOzFXcp5MBoT7a8XtyAAtOjZQMzQAeHNKAjqE+eLZ67o02DOJyHOY0SYiIiKiJkkQBGQXmZfa8pXM0a7KaB9OLcC5rCJ0CPNzeA9/rQpdW/vb7TdYzdHWquToFO6HCKtAe/JVbRpkaS+L6f1jML1/TIM9j4g8ixltIiIiImpyBEHAljOXxSW8WgdUBcGWOdoAsPFkJm77YrfT+/hplZjWN8ouO23JaN81uC3+ffZahPpqEG71jNiQhi8bJ6KWg4E2ERERETU5764/g7u+3gsA6BkVgBBfjXjM0nXcIrNQB6NJwNnMIrv7lBuMUCrk+O8dfRw+J9hHLd47QlI67lXv90BEVy4G2kRERETU5OxJqppDbVsW7qO2n/1YbjDig41n7fa3CTJ3HI8L9cGt/aPtjmuUVX8ORwRUBfORgVq7c4mIaouBNhERERE1GYIg4HKRTlzvGgBuGyidu6xV2f8JW24wikuBWbtzUCwA81rVC6b0sDuutgq0rQP41sxoE1E9sBkaERERETUZc345ihV7U8Tt7/9vAK6KCZKco1UpbC9DmcEIwW6vdD63Ixpl1b16RgeiTaAXooK84KW2fwYRUW0x0CYiIiKiJsM6yAbMy3PZsg6OLcoNJlzMKbHb7yj7bc06o61VKbD56eFQyLiWNRHVDwNtIiIiImqy/DT2gbb1OtoWxboKpOaVSfa1CfRCm8DqS8Ct52gDgKoBl/QiopaLgTYRERERNVlatX3gO6BdiN2+81nFqDAJ0Krk+PT2Pojw16JDmG+Na2HbBtpERO7A3yxERERE1GQ5mo+tkMvw6qTukn1P/u8wACDMT4sRncPQtbV/rbLTagbaROQB/M1CRERERE2W1sF8bACY1jcak3pF2u1XKlybX+1ovjcRUX0x0CYiIiKiJkvlJHDWqhT4cHpvjIuPkOx3tY0ZM9pE5An8zUJERERETZashg7ggd7SZmk1nf/ZHX0k25yjTUSewN8sRERERNRk+Li4frW/zfJfNWW0O4X7SbYdzQEnIqovBtpERERE1CSU6Y0oMxhdusZbJV1Ep6YlsG3ncAd52y8fRkRUXwy0iYiIiKhJ2JuUC5Pg2jValfTPWVkNOW3rTuQyGRDgxUCbiNyP62gTERERUZNw/nIxAGBklzAEeKlwTafQGq+xLf2uMaMtrzrBV6OscZ1tIqK6YKBNRERERE1CYnYJAKBThB+eva5Lra6xzWjXJNhHjcHtQ7DjfA4GxAW7PEYiotpgoE1ERERETYIl0I4L9an1NbYZbVUNGWqZTIbv/28g8kr0LBsnIo9hoE1ERERETcKFy+ZAu50LgbZSLg2sg33UtbouqJbnERHVBSelEBEREVGjKzcYcSm/DADQrpVvra/LL9NLtqOCvNw6LiKiumCgTURERESNLinHnM0O8FK5tORWZGBVYN2ttT+eGN3J7WMjInIVS8eJiIiIqNElXq6any2rqXW4leGdWmHuxG5IiApEn9ggTw2PiMglDLSJiIiIqNGlF5QDANq4WPotk8lw15A4TwyJiKjOWDpORERERI3OaBIAAGqua01ELQB/kxERERFRozMK5kBb7kLZOBFRU8VAm4iIiIganSWjzYQ2EbUELv8q27p1KyZOnIjIyEjIZDKsXr1aclwQBMydOxeRkZHw8vLC8OHDcfz4cck5Op0OjzzyCEJDQ+Hj44MbbrgBqamp9XojRERERNR8VQXazGgTUfPncqBdUlKCnj17YvHixQ6PL1y4EO+99x4WL16MvXv3IiIiAqNHj0ZRUZF4zuzZs7Fq1SqsWLEC27dvR3FxMSZMmACj0Vj3d0JEREREzRYDbSJqSVzuOj5u3DiMGzfO4TFBEPDBBx/ghRdewJQpUwAAy5YtQ3h4OL7//nvMmjULBQUF+PLLL/Htt99i1KhRAIDly5cjOjoaGzduxNixY+vxdoiIiIioOTJVztFWcI42EbUAbp0Fk5iYiIyMDIwZM0bcp9FoMGzYMOzYsQMAsH//fhgMBsk5kZGRiI+PF8+xpdPpUFhYKPkiIiIiopbDktGWM6NNRC2AWwPtjIwMAEB4eLhkf3h4uHgsIyMDarUaQUFBTs+xtWDBAgQEBIhf0dHR7hw2ERERETUyIzPaRNSCeKSvo8zmF6QgCHb7bFV3zpw5c1BQUCB+paSkuG2sRERERNT4jMbKQFvBQJuImj+3BtoREREAYJeZzsrKErPcERER0Ov1yMvLc3qOLY1GA39/f8kXEREREbUczGgTUUvi1kA7Li4OERER2LBhg7hPr9djy5YtGDx4MACgT58+UKlUknPS09Nx7Ngx8RwiIiIiurKY2HWciFoQl7uOFxcX49y5c+J2YmIiDh06hODgYMTExGD27NmYP38+OnbsiI4dO2L+/Pnw9vbGjBkzAAABAQG499578eSTTyIkJATBwcF46qmnkJCQIHYhJyIiIqIriyWjLWdGm4haAJcD7X379mHEiBHi9hNPPAEAmDlzJpYuXYpnnnkGZWVlePDBB5GXl4cBAwZg/fr18PPzE695//33oVQqMW3aNJSVlWHkyJFYunQpFAqFG94SERERETU3XEebiFoSmSBUfnzYjBQWFiIgIAAFBQWcr01ERETUAjzz02Gs3JeKp8d2xkMjOjT2cIiI7LgSh3qk6zgRERERkSuMJvP/MqNNRC0BA20iIiIianQmdh0nohaEgTYRERERNYpjlwrw5MrDSMsvE+doy5nRJqIWwOVmaERERERE9ZVeUIYJi7YDAIrKDVApzPkfJQNtImoBmNEmIiIiogZVoqvAoAX/iNsHLuYxo01ELQoDbSIiIiJqUCfSCyXb2cV6GCq7oXGONhG1BAy0iYiIiKhBJeeU2u0rKDMAABT865SIWgD+KiMiIiKiBnUxp8RuX6neCACQM6NNRC0AA20iIiIiajBfbLuAj/45Z7e/sNyc0daoFA09JCIit2OgTUREREQNwmgS8O76M+L2oyM7wl9rXgQnvaAcABDqo26UsRERuRMDbSIiIiJqEJmF5SgzmEvE40J9MD4hAmqlOYNt6Toe4qtptPEREbkL19EmIiIiogZRVF4BAAj2UWPTU8MBABqlNO8T4suMNhE1f8xoExEREVGDKKqch+2nrcr12AbaQd4MtImo+WOgTUREREQN4mRGEQBAbbWGl1Ih7TKukLPrOBE1fwy0iYiIiKhBvLT6GADgbFaxuC+zUNdYwyEi8hgG2kRERETkcYIgiK/7tQ0SXxeUGcTXj17boUHHRETkKQy0iYiIiMjjLMt3AcCye/qLr6dc1QYAMGNADJ4Y07nBx0VE5AnsOk5EREREHlFhNGHnhRz0ig7EkdR8AEC31v7wVlf9CfrmlB64pmMohnZs1UijJCJyPwbaREREROQRX2xPxJtrTwEAukT4AQB6RgdIzlEr5ZjcO6rBx0ZE5EksHSciIiIij/hud7L4+lRlx/GeUYGNNBoioobDQJuIiIiIPEIhs1+qa2gnlogTUcvHQJuIiIiIPKJYZ5RsvzklAZGBXo00GiKihsNAm4iIiIg8ItRXLdnuFRPYOAMhImpgDLSJiIiIqEG0b+Xb2EMgImoQDLSJiIiIyO0qjCZcuFwi2adS8E9PIroycHkvIiIiInILQRDw3e6L6BTuB2+1AnqjqbGHRETUKBhoExEREZFb7DifgxdXH7Pbr1HK8dGtvRthREREjYOBNhERERG5xZnMIrt9XioFjs4dAyXLxonoCsLfeERERETkFgYHpeLzbujOIJuIrjj8rUdEREREbmEwCpLtcfERuLlvVCONhoio8TDQJiIiIiK3sM1oD2wXAplM1kijISJqPAy0iYiIiMgtbANtXw3bARHRlYmBNhERERG5hW3peEyIdyONhIiocTHQJiIiIiK30BmM4mu1Qo4+MUGNOBoiosbDQJuIiIiI3KJYVxVoj42PgFzO+dlEdGVioE1EREREblGsM4ivE9r4N+JIiIgal9sD7YqKCrz44ouIi4uDl5cX2rVrh1dffRUmU1VzDEEQMHfuXERGRsLLywvDhw/H8ePH3T0UIiIiImpAJVYZ7Rt7tWnEkRARNS63B9pvvfUWlixZgsWLF+PkyZNYuHAh3n77bSxatEg8Z+HChXjvvfewePFi7N27FxERERg9ejSKiorcPRwiIiIiagBp+WU4eqkAAPDh9F4I89c28oiIiBqP2wPtnTt3YtKkSbj++uvRtm1bTJ06FWPGjMG+ffsAmLPZH3zwAV544QVMmTIF8fHxWLZsGUpLS/H999+7ezhERERE1AA+2XwOBWUGxLfxx3XxEY09HCKiRuX2QPvqq6/G33//jTNnzgAADh8+jO3bt2P8+PEAgMTERGRkZGDMmDHiNRqNBsOGDcOOHTsc3lOn06GwsFDyRURERERNR3p+OQDg9gGx0CgVjTwaIqLGpXT3DZ999lkUFBSgS5cuUCgUMBqNeOONN3DrrbcCADIyMgAA4eHhkuvCw8ORnJzs8J4LFizAvHnz3D1UIiIiohYht0SPHeezcV33CCgVjdPrtkhXAQDw06oa5flERE2J238T//jjj1i+fDm+//57HDhwAMuWLcM777yDZcuWSc6TyaTLPQiCYLfPYs6cOSgoKBC/UlJS3D1sIiIiombr0R8O4uHvD+Kd9Wca5fkGowl7EnMBAL5at+dxiIiaHbf/Jnz66afx3HPPYfr06QCAhIQEJCcnY8GCBZg5cyYiIsxzdjIyMtC6dWvxuqysLLsst4VGo4FGo3H3UImIiIiapYJSA46nFaBNkBee+t9h7E3KAwAs2XIevWMCcW2XMKgaMLO9Ys9F8bWvhoE2EZHbfwOXlpZCLpfeVqFQiMt7xcXFISIiAhs2bBCP6/V6bNmyBYMHD3b3cIiIiIhanFd+O4YZX+zGsLc3i0G2xaxv92PJ5vMNOp7Npy+Lr+WOCxSJiK4obv/IceLEiXjjjTcQExOD7t274+DBg3jvvfdwzz33ADCXjM+ePRvz589Hx44d0bFjR8yfPx/e3t6YMWOGu4dDRERE1OKsPpRW7fHPtl7AIyM7euz5giBg69lshPioERXkhW1nswEAflol4tsEeOy5RETNhdsD7UWLFuGll17Cgw8+iKysLERGRmLWrFl4+eWXxXOeeeYZlJWV4cEHH0ReXh4GDBiA9evXw8/Pz93DISIiImoRCkoNUCpk+ONoeo3nlhqMHh3L7sRczPxqj2Rf19b+WPvYNR59LhFRcyETBEFo7EG4qrCwEAEBASgoKIC/v39jD4eIiIjIoy5cLsZ1H26DvsLk9JweUQE4kloAAGgdoMXOOSM9Np5Ff5/FuxukjddendQddw5q67FnEhE1NlfiUHarICIiImrCDqfkY9LH/1Z/zitjEOClwvrjGfjPt/uh8NBE6bm/HcehlHwcSsmX7J/UKxJ3DIz1yDOJiJojBtpERERETdizPx+p8RwftQIA0DHcPA2voNTg9nFcLtJh6Y4kyT6tSo79L46GDzuNExFJNNy6D0RERETksrT8MvH1PUPiEOitkhzXKOVQVi7lFehlPlakq6i2zLwu/j6ZabfvvWm9GGQTETnAQJuIiIioidJVGFFYXiFuh/iqERngJTnHet3qAC8VVApz2Xh2sc6tY/n7VJZkO6FNAMbFR7j1GURELQUDbSIiIqImav3xqiyyj1qBG3pGIsxfIzlHJquajy2XyxDmpwUAZBaWu3Usl/LKJNut/DSSZxMRURUG2kRERERN1P7kPADArf2jcXTuWEQHe+OGnpGScyIDtZLt8MpA3N2BdkGZdN73/cPau/X+REQtCSfVEBERETVRlvLv9q18Ia/sJD65dxuolXJE+Gux5cxlXN0hVHJNuL8lo+3e0vH8Uj0A4OMZVyE2xBvxbQLcen8iopaEgTYRERFRE3W5yBwst/KrKheXyWSY0MOc1e7bNtjumqpAuxzZxTr8eTQdN/ZuA3+tyu7c2tJXmFCiNwIAhnQIQaC3us73IiK6EjDQJiIiImqiLBntVr6aGs6sYpnDnVFYjv/7Zh8OXszHrgs5+OS2PnUeR0peKQDAS6WoV8BORHSlYKBNRERE1MScySzC+xvO4PzlEgBAqF/tA+2Iyox2VqEOBy/mAwD+PJpRr/GcyyoGALQP8xFL2ImIyDkG2kRERERNzP3L9+NCZZANuJbRtpSOH07Jd9t4knPMY2kX6uu2exIRtWTsOk5ERETUxFgH2YB5fezaCvE1z58u0lXUcGbtJeeYS8djQ7zddk8iopaMgTYRERFRE6NWVv2J9sejV7tUru2jdm/B4v7kXPx5NB0AEB3MQJuIqDZYOk5ERETUhBTrKqCvMAEADr88BgHerjUf89W478+7glIDbvp0p7gdy0CbiKhWmNEmIiIiakIsc6vD/TUuB9kA4OPGQDunRLoWd5fW/m67NxFRS8ZAm4iIiKiJOJSSj9u+2A0AGNIhtE73sC47t2YyCS7fq6i8ap536wCtS3PFiYiuZAy0iYiIiJqIpf8miq+fG9fFrffOtslOO3ImswgPfrcfZzOLAAAFZQbx2Nwburt1PERELRkDbSIiIqIm4lSGOcBdOLUHwvy0br33m2tPQRCqz2qPeX8r/jyagdHvb4UgCMivDLR9NUqM7R7h1vEQEbVkDLSJiIiImoBSfYUYaNe1bNzi0ZEd7fb9cuASfj+SXut7pBWU46f9qQCAwe1D6jUeIqIrDbuOExERETUBX/+bBMDcBC0yoH7ZbI2Tedrnsoqrvc5LpUCZwQgAuGHRduSU6AEAFXWY301EdCVjRpuIiIiokW0/m423150GANx3dTvIZLVfN9sRtcLxn3gGo6na62Kslu+yBNm2r4mIqGYMtImIiIga0Z9H03H7l7vF7al9oup9T+vO437aqgLGHedzqr3Oks2226+vcLifiIgcY6BNRERE1IhW7ksRX1/fozWCfNT1vqd1oB0VVJWlPpSSj6zCcqfXlTsJtO8aHFfvMRERXUk4R5uIiIiokRSUGfDvuWwAwPf/NwB9Y4Pdcl+VwjrQ9sLJ9EJxOzm3FGH+jueAO8por/jPQPRv655xERFdKRhoExERETWSneezYTAK6BDmi8Ht69dp3JpKUTXH27axmqHC+TxtncH+2MB27DhOROQqlo4TERERNZLzl0sAAD3aBLj1vu1CfQEArfw0iAz0khzTOWmIdi6rGHqjCXKrPmz+WuZkiIjqgr89iYiIiBpYRkE57l22F8fTzCXdsSE+br1/QlQAtjw9HF5qBf4+mSU55iyj/b/KueIjOofh71Pma9pYze8mIqLaY0abiIiIqIFkFJTj/OViLN+VLAbZADAuIcLtz4oN8UGYnxZeKoVkv95BRttgNOHnA6kAgFv6RYv75fVbZYyI6IrFjDYRERGRB/1yIBXf776Ix0d3wm1fmJfxUthEsJ3C/Tz2fC+1TaDtIKO9LykP2cV6hPioMaJLGGaP6ogPNp7F3Bu6e2xcREQtGQNtIiIiIg/5+t9EzFtzAgDEIBsAjCZBfP3g8PYeHUP3SH/JdrmDhmdHUvMBAAPbh0ClkGP2qE74z9B28FbzT0Uiorpg6TgRERGRB5QbjGKQ7cy9V8fh8dGdPDqOqCBv9I+rWp6rVF9hd87X/yYBAFpbLfvFIJuIqO4YaBMRERF5wDM/HXG4v2OYr/h6XHyEZM1rT7Hual6ml66VXW4wIqOwHABQYZVpJyKiumOgTURERORm285exm+H08Ttuwa3BQDcd3Uc7h4SJ+6PCW74rt6lBnOgfSazCHkleuSV6sVjuSV6Z5cREZELWBNERERE5GYf/X0WAHBr/2jMn5wAwFwm3jpAi10XcsXzwqxKtT1JZtV7rUxvxNnMIox5fyu0KjlWPThEPHb3kLYNMh4iopaOgTYRERGRG326+Tz2JuUBAO4eEgdZZZQbXZm9HtIhBK/dGI94myZlniSzirRL9RX491w2AHNjtAuXSwAAfholescENdiYiIhaMgbaRERERG7yz6lMvPXXKQBAoLcKcaE+dufIZDLcMTC2oYcmyinWQ261vNhD3x8AAHSO8NwSY0REVxqPzNG+dOkSbr/9doSEhMDb2xu9evXC/v37xeOCIGDu3LmIjIyEl5cXhg8fjuPHj3tiKEREREQNZuf5HABAlwg/rH98aIM0OnPV36eycCmvzG5/oLe6EUZDRNQyuf23f15eHoYMGQKVSoW1a9fixIkTePfddxEYGCies3DhQrz33ntYvHgx9u7di4iICIwePRpFRUXuHg4RERFRg8mpbCY2qVcbhPk1zPzr2pDZbC/flWx3TpC3qmEGQ0R0BXB76fhbb72F6OhofP311+K+tm3biq8FQcAHH3yAF154AVOmTAEALFu2DOHh4fj+++8xa9Ysdw+JiIiIyOMEQcDJdHPSIMSnaWeHywxGu32BDLSJiNzG7Rnt3377DX379sXNN9+MsLAw9O7dG59//rl4PDExERkZGRgzZoy4T6PRYNiwYdixY4fDe+p0OhQWFkq+iIiIiJqSZ38+gpPp5r9RgptYoN0pXDr/2tFy2SwdJyJyH7cH2hcuXMCnn36Kjh07Yt26dbj//vvx6KOP4ptvvgEAZGRkAADCw8Ml14WHh4vHbC1YsAABAQHiV3R0tLuHTURERFRnO8/nYOW+VHE72LdpBa2Te7fB+ISIas9hRpuIyH3cHmibTCZcddVVmD9/Pnr37o1Zs2bh//7v//Dpp59KzrNeZgIwl1vZ7rOYM2cOCgoKxK+UlBR3D5uIiIiozn4/kibZbmql43K5DPdd067ac4KY0SYichu3B9qtW7dGt27dJPu6du2KixcvAgAiIsyfptpmr7Oysuyy3BYajQb+/v6SLyIiIqKmwGgSsOlUlmRfUysdrw25k4QHERG5zu2B9pAhQ3D69GnJvjNnziA21rxeZFxcHCIiIrBhwwbxuF6vx5YtWzB48GB3D4eIiIjIo/Yl5SKtoFzc7hzuB1+N2/vN1luPNgFQK6V/+vlZjTM2xLuhh0RE1GK5PdB+/PHHsWvXLsyfPx/nzp3D999/j88++wwPPfQQAHPJ+OzZszF//nysWrUKx44dw1133QVvb2/MmDHD3cMhIiIi8qgHvzsAAGgT6IWDL43G749e7XQ6XGNSKuT467FrJPvevrkHOof74dGRHdG1NSsGiYjcxe0ft/br1w+rVq3CnDlz8OqrryIuLg4ffPABbrvtNvGcZ555BmVlZXjwwQeRl5eHAQMGYP369fDz86vmzkRERERNy+Uinbh29pju4Qhq4iXjWpVCsh0X6ot1jw9tpNEQEbVcMkEQHCzw0LQVFhYiICAABQUFnK9NREREDW7rmct46ddjSM4pBQD0ig7E6oeGNPKoapZbosdVr1VN3/vnyWFo18q3EUdERNR8uBKHur10nIiIiKil++1wmhhkA8Ct/ZvH0qMamznaKgX/FCQi8gT+diUiIiJyUU6xTnzdKdwXk3tHNeJoao+BNhFRw2h6LTGJiIiImrjcynnZ703riXHxre26eTdVSoUcchlgqpw4qFI0vaZtREQtQfP4rwIREVELl1FQjo83nUOJrqKxh0K1kFVkzmjHhfrAS62o4eymxcdqSS9VM/mAgIioueFvVyIioiZg6pIdeHvdabzx58nGHgpV49ilAtz06Q6kV66b3RwbiQ1sFyK+VrN0nIjII/jblYiIyMPySvRYuTcFm05lOT0nNa8MALDl9OWGGha5qMJown++2Yf9yXnivgAvVSOOqG5GdA4TX3OONhGRZ/C3KxERkQfllugx7O1NeObnI7h32V4kZpdgzeE0ZFs10zp/uVh8fSm/DPP/PAmTqdmtvtlilOmNeGD5fizbkYST6YVi47MnVh5GWmUmuzmb2LM1gn3U6BTuC4Wcc7SJiDyBzdCIiIg8aE9iLgrLzfOuTQLwwPL9OJVRhM7hflj3+FAUlBlw55d7JNd8tvUCrukYims6tmqMIV/xdl7IxtpjGVh7LAMAEN/GH2/cmIDfDqdJzvvf/YMaY3j15qdV4d9nr4WMMTYRkccwo01ERORBx9MKJNunMooAAKczzf+78UQmLuWX2c2V1VeYYDIJSC8ow45z2QAAXYURgsBMt6fllhgk28cuFWLSx/9K9q1+aAj6tQ1uyGG5lZdaAa2qeTVxIyJqTpjRJiIi8qBjl8yBdrtQH1zILpEcS8ktxZP/OwwAGNk1DAFeKqzYmwIAuHfZPoT4qJFTuYzUF3f2xZP/O4yhnVph0a29G/AdXHnyS/U1ntO+lU8DjISIiJorZrSJiIg86FhaIQDg/4a2szt2zcJN4mtdhQlv3tQD8W38xX2WIBsA7vtmHwrKDFhjU75M7pdXTaAd5qfB7FEd4adtfk3QiIio4TCjTURE5GY/7U9F53A/eKnluFykg1Iuw6RekXh1zQmUGYwOr3n2ui4AADknzja645UfjjxzXWeM6RaOL7cnoUxfgaev64I2gV6NPDoiImoOGGgTERG50eGUfDxVWQ6urOzoPKh9CLzVSqycNQjTP9uJyEAvnM2q6jS+c861aB1gDuAMRs7BdrcKown/ns/BVTGBkky0vsKEz7aeR7dIf1zbJRyCIOD+5fuxuXKJtV7RgegQ5ocFUxIaa+hERNRMMdAmIiJyo9OVzc4AoMIkINhHjVcnxQMAEqICsOeFUfBWK7A3KQ8HL+ahR1SgGGQDgFpZ86wuQRAgayGZ74IyAzRKuUcbc325PREL1p7CiM6t8PXd/cX9i/85i4/+OQcAOPvGOBSVV2Dd8UwAwB0DYzGoXYjHxkRERC0bA20iIiI3SsqpangWE+yNj27tjbjQqsZZPhrzf3r7xwWjf5x91+rZozri7q/3YnjnVpjRPwb5pQY88/MRyTl6owkaZfPvGL3jfDZmfL4b/dsG48dZAz324cGCtacAAJsqM9UpuaVYdzxDDLIBc7m/pXGdj1qB126M98hYiIjoysBAm4iIyI0sgfaL13fFfdfYN0CryYjOYVjz8NVoG+otljn3jgnE6Pe3iuccu1SI3tGBkMubd1Z7xue7AQB7knKx+cxljOgc5tb7L/r7LN7dcMZu/9QlO5BZqJPsm/PLUfF19zYBbh0HERFdedh1nIiIqJ4MRhP+OZWJXw9dwraz5jWvrbPYrkqICpDMJe4Y7of/3tFH3L7p0x3ismDNjSAIeH7VUby65oRk//e7L7r1OVmF5Q6DbJNJsAuybfmom3+1ABERNS5mtImIiOohu1iHu77eg2OXCsV9ncJ9MaRDqFufM7Z7BLzVCpTqzV3LVx28hPem9Wx2c7XPZBY7DKpTckvrfM/8Uj1+2p+K7pEB6N7GH1M/3YEzmVXN5hLaBOBoZVm49ZJpzgzt1KrOYyEiIgIYaBMREdXLl9sTJUE2AHx9d3+PNPcK9dXgolVAWlBmQKC32u3P8ZQjqfl4cqXjTPwpqyZyrlrw5yn8uC/F4bGb+0ThzZt6YPCbfyOzUIexH2x1eB4AvDKxG9oEejHQJiKiemPpOBERUT1YB76juobh5KvXeWytZdsu2Mk5dc8CN4YXVx+TLGtm60hqvsv3LCo34LfDaU6Pj0uIgEIuQ0ywNwAg1yajfduAGKgVcrw3rSfuGtwWY7pHeLQDOhERXRmY0SYiIqqH7CLzfN+Pbu2NG3pGevRZQzqGSjK3idkl6Bkd6NFn1ld2sQ59X98IH7UCJZVl778+NATlBiNu+WyX5NytZy6jR1RgjfcsKjfghVXHUKyrwD+nsuyOtw7Q4sXru6GgzCA2WGsb4oO9SXmS816/MR63DYjBSxO6MbgmIiK3YqBNRERUD9nF5kA71MfzJdyD20sz2heyS5yc2XS88cdJABCDbLkM6BbpD5MgICrIC4HeKtzYqw1e/+MkDqcW1OqeCXPX2+17cnQn/HE0HYHeKnx/30C7juxtrZrThftrsPzeAegY7gcADLKJiMjtGGgTERHVQ1F5BQDA30tVw5n1F+qrwf/uH4Svtidi7bEMXLjsvAy7KUjKLsGqg5fEbaVchmn9oqFSmGeu/fPkcMhlwMGUfAAQ17F2RhAE6I0mh8duHxiLR0Z2dHqtdRf4Owe1FYNsIiIiT2CgTUREVA+WLuA+mob5T2q/tsEoKDVUBtpNK6O96XQWvth2AW/d1ANRQd547XfzEl7DOrXCe9N6wlerhEZZlT1WK80Bd/tWvgCA9IJylBuMTjPMM7/ei61nLtvt/+jW3giqoaIgNsRbfN090t+1N0ZEROQiNkMjIiKqg9MZRdh4IhOlenNGuyHXXo5rZc7OnkgvxIYTmQ323Jrc/fVe/HsuB8/+fAQpuaX4u3L+9GOjOiLEVyMJsq0FeavgW/lBRWqe4wZv2cU6SZAdHeyFnx8YhNcmdcfEHq1rHFvbkKqMdqSHmtURERFZMNAmIqIrVkGZATd9ugO3f7FbDJhrw2gScOdXu3HfN/tgEsz7vBsoow0AMcHe0KrM/wn/v2/2YX9yboM9uzZOZxRhf7K58Viv6EBcFRNU7fkyWVVX8FHvbcVFB93U399wRnwd7KPGm1N6oE9sMO4Y1LZWa4n7aJR4eEQH3No/Bh3DfF15O0RERC5j6TgREV2xvth2QQwIu728Djf3icLbN/d0eG5uiR6rD17Cki3nkVXZadyaVwM21FIp5Aj11SA1rwwAsC8pD31igxvs+TXJLtZj9o+HAAB9YqsPsi1igr1xIt28Hvk9y/Zi4xPDxGMFZQb8sOciAGDp3f1wTcdWUMhrDq5tPTW2s8vXEBER1QUz2kRE1KIl55Q4zPj+ey4bH286J9n3v/2p+Pdctt25K/ZcxFWvbcCrv59wGGSrFfI6BX71UWEUxNdnMhu/Kdq2s/Zzp+Pb+OORazvU6vpQv6o51ueyivHXsQxxOy2/DCbBnMke3jmswb/XRERErmJGm4iIWrSZX+1BUmUp8qRekfj1UJrk+Ohu4RjROQzPrzoKALjti934+u5+GNE5DIIg4EhqAZ775ajdfR8c3h5/HE1Hck4p+sXVLmvrThWmqu7bRy/lN/jzrV3MKcUdX+6x2//BLb0Q6F27Zc9MgnT7/uX7se/FUQj11SCjsBwAEO6vrfdYiYiIGgIDbSIiarGyCsvFIBuAXZANABN6tMakXm3QKdwXU5fsBGBu6nXqtevw4HcH8E9lQy+LzU8NR2yIN2QyGR4f3Qk7z+egV0ygR9+HI/dd0w5vrj0FwJwBLtMb4aVW4K9j6UjLL8c9V8c12Fh+OZgqvh4XH4Gi8gr0axuMDmG1X0LrniFt8dP+VOgrqj5ASMwuMZfI55p/hpEBDLSJiKh5YKBNREQt1ne7LzrcP6prGADgUEo+BrULAQD0bRuMd27uiaf+dxgA0OWlvyTXXNc9AncMikVbq/WYVQo5hnZq5Ymh1+i+q+PQo00AZnyxGyYByCnRIVSmwf3LDwAAru0SJhmrJ+1LMs9zf+3GeNwxMLZO9+gQ5ocjr4zBD3suYt4a87Jgidkl6Nc2GCfSiwAAnSO49jURETUPDLSJiKhFWnUwFR/+fRYAsHBqD3SN8Ed+mR4D4kLE9ZtNJgFyq/m+E3q0FgNtW0+N7YwOTahbtVIhx+AOoQj1VSO7WI+CMgM+3XxePF5QZmiQcWQX67A3yTwHvm8tG585o1UpMHNQWzHQPp9lnntuaZLWtTXXvyYiouaBzdCIiKhJMpoEzP/zJF759RhMthN4a8HSTGt6v2jc3CcKCVEBuKZjKzHIBiAJsgFzoHdh/njxnBAfNf4ztB2+nNm3SQXZ1vy0KgDAyr0pkgx+UXntlyurjw0nMqGrMKFLhB+6uCHjLJfL8Oqk7gCA/269gLbP/YHDKfkA4Jb7ExERNQRmtImIqMnIKCiHTGZuerVw3Sl8tvUCAOD6HpHoH+fa8lV5JeaM7tUdQ2u1zrKFXC7DhseHYumOJDwwvD3C/Jr2vGA/rfk/5RtPSueSF5Z7PqMtCAJ2nM8BAIztHuHS97k6N/Zug9UHL+HAxXzJ/nDO0SYiomaCGW0iIvKYXw9dQteX/sK8NcchCNVnpfNK9Bj7wVYMf3szDlzMw3e7qrKz0/67E8U65xnaXRdycOPH/2LT6apgM69UDwAIqmXXa2uxIT54ZWL3Jh9kA4B/ZUb7Un6ZZH92sf0yZO7y59F0DJz/N7q+/BfWHDY3mBvcPsRt9/fXqvDzA4Mxc5B0vrefhvkBIiJqHhhoExFRnZhMAtYcTkNKbqnDYy+tPobHVhxCmcGIr/9Nwu1f7obBaHJwJ7Plu5JRUGZAmcGIKZ/ssAusF/x50um1b687jUMp+bj7670AgIJSA85Wzu8N9FbV5e01G72iAyXbXioFAOB7J43gaiu3RI9nfjqMH/dW3afcYMRD3x/Ag98dQEZhOcoNVT9Pd3del8lkmDO+q90+IiKi5sDjgfaCBQsgk8kwe/ZscZ8gCJg7dy4iIyPh5eWF4cOH4/jx454eChER1eCJHw9h2Nub8OuhSxAEARtOZOKRHw7i+90XUWETJH+w8Qwe+eEgrlm4CSv3pQAw/37/bOt5TP9sF77dlSw5/99zOWJ3akdW7E1xuH/J7VcBMHcQ33w6y+74O+tOY3+y9L7H0wvE1+1bNc251e4yc3BbyfaLE8zB6amMIpTq6z5P+4c9F7FyXyqe/fkoTqYXIim7BF1e+gt/HEm3Ozc62AsapaLOz3JGq1Jg5axB8NMqcWOvSLffn4iIyFM8WoO1d+9efPbZZ+jRo4dk/8KFC/Hee+9h6dKl6NSpE15//XWMHj0ap0+fhp8fG50QETWGv45l4JeDlwAAj604hMtFOny86RzySg1YczgNx9MK8MbkBAiCgB/3puCjf86J1z7/y1EM6RCK9PwyzP/zlOS+Dwxvj40nMnE2qxinMwoxyKrEuLDcgGlLdsJfqxJLn9uGeMNgFGA0CXjmus4Y2z0CwT5q5JbocdfXe3F9j9b48JZeeOW34w6X7yo3GFFQap6f3Dc2CFqV+wPApqSVnwYdw3xxNqsYIzq3wvR+MZi35gT0FSb855v96Bzhh5cmdHP5vucqKwIAYNyH2yTHpvaJQrfW/pDLgG93JWPh1B62l7tN/7hg7H1hFDRKFuEREVHz4bFAu7i4GLfddhs+//xzvP766+J+QRDwwQcf4IUXXsCUKVMAAMuWLUN4eDi+//57zJo1y1NDIiIiJxKzS/DYioOSfa//IS3V/m73RQxuH4pinQHP/XJUcqzCJGDIm/9I9l3dIRTzJycgJsQbSrkMZ/85h7lrTmDm4LZiCfCB5DycyigSr1HIZdj89Ai78d13TRwW/nUaAPDHkXR0a+1vF2SrFXLojSZcLtIhv3Jpq5ZeNm7x6e19cP5yMcZ0C4dMJoOlmfr2c9nYfi4bj17bEQEufC+MJgHbzl52eCzQW4VXJ3WHt9r8J8RdQ+LqPf6atPQPS4iIqOXx2MfDDz30EK6//nqMGjVKsj8xMREZGRkYM2aMuE+j0WDYsGHYsWOHw3vpdDoUFhZKvoiIyH22nb0MXYUJvaIDseHxoZJjva3m3j70/QE8+3NVkP3fO/rgu/sG2N3v90euxvL7BiAmxBsA0D0yQDxm6VINAJeLpA27nh7b2eH4OtiUf285LQ0CP7illxhUF5QZkF+Z0Q7wcr0RWnPUIcxX0vW7m81607aN0mry+5E0ZBfroVXJ8dqN8bilbzS2PzsCiQvG49DLY8Qgm4iIiBzzSKC9YsUKHDhwAAsWLLA7lpFhXtc0PDxcsj88PFw8ZmvBggUICAgQv6Kjo90/aCKiK1R2sQ4v/2ruk9E7JtBuvejhncLgr5UGVjIZsHPOtRjbPQKD24egb2yQeGzVg4MR3yZAcv6ormHi69u+2C12B79c2Rn7pquisOeFkZg1tJ3DMfaICpRs70nKFV8H+6gxoUdrsbt4XqkeWUXlAIAQ3ysj0Lb10oRuuMcq0zz+o23YesZxhtqWZf1yAJjQIxJ3DIzFW1N7ICrIm83IiIiIasntH0mnpKTgsccew/r166HVOl8WxfY/1oIgOP0P+Jw5c/DEE0+I24WFhQy2iYjc5JcDqeLrcH8tZDIZvr6rHw6m5OOWftGIDNBiylVtkJRTgsxCHXZdyMEdA2PROsALgPn3+U8PDMbKfSkI8VGjd0yQ3TOUCjm2PTMC1yzcBAB4+6/TGNE5DKl55kxr6wBttUtphftrHO7vGRWApXf3h1IhFzPaz/18FLGVmfSYYO86fEeav94xQegdE4TMonKxedncNcfxz5PDa7zW8nMGzPPriYiIyHVuD7T379+PrKws9OnTR9xnNBqxdetWLF68GKdPm+fYZWRkoHXr1uI5WVlZdlluC41GA43G8R9ZRERXsjK9EUcvFeCqmEAoFXUrUtp2Nlt8Pamys/OILmEY0aUqCx0d7I3oyqB1ap8oh/eZ1rf6D0Cjg70xuXcbrDp4CeeyimEwmnAq3TwVqGN49Z3BbT+Indy7Dfq2DcKM/jHisd4xQdidmItL+WViqbRtdv5K88rEbmKg3TqgdmuCF5WbO5W3CfRq8R3biYiIPMXtgfbIkSNx9Ki0Sc7dd9+NLl264Nlnn0W7du0QERGBDRs2oHfv3gAAvV6PLVu24K233nL3cIiIWqxL+WW4/YvdSMwuwbVdwvDh9F7w07rW/Ov85WIx0F7z8NViltpTZo/qiFUHL0FvNKH7y+ugr1wyzHYtaEdWPzQEexJzcN/V7SCX21dAPXtdZxxOycfOC+Y54HIZ0L9tsFvH39yE+Wnx3rSeeGLlYRhNQq2uKa1cv9xHwwZkREREdeX2QNvPzw/x8fGSfT4+PggJCRH3z549G/Pnz0fHjh3RsWNHzJ8/H97e3pgxY4a7h0NE1CKcSCvEmcwiLFh7Es+N64LrEyLx2poTSMwuAQD8cyoLCXPXIybYG4tu7Y2e1QSugiDgUEo+2rXyFRuTXd0hFAlRAU6vcZdAq+ZkliA7OtgLsSE+NV7bKzqw2oBcJpNh4dQeYnn6ylmDHAbkV5rIQPOHJ1mFOpToKpCYXYJ1xzMwqmu43b+TnGIdvtyeCABseEZERFQPjfJf0WeeeQZlZWV48MEHkZeXhwEDBmD9+vVcQ5uIyIH1xzPwn2/3i9uP/3gYj/94WNx+emxnvL3OPC3nYm4pJn38L6b3i8Yz13VBsI99M7Dluy/ipdXHEBvijQk9zFN42oY2zFxmP60SXioFygxGcd/VHULddv/oYG8kvXm92+7XEoT7m0vGL2SXoPsr68T9W89m49eHhgAAftqfivc3nEGQjwrHLpnL+QWhdhlwIiIistcggfbmzZsl2zKZDHPnzsXcuXMb4vFERM1WfqkeD3x3wOnx1yZ1xx2D2mLXhRzJXOsVe1NQZjDiw+m9JeenF5Th1TXmDuPJOaX4eNN5AEAr39rN360vuVyGoZ1Cse54prhviBsDbbIX5ue4x0l+qR45xTqkF5Tjqf+ZP7ixXgbscGpBg4yPiIioJWJdGBFRPfxyIBVJ2SW4Lr41ukVWrV2cU6wTs7aRAV51KmFOyi7B8Hc2Oz3+xOhOuGNQWwDm5ZyWbDkPk0nA6kNpAIC9iVVLYB27VICV+1Lwzc5kh/dqE+TZudnWpvePkQTag9sz0PYkH40SvholiivnXlukF5Rj5HtbxDXHbT00gh3HiYiI6oqBNhFRHaUXlOGJleZM4Ef/nMPLE7rhYm4pBrUPwSyrUu9b+8dgwZQEl+6dU6zDxpOZdvt/un8QzmUVAwBu6VfV5btTuB/em9YLAPD65ATEv7IOaQXlaPvcHw7v366VDy5cLhG3xydEuDS++hjROQz3XR2HL7Ynol2oj8PydnKvMH8Nii+bA+1RXcOw8WQW9BUm6CtMVef4aZBVZF7W69PbrpJ0nSciIiLXMNAmIqoDQRAwaME/kn2v/n4CALB0R5Jk/w97LroUaP9+JA2zVxxChVWX6O/vG4BiXQX6tg1G3xo6aftqlHaBtMXLE7phdLdwtAn0wqX8MgT7qOGjafj/FLw4oRtu6hOFCP+GKVm/0kUGeIn/HqKCHM/Hf3x0J/RrG4ScYj0GtAtpyOERERG1OAy0iYjqYNeF3JpPqiSXASaTUGP5eGpeKWZ8vhsXc0sl+2/tH4PBLs5jHt0tHP/dckHcHhcfgUm92uC6+KrMtWVd7MbStbV/zSeRW4ztHo7t58xz+GNsfu6RAVoEeqsxuls4Qn016MBENhERUb0x0CYiqoNvdiYBMAct3moFTmUUoW9sEH56YDAEQcDpzCK0DfFBl5f+gkkA8kr1CPF13JQKAH7en4p5a46jsLzC7liwj2trYwPAI9d2xIm0Qmw7m42v7+rHMuAr3KTebfDSr+YmeLbz8f/3wGC0CWy4OfpERERXAgbaREQu+u1wGtYeywAAfH5nXygVMny7MxkPDjc3j5LJZOgSYc7Wtg7QIr2gHG/8eRLPjO2CgjJz46mOYb5ihttoEjD/z5NikD2qaxiCfdRYuS8VQN2ahflqlPjmnv7IKzVwDjTBX6vCp7ddhaOXCjCsUytx/+IZvRlkExEReQADbSIiGxVGEwQAKoXc7lhidgke/eEgAMBfq0TnCD8AwNwbuju81819o/HR32fxy4FL+OXAJcmx+ZMTcHPfKHy6+TxySvRQKWQ4/MoYeKuVEAQBk3q1QbGuos7LX8lkMgbZJBqX0BrjElpL1scO8HK9WoKIiIhqxkCbiKjS97svYt3xDGw5cxltQ7zx8sRuGNw+FFqVAgajCQ8sPyDpBH7/8JqXP7pzUCw++vusw2PPrzqK51cdFbfvHhIHb7X517JMJuP60uQRMllVr4BunCdPRETkETLB+qPtZqKwsBABAQEoKCiAvz//SCCiuhMEAdvPZaNMb8T9y/fD5OA34t1D2uLrf5PEbbkMWPvYUDGbXZNtZy/jji/3ADBnEHtEBWDb2WzJOa9O6o7bB8TWab1tIldlFZWjTG9EbIhPYw+FiIio2XAlDmVGm4iuGBdzSvHTgVT0iQ1Ct9b+WHssHS9XNoiyNj4hAvuS8sQ1ha2D7HahPnh6bOdaB9kAcE3HVrixVyROpBdi5axB8FYrcSytAAVlBny1PRHXdAzFnYPa1vftEdVamB+XVSMiIvIkZrSJ6IrR/vk/YXSUsrby4PD2eOa6LgCA138/gS+2J4rH3pgcj9sGxHp0jERERETUNLkShzLQJqIWy2QSsC85D4v+OYsjqQVix29b4xMi0DMqEOPiWyMmxH5taaNJQGZhOSLZnZmIiIjoisXScSK64pXqKzDlkx04lVEk2d8u1Ad/zR6KE+mFaN/KB14qBZQOuotbU8hlDLKJiIiIqNYYaBNRi1NUbsB9y/aJQfaIzq3QOcIfA+KC0T8uGGqlHL2iAxt3kERERETUYjHQJqIWxWA04a6v92J/ch4A4OmxnfHQiA6NPCoiIiIiupJUXy9JRNSMVBhNeGf9aTHIfmB4e9w/rOa1romIiIiI3ImBdhOVlF2C6z/ahm92JtXrPkaTgIV/ncK3Tu4z97fjGLpwE/7zzT5sOp1Vp2dsOJGJF1cfRam+oh4jJaofQRAw4t3N+O+WCwCAVyZ2w7PXdYGC61ITERERUQNj6XgT9cafJ3E8rRAv/3ocI7uGo00dGzF9sukcPtl8HgAwsWckAr3VAMzltS//egw/7EkBAFzMLcX6E5nwUSvw1V39MKBdSK3uf/5yMf7vm30AgJhgb/xnKLOH1DhK9Eak5JYBAJ65rjPuGty2cQdERERERFcsBtpN0BfbLmDDiUxxe8ib/6BvbBC+vXcAvNQKJOeUYPPpy5jePxoapcLpfY5dKsC7G86I271e3YAHhrfHgLhgPPjdAZTqjXbXlOiNuOWzXQDMDaRiQ3wQGajFtrPZeHhEB7sA/M21p8TXx9MK6/yeieorv1Qvvn5gWHvIZMxkExEREVHj4DraTcjlIh0eW3EQO87nOD3nvWk9sXJfCnZdyAUAPHJtB/SPC0a5wYR315/GqYwixAR7I69Uj6Lymku5Hx7RAb2iA/H7kTT0iArEq7+fqPb8NoFe6BkdgGGdWqF9K19MXbJTPNY3Ngg/PTC4lu+WyH3OZBbhhz0X8fW/SQjz02DPC6Mae0hERERE1MK4Eocy0G5CXv/9BL7YnggAkMuAtY8NxdIdSdh29jJS88rqfN/+ccHYk5hrt/+GnpH46Nbekn1leiO++jcRb687Xadn/fzAIPSJDa7TtUS1VVBqgAABh1MLkFlYjmd+OiIe6xzuh3WPD23E0RERERFRS8RAu5ka9+E2nEwvxMKbemBav2hxf0GZAW+vO4Xluy7W6j6dw/1wOtO8fvCL13fFkA6hGPfhNvF4oLcK0/pG485BsYgK8nZ6H4PRBF2FCXklenirFRj/0TZkFuoQ4a9FRmG5eN73/zcAj604hMtFOgDAjb0i8e60Xh5vQqWrMGLakp24XKTDM9d1wbiEiGpL6anhmUwC5G78d2AyCfh2VzIWrD2JcoPJ7niQtwp3D4nDoyM7uu2ZREREREQAA+1mKb9Uj96vbYAgAHteGIkwP63dOW2f+0N8/c+Tw/Dl9kR8t9scfA/pEIK3buqByAAvyOUy7LqQA12FCcM6tQIAnM0sQoivBodT8jGofQi0KtcD0qzCcmQW6lBhMmHyJzsAAO/f0hOTe0ehoMyAW/67E6cyzAH+wpt6YHjnVth85jJuuirKrUF3qb4C+5PzcMeXeyT7b7oqCm9P7YGf9qfCJAjoHxeMdq18cexSAYp1FejXNpgdqD2oRFeB6Z/tglIhQ1yID85dLsa5rGL88H8D0TM60KV7GU0CdpzPxs/7U7E3KQ//396dh0VZ7/0Dfw/byCaIbLKoiIIbirigaIimpj4up0wjLcRIM7XSLM/jKTN/lkaZT1lqx1wwM09aHrfCpFRM3NEURUTcFRARZBEYZvn+/kBGEDDU2W7m/bour6u5l+Fz9+ae4XMv39vVwQYdvJ1QWKrEjlNZ2uVcHWzQys0BMgATevthcEdP3W4UEREREdE9bLQlQqnW4HLuXfyRlqMdVKyVmz12z4yodfk/zt7EhiNX8dnzndHE3gYqtQYnr9+BbxM7uDeu2ZjrS5lSjbZzdgIAEmaEo42HIwCgXKXBvO1nsP7wVbg5yrVnuBeP6YwB7T3QuJH1E//sa3klGLA4EQpVzbOZrVztMSm8Ff53c0qt67Z2d8CON/o81kEGqjibvGxvBrq2cEH3lk1gaSHTDjhWrtJg7LeHcOze86urei28FWYPbVfvn3P1dgle/PYQbtyp+3aJSeGtMKKzF1q7OzBPIiIiIjIINtoS8fXu81i0K73atHefCcTUfq2NVFH9bTlxA3l3y/FKH79q0xUqNQYsTtQ+ZqmSpYUMnz3fCc+F+NR4r9JyNWJ3psFBboWp/VrD1qbuxmntgcuYu+2M9nVMHz+80scPvT/ZDaDiDGducXldq2NMNx98+nznem0jVbcv/RaiVt+/iqCJnTU6+ThjWKdm2PLXDSRlVAzi19bTEc1d7LDr3sj5FjJg0ejOtWb/oHUHL2PO1vv5OjayQq9WTXE1rwQXc+/C2dYaoa2aYvGYzrC2tNDxFhIRERER1e1R+lA+3suIHmyyV0Z1Q/+27kaq5tH8o4t3rdPlVpbo4tukRqOt1gh8+cd5PNvFG2qN0J4NLVaoEBN3FIfvDdb29Z4MAEDsqCC80L15jff//ezNaq/f6N8aTrbW6NqiCZKv5Gub7FmDA+HbxA7Tf/wLas39Y0lb/8o0mUZbc68uXd7DrE8ZOcXVXueXKJGYfguJ6bcAADIZsGp8N/Rv6wGg4hL//osSkV1Yhrc3noRKI3BXocL/BDWDm6Mci3adw9I9F+Agt0Iv/6Z4b2g7rLo3GCAAfBkZjJHB93/PhBB8ZBcRERERSQIbbSPJrHJZbHRYS3w4ooMRq9GtkObO2HYys8b0K7dL8P92pOK7g1eg1gi80b811h64jMJaHkP2z59T0MHLCe2aNca2kzegUgvkFCnw5/lc7TLezrZwsrWGTCbDxKdaIflKsnbeSz1boHEja4T5N8XihHQ0d7HDwvg0KFQajPn3QfxnYk+jNLgnr91B3IHLeKlnC8z48S+UqzT45c0+aOogN3gtD0rLLkR2QRkCPR3RzMm2xvyreSUAAFcHOXKLFdXmOdtZI3ZUJ22TDQB2NlZYF9MDA/9vHwBoRwb/+fh13ClRakfSL1aokJB6s9qz41dHd6v2XgDYZBMRERGRZPDScQM4k1mA1fsvI7KHL7q3dMGOU5mY9sMJ7fyk/+0Pb+eajY1UlZSrsOHINQT7OiM2Pg2TwlthcUI6UrMK61xnSEdPpGYV4srtknr9jIQZ4Whsaw2Pe/em5xSW4alP90Ch0tQYtR2oOBs6/ce/sPWvigMAHz/bEeNCWzzmFj46tUag+8e/I+9uzcvaa6vXUE7fKMD8HanaKwoqtXKzx/pXQ3G7uBy/n72Jy7l3cTqzEBk5xfjkuSBE9qi42iAjpxiOjazgbGdd54jvRy7lYcy/D9Y6LzzADcM6NcPcrWdQqlQDAN4eGMBRw4mIiIjI5PAebROh1ghsOXEDS/dm4OKtuwCAfw5ui4MXb2PfvcttASBt/uAGP6DT+NVHtJcY1ybx3Qi0aGoPAPg5+TpmbjpZ57I/TuqJ0FZNa0zPKSyDYyPrOu/xFkLAb/av2tdt3B2gFgLOttZYHd0dznY29d2cR5J/txx/Xb+DCWuO1rnMxtd6oYefYZ8/npZdiBFfJ6G8loHlHmbDxJ7o5V/z///DbDp2DdtOZla7ImF0Vx98NrriMv7UzEKsO3QZrg5yTO3XusHvD0REREQkPbxH20TM35GKuAOXq02L3ZlWYzlzaCqa2tfexLZoaoep/Vprm2wA1Zq4YF9nXM8vwSt9/KBQajCln3+dZ07/buR1mUyG5eNC8Pr64wCA81XuOZ6/4yw+GRWkswG2SspVmL05BUkZuTUGZ+sb4IbLt++io5cTjl/NR1ZBGcZ+ewhfj+2CZzp46v0SaSEElu7JqDZGwHMh3ng+xAdhrV3xx9mbmPbDCe0Z5ge193r0g1uju/lidDdfHLiQi7HfHgYAjOp6f3C09l6NsfC5To/8vkREREREpoiNth5F9vCt0WhX6uzrDAe5JUKaNzFsUUbSpEqjbWNlAX83B4wK8carT7WqsayXsy2OzxkIW2vLh45A/jh6+LnAQgZoHriO4+fj13E+pwjbpvV57PdWqTUoLFPBxd4GW05kai9Tr2rxmOqjb2fkFGPA4kSoNAKTvz+OucPbY0Jvvxrr6dKm5OvVmuyVUd0woP39+6GfbueBv+YOxH+OXMONO6V4uq07XlhxCADQp7UrnGwf/zFtYf6u2D6tD67nl6BnLVclEBERERE1BGy09aitZ2OM7uqDTcnX0dbTEU+3c8fSPRfg7ijHt1Fd4e5ouGdfG1uon4t2ROnmLnaIf+uphy7vUscZ8CfV1EGOLyK7QKnS4LkQb1zLK8XIpfuRX6LEqesFuFWkgJvj/YHJKkdIr4/3/nsaPx67BhsrC+3l2O2aNcbIYC9k3imFWiMwNKhZtXVauzvgyHtP439/TsHutBzsTsups9EWQuBWkQKuDvInGshty4kb2v+eEuGPp9vVHOlebmWJ8WEtAVT8P2jlao/CMiVin3/ys85BPk4I8nF64vchIiIiIjJVbLT1bN7IDujl3xQ9/Fzg6iBHEzsbRAS6mVWTDQAD23ugX6Ab9py7hcEdPI1ay4jOXtr/bt7UDic+GIT+i/biYu5dHL2ch7aejmjl5oCp648j6UIu5o/siOFV1qlNQupN/HjsGgBom2yZDFjxclf4utg9dF13x0Z4uVcL7E7LqXWwtErztlfcitC4kRWm9W8NC5kMxy7n4/1h7eDTpO6fodYI7DydjZX7L8JSJsOxK/kAgB8mhiLM3/WhtQEVz0D/9a2noFRr4Njo8c9mExERERGZCzbaemZnY1XtUuHaLpU2BzKZDP9+uRtSbhSgi6+zscupoV2zxriYexdT7t2/3dnHCSevFwAA3thwAl7OjdC1xf3BysqUaqzafwnPdPBAa3dH/Jx8XTvPs3Ej+Lvb48vILnCt52O7Ku9hr6vRvlNSjh+OXAUAFJapsODX+/f67zyTjWGdmmH+yI7VLtEHgNvFCoxbeRhp2UU13rO+tQEV4wiYw1gCRERERES6wEabDMbGygJdW5jmPentmjnil5Qs7evKJrvSqOUH0dzFDuPDWiKmjx8+iU9D3IHL+Oy3c9WWq+35z/VR+Rzt3GJFjcvVVWoNPolPQ7lKg0APR2iEqDaQGwDsOJWFHaey4OYox/+NCUb86Sycyy7Snr0GAC+nRpBbW+JSbsUI+Pq6PJ+IiIiIyNyx0SYC0MHr7+8ZvppXgvk7UjF/R2qt8+VWFujo/Xj3Hns2bgRba0uUKtXw/9evmBLhj5DmTeBkZ43R39x/BvW0/q0RHuCGwxdvI6y1K4rKlOi1cLd2/q0iBV5adbjG+zd3scP2N/pACIE3NpyAnY1lnSPBExERERHRk9H5c7QXLlyIzZs3Iy0tDba2tggLC0NsbCwCAwO1ywghMG/ePKxYsQL5+fkIDQ3F0qVL0aFDh3r9DKk8R5ukQ6XW4POEdAT7OsPfzR4HL9zG72dzcOBCLpTq2neRRtYWKFNW3I/9eoQ/onq1QDMn28euIXLFQRy6mFfn/IXPBeHFHs1rTL+rUOGjX85iw71Lyyv5u9kjtFVTzBvRQWePLSMiIiIiMleP0ofqvNEePHgwIiMj0b17d6hUKrz33ntISUlBamoq7O0rnpUcGxuLjz/+GHFxcQgICMBHH32Effv24dy5c3B0dPzbn8FGmwxl28lMvLnhBNwd5bC0kKF7SxfkFJXBy8kW8//REZYWMpzLLkInH6cnfv718av5mLv1DFJuFNSY9+4zgZjar/VD1y8tVyNyxUGcvF6AYZ2a4euxIU9UDxERERER3WfURvtBt27dgru7OxITExEeHg4hBLy8vDB9+nT885//BAAoFAp4eHggNjYWr7322t++JxttMhQhBC7cKkYrV4cneqTWoypTqvHaumQkpt/CxKf88N7/tK/3ertSb6JPa1feg01EREREpEOP0ofq/R7tgoKKs3MuLhUjNl+6dAnZ2dkYNGiQdhm5XI6+ffviwIEDtTbaCoUCCoVC+7qwsFDPVRNVkMlkaO3+91dZ6Foja0t8GRmMtOwi9Gjp8vcrVFlvxN88ioyIiIiIiPRLrzduCiHw9ttvo0+fPujYsSMAIDs7GwDg4VF9ZGYPDw/tvActXLgQTk5O2n++vr76LJvIJDjb2aBnq6YGPZNORERERERPTq+N9rRp03Dq1Cls2LChxrwH72cVQtR5j+vs2bNRUFCg/Xft2jW91EtERERERET0pPR26fgbb7yBbdu2Yd++ffDx8dFO9/T0BFBxZrtZs2ba6Tk5OTXOcleSy+WQy+X6KpWIiIiIiIhIZ3R+RlsIgWnTpmHz5s3YvXs3/Pz8qs338/ODp6cnEhIStNPKy8uRmJiIsLAwXZdDREREREREZFA6P6M9depU/PDDD9i6dSscHR219107OTnB1tYWMpkM06dPx4IFC9CmTRu0adMGCxYsgJ2dHcaOHavrcoiIiIiIiIgMSueN9vLlywEAERER1aavWbMG0dHRAIBZs2ahtLQUU6ZMQX5+PkJDQ7Fr1656PUObiIiIiIiIyJTp/Tna+sDnaBMREREREZEhPUofqtdRx4mIiIiIiIjMDRttIiIiIiIiIh1io01ERERERESkQ2y0iYiIiIiIiHSIjTYRERERERGRDrHRJiIiIiIiItIhNtpEREREREREOsRGm4iIiIiIiEiH2GgTERERERER6ZCVsQt4HEIIAEBhYaGRKyEiIiIiIiJzUNl/VvajDyPJRruoqAgA4Ovra+RKiIiIiIiIyJwUFRXBycnpocvIRH3acROj0WiQmZkJR0dHyGQyY5dTp8LCQvj6+uLatWto3LixscuhOjAnaWBO0sCcTB8zkgbmJA3MSRqYkzRIISchBIqKiuDl5QULi4ffhS3JM9oWFhbw8fExdhn11rhxY5P9ZaH7mJM0MCdpYE6mjxlJA3OSBuYkDcxJGkw9p787k12Jg6ERERERERER6RAbbSIiIiIiIiIdYqOtR3K5HHPnzoVcLjd2KfQQzEkamJM0MCfTx4ykgTlJA3OSBuYkDQ0tJ0kOhkZERERERERkqnhGm4iIiIiIiEiH2GgTERERERER6RAbbSIiIiIiIiIdYqNNREREREREpENstInIZBQXFxu7BCLJ4xin0sCciHSH+xOZIjbaj+nMmTOYNWsW0tPTjV0KPUR6ejomT56MP//809il0EOkp6cjIiIC8+bNAwBoNBojV0S1uXbtGpKTk5GZmWnsUqgOt27dQklJifY1//g0TTk5OSgqKtK+Zk6mqfK7SK1WG7kSepiCgoJqGXF/Mj05OTm4desWysvLAZjP33lstB9ReXk5JkyYgKCgIJSVlaFly5bGLolqodFoMGPGDAQHB+Pu3bvV/qAh01FeXo7x48ejQ4cOOHbsGPbu3QsAsLDgR5MpUSqVeO211xASEoJXXnkFnTt3RlJSkrHLoiqUSiUmTZqE3r17Y/jw4ZgwYQLy8vIgk8mMXRpVoVKpEBMTgx49emDAgAEYN24ccnNzmZOJUSqVmDJlCl577TUA/E4yVUqlElOnTsXQoUMxdOhQzJ8/H2q1mvuTCVEqlZg8eTLCw8MxfPhwjBgxAgqFwmz2KfPYSh1ZvXo1XF1dkZ6ejpMnT2LJkiWwsbEBwKNnpiY+Ph5Hjx5FfHw81q1bh6FDh2rnMSvT8NFHH8HFxQWXL1/G6dOnMXfuXFhaWiI3N9fYpVEVxcXFeP7553H+/Hns2rULGzduREhICObMmQOA+5MpyM/Px9ChQ5GRkYE1a9bgxRdfxMmTJzFixAicO3fO2OXRPSqVCtHR0UhNTcXatWvx4osv4tSpU3juuedw9uxZY5dH9xw+fBgDBgzATz/9hLVr1yIpKQkymYxntU1MQkIC2rdvjzNnzuDdd9+Fr68v1q9fjw8//BAAv5tMwU8//YR27dohLS0Ny5cvR0xMDM6fP4+ZM2cauzSDYaP9CFatWgUfHx/88ssvCAoKwvHjxxEfH4/09HQoFAoA3LFNxcqVKxEcHIy+ffsiMTERc+bMQVxcHK5evcojnSbgzJkz2LlzJ1atWoXExEQEBgaiXbt2SE5O1h7l5L5kGlJTU3H27FnMmTMHXbp0QWBgIEaPHg1HR0doNBruTybgyJEjyM7OxvLly9G7d29MnDgR69evx8GDB7F06VLk5OQYu0QCkJWVhSNHjmDq1Kno27cvZsyYgYSEBFy8eBHLly/HzZs3jV0iATh06BDatGmDtWvXYvjw4dqmwNLS0siVUaXCwkJs3LgRzzzzDBISEvCPf/wDy5cvR2RkJI4ePYqSkhJ+N5mAvXv3YuzYsfj999/Rr18/TJw4EU899RTkcrmxSzMYNtr1oFKpAACLFi2CQqHAkiVLMHLkSIwePRrvvvsuwsPDMWHCBADgjm0CioqKkJubi6effhofffQRIiMjkZKSgg8++AD9+/fH9u3bjV2i2apsntu2bYv9+/fjhRde0M5zd3eHj4+P9vJx7kumQalUIiMjQ/vFmJubi6VLl8LLywurV69GaWmpkSukmzdv4vr16wgMDNROy8/Ph7OzMxISEjhGhYm4ffs2rl+/jp49ewIAFAoFPD09MXv2bOzatQv79u0zcoXmrfL7adSoUXj77bcxZMgQTJo0CRcvXsSqVasA3P97kIxLrVajT58+ePXVV2FtbQ0hBGxsbFBWVobS0lLY2dnxYL0RVd5//f7772PixImwsrICAFy5cgUpKSnw8vLC4cOHjVmiwbDRrsOvv/4KoOKD18rKCkII9OrVC3379sXChQvh4uKCzZs3Y8OGDVi5ciW2bNmC+fPnG7lq81M1p0qOjo5QKpVYuXIl0tPTsXnzZvz000+4cuUK/P39sXr1aqSlpRmrZLP0YE61nRlwdXVFaWkplEpltWXJcGrbn3r37o2IiAhMmDABQ4YMgYeHBzw9PWFjY4PZs2dj/PjxSElJMVbJZqe2jHx9fdG0aVPExsZqp61cuRIxMTFQKpX4/fffa6xD+rVixQp8++231ZrnNm3awNPTE99//z2A+/f9Tp06FY6OjoiPj9deHUeGUZlTYmKi9uCut7c32rdvDwDo1q0bIiMjMW/ePKjVau3fg2RYVXMCgCZNmiAqKgrBwcEA7jd2BQUFaNWqFQAerDe0qhlVfrZ5eHjA19cXAPDVV1/Bz88PdnZ22L59O4YMGYJ58+Y1/M88QdXs2LFDeHt7C5lMJpKSkoQQQmg0GqFSqYQQQuTk5Ij3339f3Lhxo9p6ixYtEq6urqK8vNzgNZujunLSaDRCCCFWrVolZDKZCAgIEDk5Odr19u3bJ5o1ayYOHDhglLrNTV05PahyWufOncWbb75Z53KkH7XlpFarhVqtFkIIUVxcLM6fPy/CwsLEokWLtOudOHFCtGrVSmzcuNEodZuT2jKq/F7Ky8sTn376qZDJZCIsLEw4ODiIjh07CqVSKZYsWSK8vb2NWbpZ+eGHH4S7u7vo1auXCA4OFm5ubuLjjz8WQghRUFAgZs2aJQICAsTNmzeFEEKUlpYKIYRYu3atcHZ21r4m/aotpwULFggh7u9XlQ4fPizatGkj3nnnHSGE0H4ukv49bH+qmlPl3wuhoaFi5cqV1aaRftV3X4qLixP79u3T5vL9998LW1tbcfnyZaPUbShstKv4888/xeDBg8W0adPEkCFDRLdu3arNr/zluHv3bo11N2zYIJo0aSJSUlIMUqs5+7uchBAiNTVVREREiPbt24usrCzt9NLSUuHg4CA2bdpkyJLNUn1yqqqkpERERkaKUaNGiZKSEgNVSfXN6fjx4yIwMFDk5ORoPwtVKpVo0qRJteabdK++GSUmJoqvvvpK7Nq1SzstNjZW9O7dW9y5c8dQ5Zqt9evXi86dO4tvvvlGCCHEjRs3xNdffy3s7e1FQUGBEEKIhIQE0b17dzFlyhQhxP2/K/bs2SPc3d3FyZMnjVO8GXlYToWFhTWWLykpEZ999plwcnLSNgV79uzRZkr68ag5Xbp0Sbi5uYm0tDTttAsXLggheHBEX+qT0YMHriqdPXtWWFlZVfu+aoh46TjuX07n4eGBQYMG4e2338b8+fORmpqqvS+n6qA/dnZ2Nd5j37596NevHzp27Gi4ws1MfXKqHBU0ICAA06dPx4ULF/DNN9/gxo0bAIBt27YhKCgI4eHhxtkIM1Df/elBtra2cHZ2RlZWFmxtbc3mGYvG8qg52dnZ4fz587h27Zr2s3D79u3w8/ND//79Db8BZuBRMwoPD8e0adMwcOBAABWPzzt48CBCQkLg5ORk+A0wE5U5KZVKhIaGIioqCgDg5eWF4OBgeHt7IzU1FQDQp08fjB07FmvXrsV///tf7a0ySUlJaN++PYKCgoyzEWagPjnVNvq7ra0tRo4ciS5dumDMmDHo1q0bRo0ahby8PIPWby4eN6edO3fC19cXgYGBOHHiBEJDQ9GzZ0+oVCqzeZSUoTxKRnUNIrhlyxb0798fffr0MUzRxmK0Ft8EJCcn1zjKX3nkRalUipkzZwo3NzdRVlZW6/qXLl0SGRkZIiYmRjRv3lxs2bJFCMHLVXTtUXOqeuRyyZIlwsvLSwQGBopnn31W2Nvbay87It16kv2pMrNNmzYJGxsbkZmZqf+CzdSj5lT5eXb79m3x4osvCjs7OzF58mQRFRUlHB0dxQcffMDPPB170u+mtLQ0kZ6eLqKiooSfn584ePCg3ms2R8nJySI/P1/7+s6dOzXO3vz111/C09NT5OXlaacVFhaKWbNmCUdHR9G3b18xevRoYWtrK5YuXSqE4N8Quva4OVWVkpIiOnXqJGQymZgyZYpQKBT6LNksPW5OlfvLG2+8IZ5//nkxY8YMYWFhIWJiYur8jKTH86T70pUrV0RGRoZ49dVXhZeXl4iLixNCNOzPPLNstH/66Sfh4+Mj/P39RfPmzcUHH3ygvby46n2+Fy9eFL6+vmLmzJnaeZXS0tLE1KlThbu7u4iIiBDnzp0z/IY0cI+b04OXCB06dEgsW7ZMzJ49mznpgS72p0rfffedmDx5sigoKGjQH7zGoIv9qaSkRLz77rsiOjpaREVFcX/SMV3tS59//rnw9/cX4eHhIj093bAbYQYezGnOnDkiOztbO7/qPrN48WLRu3dvIYSo0Zxt2rRJzJ07V0yePFmcPXvWMMWbEV3l9Oeff4oWLVqInj17ioyMDMMUb0Z0kZNarRYtWrQQMplMREREiDNnzhhuA8zA42ZUddyq9PR0MXPmTOHj4yP69etnNn8/mF2jffToUdG2bVvxxRdfiJMnT4ply5YJNzc38frrr4vbt28LIe6fOdBoNGLZsmXCyspKXLx4UQghRFlZmVAoFEKlUonffvtN7Nu3z2jb0pA9aU4KhaLWe3hIt3SRU9UxD3gflX7o4nOv6v6kVCoNvxENnC4/8zIzM0VycrJxNqSBq09OarVau488++yzYurUqcYs2SzpMqfMzExeFaInusrpzp07YuHCheK3334zaP3mQFcZlZSUiL1792oH8zQXZtNoVx7xX758ufDx8ak2iMXXX38tevbsKebPn19jvdu3b4uwsDAxcuRIkZycLAYOHCjWrVvHs216oqucBg0axJz0iDlJA3MyfbrOiAer9ONRc1Kr1UKj0Qh/f3+xY8cOIYQQ586dE5GRkeLq1auGLd6MMCdpYE6mjxnphtmMDlA5eM+lS5cQEBCgfXg6AERHR6Nr166Ij4/HmTNnANwfVMvFxQUTJ07Etm3b0L17d8jlcjz33HN8Pp+e6ConGxsbjBo1ijnpCXOSBuZk+nSdEQf90Y9HzcnCwgJHjx6FnZ0dQkJCMH36dHTq1Am3b9+Gu7u7UbbBHDAnadBlTm5ubkbZhoaO+5JuNNhv5ISEBLz55pv48ssvceTIEe303r1748CBA8jOzgZQ8UeLvb09Ro4cCZlMhl27dgGoGCWvvLwcy5YtQ0xMDMLDw3Hq1Cls37691lHH6fHoMydbW1ujbFNDxJykgTmZPmYkDU+aEwD8+uuvOH36NAIDA5GQkICkpCTs2rULcrnc4NvTUDEnadBnTo0aNTL49jRE3Jf0o8E12llZWRg+fDheeukl5OXlYdWqVRg0aJD2l2bQoEFo2bIlYmNjAdw/YjNw4EBYWFggIyND+175+flIT0/HmjVrsHfvXnTo0MHwG9RAMSdpYE7SwJxMHzOSBl3mZG1tDVdXV8TFxeHMmTPo2rWr4TeogWJO0sCcTB8z0jNjX7uuS3fv3hXjx48XL7zwgnaAGCGE6N69u4iOjhZCVAwm89133wkLC4saN+SPGzdO9OvXz6A1myPmJA3MSRqYk+ljRtKgi5wiIiK0r3NycgxTuJlhTtLAnEwfM9K/BnVG287ODnK5HNHR0fDz84NKpQIADBs2rNqD08eMGYORI0fi1VdfRWJiIoQQyM7Oxvnz5zFu3DhjboJZYE7SwJykgTmZPmYkDbrI6aWXXtK+H+8d1Q/mJA3MyfQxI/2TCSGEsYvQJaVSCWtrawCAEAIymQwvv/wybG1tsWLFCu20srIyDBkyBKmpqQgODsbp06fRvHlzbNy4Eb6+vkbeioaPOUkDc5IG5mT6mJE0MCdpYE7SwJxMHzPSrwbXaNcmPDwcr7zyCqKjoyGEgEajgaWlJW7evIlTp07h6NGjaNmyJcaOHWvsUs0ac5IG5iQNzMn0MSNpYE7SwJykgTmZPmakOw2+0b548SLCwsLwyy+/aG/KLy8vh42NjZEro6qYkzQwJ2lgTqaPGUkDc5IG5iQNzMn0MSPdalD3aFdVefxg//79cHBw0P6yzJs3D2+99RZycnKMWR7dw5ykgTlJA3MyfcxIGpiTNDAnaWBOpo8Z6YfV3y8iTZXDzx85cgSjRo1CQkICJk2ahJKSEqxbt86sH55uSpiTNDAnaWBOpo8ZSQNzkgbmJA3MyfQxIz3R8SjmJqW0tFS0bt1ayGQyIZfLxSeffGLskqgWzEkamJM0MCfTx4ykgTlJA3OSBuZk+piR7jX4e7QHDhyINm3aYPHixWjUqJGxy6E6MCdpYE7SwJxMHzOSBuYkDcxJGpiT6WNGutXgG221Wg1LS0tjl0F/gzlJA3OSBuZk+piRNDAnaWBO0sCcTB8z0q0G32gTERERERERGVKDHXWciIiIiIiIyBjYaBMRERERERHpEBttIiIiIiIiIh1io01ERERERESkQ2y0iYiIiIiIiHSIjTYRERERERGRDrHRJiIiIiIiItIhNtpEREQSFB0dDZlMBplMBmtra3h4eGDgwIFYvXo1NBpNvd8nLi4Ozs7O+iuUiIjIDLHRJiIikqjBgwcjKysLly9fRnx8PPr164e33noLw4YNg0qlMnZ5REREZouNNhERkUTJ5XJ4enrC29sbISEh+Ne//oWtW7ciPj4ecXFxAIDFixcjKCgI9vb28PX1xZQpU1BcXAwA2Lt3LyZMmICCggLt2fEPP/wQAFBeXo5Zs2bB29sb9vb2CA0Nxd69e42zoURERBLDRpuIiKgB6d+/Pzp37ozNmzcDACwsLLBkyRKcPn0aa9euxe7duzFr1iwAQFhYGL744gs0btwYWVlZyMrKwjvvvAMAmDBhApKSkvCf//wHp06dwujRozF48GCcP3/eaNtGREQkFTIhhDB2EURERPRooqOjcefOHWzZsqXGvMjISJw6dQqpqak15m3atAmvv/46cnNzAVTcoz19+nTcuXNHu8yFCxfQpk0bXL9+HV5eXtrpAwYMQI8ePbBgwQKdbw8REVFDYmXsAoiIiEi3hBCQyWQAgD179mDBggVITU1FYWEhVCoVysrKcPfuXdjb29e6/vHjxyGEQEBAQLXpCoUCTZs21Xv9REREUsdGm4iIqIE5e/Ys/Pz8cOXKFQwdOhSTJ0/G/Pnz4eLigv379yMmJgZKpbLO9TUaDSwtLZGcnAxLS8tq8xwcHPRdPhERkeSx0SYiImpAdu/ejZSUFMyYMQPHjh2DSqXC559/DguLimFZNm7cWG15GxsbqNXqatO6dOkCtVqNnJwcPPXUUwarnYiIqKFgo01ERCRRCoUC2dnZUKvVuHnzJnbu3ImFCxdi2LBhiIqKQkpKClQqFb766isMHz4cSUlJ+Oabb6q9R8uWLVFcXIw//vgDnTt3hp2dHQICAjBu3DhERUXh888/R5cuXZCbm4vdu3cjKCgIQ4cONdIWExERSQNHHSciIpKonTt3olmzZmjZsiUGDx6MPXv2YMmSJdi6dSssLS0RHByMxYsXIzY2Fh07dsT69euxcOHCau8RFhaGyZMn44UXXoCbmxs+/fRTAMCaNWsQFRWFmTNnIjAwECNGjMDhw4fh6+trjE0lIiKSFI46TkRERERERKRDPKNNREREREREpENstImIiIiIiIh0iI02ERERERERkQ6x0SYiIiIiIiLSITbaRERERERERDrERpuIiIiIiIhIh9hoExEREREREekQG20iIiIiIiIiHWKjTURERERERKRDbLSJiIiIiIiIdIiNNhEREREREZEOsdEmIiIiIiIi0qH/D41R1ZGLU/w4AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "ADF Statistic: -0.6303067985116851\n", "p-value: 0.8639858434129919\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGxCAYAAABvIsx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABEoElEQVR4nO3deXyU1d3///dkm7COQCCLRkBvZJGlLAKJpVDRIO5WBapGbBFvRKs0+qvF1gLarxF7132rvdFo9Su0RareIjUqi35ZCsiiSLlpBQOSiMEkk5Bk1vP7I8yQYZKQYCaZufJ6Ph7zSOaaz5yck6uSd8851zU2Y4wRAACAhcS1dwcAAABaGwEHAABYDgEHAABYDgEHAABYDgEHAABYDgEHAABYDgEHAABYDgEHAABYDgEHAABYDgEH6ACefPJJ2Ww2DR069Du1s3LlSi1cuLB1OhXl9u/fL5vNpoKCgha/99ChQ1q4cKG2b98e9trChQtls9m+ewcBNImAA3QAL774oiRp165d2rRp0ym3s3LlSi1atKi1umVZhw4d0qJFixoMOLfccos2bNjQ9p0COhgCDmBxW7Zs0Y4dO3TppZdKkpYsWdLOPYqs6urqBo8bY1RTU9PGvQl3xhlnaPz48e3dDcDyCDiAxQUCzcMPP6zs7GwtXbo0JASsWbNGNptNa9asCXnfiUs0N998s5555hlJks1mCz72798vSaqtrdX8+fPVv39/JSUl6fTTT9ftt9+u8vLysD793//7f5WVlaWuXbuqa9eu+t73vhcWvF588UWNGDFCycnJ6tmzp66++mrt3r07pObmm29W165d9emnnyonJ0fdunXT5MmTg32844479Pzzz2vw4MGy2+16+eWXJUl79+7V9ddfrz59+shut2vw4MHBsTXlX//6l37yk59owIAB6ty5s04//XRdfvnl+vTTT0N+n+edd54k6Sc/+Unw9xRY2mtoicrv9+uRRx7RoEGDZLfb1adPH9100006ePBgSN2kSZM0dOhQbd68WRMmTFDnzp111lln6eGHH5bf7z9p/4GOhIADWFhNTY1ef/11nXfeeRo6dKh++tOfqrKyUn/5y19a3Nb999+va6+9VpK0YcOG4CM9PV3GGF111VX6r//6L+Xm5uqdd95RXl6eXn75ZV1wwQVyuVzBdn7zm9/ohhtuUEZGhgoKCrRixQrNnDlTX375ZbAmPz9fs2bN0rnnnqs33nhDTzzxhHbu3KmsrCzt3bs3pF9ut1tXXHGFLrjgAr355pshS2h/+9vf9Nxzz+k3v/mN/v73v2vChAn6/PPPdd555+mzzz7T73//e/3P//yPLr30Ut15550nXX47dOiQevXqpYcfflirVq3SM888o4SEBI0bN0579uyRJI0aNUovvfSSJOnXv/518Pd0yy23NNrubbfdpnvvvVcXXXSR3nrrLT344INatWqVsrOzVVpaGlJbUlKiG264QTfeeKPeeustTZ06VfPnz9err77aZN+BDscAsKxXXnnFSDLPP/+8McaYyspK07VrVzNhwoRgzerVq40ks3r16pD37tu3z0gyL730UvDY7bffbhr6Z2PVqlVGknnkkUdCji9btsxIMi+88IIxxpgvvvjCxMfHmxtuuKHRPpeVlZlOnTqZSy65JOR4UVGRsdvt5vrrrw8emzlzppFkXnzxxbB2JBmHw2G+/fbbkONTpkwxZ5xxhqmoqAg5fscdd5jk5ORgfUPjP5HX6zVut9sMGDDA/PznPw8e37x5c6PvXbBgQcjvcPfu3UaSmTt3bkjdpk2bjCRz3333BY9NnDjRSDKbNm0KqR0yZIiZMmVKo/0EOiJmcAALW7JkiTp16qQZM2ZIkrp27arrrrtOH330UdhMyHfx4YcfSqpbMqrvuuuuU5cuXfTBBx9IkgoLC+Xz+XT77bc32taGDRtUU1MT1lZmZqYuuOCCYFv1XXPNNQ22dcEFF6hHjx7B57W1tfrggw909dVXq3PnzvJ6vcHHJZdcotraWm3cuLHRvnm9Xj300EMaMmSIkpKSlJCQoKSkJO3duzds+ay5Vq9eLSn8dzd27FgNHjw4bLxpaWkaO3ZsyLHhw4eHzIABYIkKsKx//etfWrdunS699FIZY1ReXq7y8vLgMlPgyqrWcOTIESUkJKh3794hx202m9LS0nTkyBFJ0jfffCOpbqNtU21JUnp6ethrGRkZwdcDOnfurO7duzfY1oltHDlyRF6vV0899ZQSExNDHpdccokkhS0J1ZeXl6f7779fV111ld5++21t2rRJmzdv1ogRI055A3NLx9urV6+wOrvdHhUbqIFoktDeHQAQGS+++KKMMfrrX/+qv/71r2Gvv/zyy/rtb3+r5ORkSQrZJyM1/Yf+RL169ZLX69U333wTEnKMMSopKQluug28dvDgQWVmZjbaliQVFxeHvXbo0CGlpKSEHGvqnjInvtajRw/Fx8crNze30Vmk/v37N9req6++qptuukkPPfRQyPHS0lKddtppjb6vKfXHe2Lwa2i8AJqHGRzAgnw+n15++WWdffbZWr16ddjj7rvvVnFxsd59913169dPkrRz586QNt56662wdu12uySFzRYErlw6caPr8uXLdfTo0eDrOTk5io+P13PPPddo37OystSpU6ewtg4ePKgPP/ww2Nap6Ny5s374wx9q27ZtGj58uMaMGRP2aGiGJMBmswV/BwHvvPOOvvrqq5Bjjf2eGnLBBRdICv/dbd68Wbt37/5O4wU6MmZwAAt69913dejQIS1evFiTJk0Ke33o0KF6+umntWTJEl122WW68MILlZ+frx49eqhv37764IMP9MYbb4S9b9iwYZKkxYsXa+rUqYqPj9fw4cN10UUXacqUKbr33nvldDp1/vnna+fOnVqwYIFGjhyp3NxcSVK/fv1033336cEHH1RNTY1+/OMfy+Fw6PPPP1dpaakWLVqk0047Tffff7/uu+8+3XTTTfrxj3+sI0eOaNGiRUpOTtaCBQu+0+/miSee0Pe//31NmDBBt912m/r166fKykr961//0ttvvx3cT9SQyy67TAUFBRo0aJCGDx+urVu36ne/+13YzMvZZ5+tTp066bXXXtPgwYPVtWtXZWRkKCMjI6zNgQMH6tZbb9VTTz2luLg4TZ06Vfv379f999+vzMxM/fznP/9O4wU6rHbe5AwgAq666iqTlJRkDh8+3GjNjBkzTEJCgikpKTHFxcXm2muvNT179jQOh8PceOONZsuWLWFXArlcLnPLLbeY3r17G5vNZiSZffv2GWOMqampMffee6/p27evSUxMNOnp6ea2224zZWVlYT/7lVdeMeedd55JTk42Xbt2NSNHjgy74ui///u/zfDhw01SUpJxOBzmyiuvNLt27QqpmTlzpunSpUuD45Nkbr/99gZf27dvn/npT39qTj/9dJOYmGh69+5tsrOzzW9/+9uQmhPHX1ZWZmbNmmX69OljOnfubL7//e+bjz76yEycONFMnDgx5Ge8/vrrZtCgQSYxMdFIMgsWLDDGhF9FZYwxPp/PLF682JxzzjkmMTHRpKSkmBtvvNEcOHAgpG7ixInm3HPPDRvPzJkzTd++fRscK9BR2Ywxpj0DFgAAQGtjDw4AALAcAg4AALAcAg4AALCciAacdevW6fLLL1dGRoZsNpv+9re/nfQ9a9eu1ejRo5WcnKyzzjpLzz//fFjN8uXLNWTIENntdg0ZMkQrVqyIQO8BAECsimjAOXr0qEaMGKGnn366WfX79u3TJZdcogkTJmjbtm267777dOedd2r58uXBmg0bNmj69OnKzc3Vjh07lJubq2nTpmnTpk2RGgYAAIgxbXYVlc1m04oVK3TVVVc1WnPvvffqrbfeCvlMlzlz5mjHjh3asGGDJGn69OlyOp169913gzUXX3yxevTooddffz1i/QcAALEjqm70t2HDBuXk5IQcmzJlipYsWSKPx6PExERt2LAh7MZXU6ZM0eOPP95ouy6XK+Q29H6/X99++6169erV5G3eAQBA9DDGqLKyUhkZGYqLa3oRKqoCTklJiVJTU0OOpaamyuv1qrS0VOnp6Y3WlJSUNNpufn6+Fi1aFJE+AwCAtnXgwIEmP7RXirKAI4V/OF5gBa3+8YZqmpqJmT9/vvLy8oLPKyoqdOaZZ+rAgQONfgpxSzxW+L8qWL9fPn/4al98nE03Z/fTzy86J2pq/7+/7NDfd5WogVLF2aQp56bpd9eNCB5rSX001EbD77gltS2t33/kqK546uNGfxdv/+z76turS9TUStIbnxzUwrd2yWazBf97NcZo0RXn6upRof9ItaQ20m3vP3JUKz75SofKa5RxWiddPep09as3rmirBazO6XQqMzNT3bp1O2ltVAWctLS0sJmYw4cPKyEhIfgBeI3VnDirU5/dbg/7gDxJ6t69e6sEnJsmDtbLW75WXAP/2Nts0syJg9W9e5eoqT3r9N6K/3elGvrrFB9n01mn9w75vbSkPhpqS93xsiV1avR3UeqOj6ralta/u/6Q4pO7NPq7WLmnQvdenB41tftKj+qBv++TkjorUB34uujv+zRxaF/1S+nS4tpIt/3nLQf0y+U764WhSr285Wstvma4rhsT+kno0VAbGOOftxzQwbIandGjk6aNyVT/lIbDUEtqI9020FLN2V4SVffBycrKUmFhYcix9957T2PGjFFiYmKTNdnZ2W3WzxP1T+mixdcMV1y933e8zaY4m7T4muEh/2hGQ+20MZlqbG+5MUbTT/iHsyX10VB7Ro9Ojf6P32az6YwenaKqtqX1B8tqmvxdHCyriaraP2850OTYlm05cEq1kWx7X+lR/XL5TvmN5PObkK/3Lt+p/aVHo6o2ML7Jv1+jF9Z9oXd2HtIL677Q5N+v0V9O+J21tDbSbe8rParFq/6pn72+TYtX/VP7ThhXtNUidkQ04FRVVWn79u3avn27pLrLwLdv366ioiJJdUtHN910U7B+zpw5+vLLL5WXl6fdu3frxRdf1JIlS3TPPfcEa+666y699957Wrx4sf75z39q8eLFev/99zVv3rxIDuWkrhuTqXfu/H7w+U++308f3j2pwf+X1d61LQlDLa2PhtpoCFmRDJHREMqiIZBFsu1IBadYC2SRbjtSwSlaAllL66Oh1koiGnC2bNmikSNHauTIkZKkvLw8jRw5Ur/5zW8kScXFxcGwI0n9+/fXypUrtWbNGn3ve9/Tgw8+qCeffFLXXHNNsCY7O1tLly7VSy+9pOHDh6ugoEDLli3TuHHjIjmUZqm/5yDvonPCgkI01bYkOLW0vr1royFkRTJERkMoi4ZAFsm2o2HmKxoCWSTbjoaZr0gGspbWR0Nt4HdileAU0YAzadIkGWPCHgUFBZKkgoICrVmzJuQ9EydO1CeffCKXy6V9+/Zpzpw5Ye1ee+21+uc//ym3263du3frRz/6USSHYVktCU4trW/v2vYOWS2tbUl9NISyaAhkkWw7Gma+oiGQRbLtaJj5ilQga2l9NNQGfh+RCk7tIar24ACtqb1DVktrW1IfDaGsvQNZJNuOhpmvaAhkkWw7Gma+IhXIWlofDbWRDE7thYADxKhoCGXtHcgi1XY0zHxFQyCLZNvRMPMVqUDW0vpoqI3kMmd7IeAAaBPRMPPVktr2nvlqSS2zZNE1S9bS+miojeQyZ3sh4ABAI9p75qsltcySRbY2Wma+oiHAtTTstRcCDgBYBLNkkauNlpmvaAhwLQ177SWq7mQMAOhYTgxDnZMa/7PU3rXXjcnU0NO7a+oTH0uqC0M3juvbZIBrbn171wbC0L3HNg9LdWHIyDQanJpT254IOAAANFNLglNL69u7NlIhq70QcAAAgKTIhaz2wB4cAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOW0ScJ599ln1799fycnJGj16tD766KNGa2+++WbZbLawx7nnnhusKSgoaLCmtra2LYYDAACiXMQDzrJlyzRv3jz96le/0rZt2zRhwgRNnTpVRUVFDdY/8cQTKi4uDj4OHDignj176rrrrgup6969e0hdcXGxkpOTIz0cAAAQAyIecB599FHNmjVLt9xyiwYPHqzHH39cmZmZeu655xqsdzgcSktLCz62bNmisrIy/eQnPwmps9lsIXVpaWmRHgoAAIgREQ04brdbW7duVU5OTsjxnJwcrV+/vlltLFmyRBdeeKH69u0bcryqqkp9+/bVGWecocsuu0zbtm1rtA2XyyWn0xnyAAAA1hXRgFNaWiqfz6fU1NSQ46mpqSopKTnp+4uLi/Xuu+/qlltuCTk+aNAgFRQU6K233tLrr7+u5ORknX/++dq7d2+D7eTn58vhcAQfmZmZpz4oAAAQ9dpkk7HNZgt5bowJO9aQgoICnXbaabrqqqtCjo8fP1433nijRowYoQkTJujPf/6zzjnnHD311FMNtjN//nxVVFQEHwcOHDjlsQAAgOiXEMnGU1JSFB8fHzZbc/jw4bBZnRMZY/Tiiy8qNzdXSUlJTdbGxcXpvPPOa3QGx263y263t6zzAAAgZkV0BicpKUmjR49WYWFhyPHCwkJlZ2c3+d61a9fqX//6l2bNmnXSn2OM0fbt25Wenv6d+gsAAKwhojM4kpSXl6fc3FyNGTNGWVlZeuGFF1RUVKQ5c+ZIqls++uqrr/TKK6+EvG/JkiUaN26chg4dGtbmokWLNH78eA0YMEBOp1NPPvmktm/frmeeeSbSwwEAADEg4gFn+vTpOnLkiB544AEVFxdr6NChWrlyZfCqqOLi4rB74lRUVGj58uV64oknGmyzvLxct956q0pKSuRwODRy5EitW7dOY8eOjfRwAABADIh4wJGkuXPnau7cuQ2+VlBQEHbM4XCourq60fYee+wxPfbYY63VPQAAYDF8FhUAALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALAcAg4AALCcNgk4zz77rPr376/k5GSNHj1aH330UaO1a9askc1mC3v885//DKlbvny5hgwZIrvdriFDhmjFihWRHgYAAIgREQ84y5Yt07x58/SrX/1K27Zt04QJEzR16lQVFRU1+b49e/aouLg4+BgwYEDwtQ0bNmj69OnKzc3Vjh07lJubq2nTpmnTpk2RHg4AAIgBEQ84jz76qGbNmqVbbrlFgwcP1uOPP67MzEw999xzTb6vT58+SktLCz7i4+ODrz3++OO66KKLNH/+fA0aNEjz58/X5MmT9fjjj0d4NAAAIBZENOC43W5t3bpVOTk5IcdzcnK0fv36Jt87cuRIpaena/LkyVq9enXIaxs2bAhrc8qUKY226XK55HQ6Qx4AAMC6IhpwSktL5fP5lJqaGnI8NTVVJSUlDb4nPT1dL7zwgpYvX6433nhDAwcO1OTJk7Vu3bpgTUlJSYvazM/Pl8PhCD4yMzO/48gAAEA0S2iLH2Kz2UKeG2PCjgUMHDhQAwcODD7PysrSgQMH9F//9V/6wQ9+cEptzp8/X3l5ecHnTqeTkAMAgIVFdAYnJSVF8fHxYTMrhw8fDpuBacr48eO1d+/e4PO0tLQWtWm329W9e/eQBwAAsK6IBpykpCSNHj1ahYWFIccLCwuVnZ3d7Ha2bdum9PT04POsrKywNt97770WtQkAAKwr4ktUeXl5ys3N1ZgxY5SVlaUXXnhBRUVFmjNnjqS65aOvvvpKr7zyiqS6K6T69eunc889V263W6+++qqWL1+u5cuXB9u866679IMf/ECLFy/WlVdeqTfffFPvv/++Pv7440gPBwAAxICIB5zp06fryJEjeuCBB1RcXKyhQ4dq5cqV6tu3rySpuLg45J44brdb99xzj7766it16tRJ5557rt555x1dcsklwZrs7GwtXbpUv/71r3X//ffr7LPP1rJlyzRu3LhIDwcAAMSANtlkPHfuXM2dO7fB1woKCkKe/+IXv9AvfvGLk7Z57bXX6tprr22N7gEAAIvhs6gAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlEHAAAIDlJLR3BwAAQGwwxsjnN/IZoxq3L3i87KhHR10++Y2R12+UEGdTavfkduwpAQcAgA7FGCOPz8jr99d99fnl9Rt5fH5V1niDdbuLnUqMj5PPb+Q3Rj6/5POb4Ou1nuMB53+/rlRyYnzweVd7AgEHAACcOo/Prxq3Tx6/X95jgcXjP/bVZ1Tl8gRrt35ZpoS4xnen1A8tzhpvSGiJNQQcAACiTJXLK7fXL7cvEFpMMMB4fH5VuY7PtHzyZXmTQaR+aPH6jBI6yO5bAg4AABHi8fmD35cd9aiy1itPILQcWyLyBGZaao/PtOz6ytns0IKGEXAAAGgGY4zc3uOB5dsqt5zxxwKLPxBUQsNL/Y24J+5TOVG97S1oBQQcAECH5fH5Ve0+vtzzdYVLCfHuE0LL8Y249QPL3sNVMb1HxeoIOAAAy/AFrgaqt9zzVVmNEuPjgmGlLrzUfW9M6HLP/iNHCS0WQcABAEStwCXNHp9fzprjoeXAkRrFx9vqgoq3bgOux+sPLvPUDy0Hy2oILR0QAQcA0Kb8/mOBxGfkrD4eWr4srVZCvK3extu6ZSHTQGg5VEFoQdMIOACA78zvN3IfCyXOejeL2x8MLfWWh3wN3yyuxFlLaEGrIeAAABpkTCC0hM607C+tVmK8LfhaU6Hla0IL2gkBBwA6mBOvHCourw3Osri9x5eHPIQWxDACDgBYgDFGLu/xEHLY6VJ8nDtkacjtO74Rt35gKfq2msACyyHgAEAU89e7+1vgxnKBW/gHZlrc3roQUz+07Cvlcmd0bAQcAGhHzlqPaty+Y7MrRm6fL7hM5Pb5VVV7fCmJG8sBzUfAAYBW5vL6jt1wzhybXfHL5T0+2+KsdxO63Yeavn0/gFNDwAGAZvIem1UJLBG5vceXh+rfhG57UUWToaX+FUcAIoOAA6DDC1wOHQgrgeBSUesO1mzZX6bE+LhG2+DTnYHoQsABYGl1Vxcdn3GpqHc/l88POWWz1V0ebRqYVKkfWnx+I1aSgNjR+P8daUXPPvus+vfvr+TkZI0ePVofffRRo7VvvPGGLrroIvXu3Vvdu3dXVlaW/v73v4fUFBQUyGazhT1qa2sjPRQAUcSYuiuH6u9p2V9arT0llfr0YIW2fvmtNu37VtuKyrXrK6f2fl2lom+rg7WVtXVXJDUUbgDEtojP4Cxbtkzz5s3Ts88+q/PPP19/+MMfNHXqVH3++ec688wzw+rXrVuniy66SA899JBOO+00vfTSS7r88su1adMmjRw5MljXvXt37dmzJ+S9ycnJkR4OgDZWWe8qI5fn+ExMYNPuiZ8GzU3oAEhtEHAeffRRzZo1S7fccosk6fHHH9ff//53Pffcc8rPzw+rf/zxx0OeP/TQQ3rzzTf19ttvhwQcm82mtLS0iPYdQOT4/HU3pguElbqvPrm8flXU1F9G4iojAC0X0YDjdru1detW/fKXvww5npOTo/Xr1zerDb/fr8rKSvXs2TPkeFVVlfr27Sufz6fvfe97evDBB0MCUH0ul0sulyv43Ol0tnAkAFoqEFgCAaa83t6XrV+WKSGu8RVyl8ffFl0EYGERDTilpaXy+XxKTU0NOZ6amqqSkpJmtfH73/9eR48e1bRp04LHBg0apIKCAg0bNkxOp1NPPPGEzj//fO3YsUMDBgwIayM/P1+LFi36boMBEBTYuFt/puWL0qOKky0Yavwn7Gupv4zk9RkltMkOQAAdVZtcRWWz2UKeG2PCjjXk9ddf18KFC/Xmm2+qT58+wePjx4/X+PHjg8/PP/98jRo1Sk899ZSefPLJsHbmz5+vvLy84HOn06nMzMxTGQrQoVTUeFTl8srlqZuFCSwhBTbm1g8t3zhdLCUBiBoRDTgpKSmKj48Pm605fPhw2KzOiZYtW6ZZs2bpL3/5iy688MIma+Pi4nTeeedp7969Db5ut9tlt9tb1nnA4gJLSLWe48HF5fGrvOb4vV/+Wcz+FwCxKaIBJykpSaNHj1ZhYaGuvvrq4PHCwkJdeeWVjb7v9ddf109/+lO9/vrruvTSS0/6c4wx2r59u4YNG9Yq/QasILCJt9bjV9nR46Fl58EK2aSwJaQA9r8AsIKIL1Hl5eUpNzdXY8aMUVZWll544QUVFRVpzpw5kuqWj7766iu98sorkurCzU033aQnnnhC48ePD87+dOrUSQ6HQ5K0aNEijR8/XgMGDJDT6dSTTz6p7du365lnnon0cICo9E2lS3E2d8iMjNt7PMHUX0qqcfuYlQFgeREPONOnT9eRI0f0wAMPqLi4WEOHDtXKlSvVt29fSVJxcbGKioqC9X/4wx/k9Xp1++236/bbbw8enzlzpgoKCiRJ5eXluvXWW1VSUiKHw6GRI0dq3bp1Gjt2bKSHA7SpwGbeWo8v+LXWU/e1vPr4rMwX3xwltABAPW2yyXju3LmaO3dug68FQkvAmjVrTtreY489pscee6wVega0v/oh5tt6S0k7DpTLZrM1epfdxpaYAAB8FhXQZmo9Pnm8RjUeX91MjPf4bEwgxNRfSqr1+JmVAYBTRMABWpHX51eNx1cXYtx+ldXUn5GpILAAQBsh4AAtZOqtGR0qr5XNVrdxt9bjk8cXum5Uf0YGANB2CDhAI3z+uuWkQHgJfF9/c++Bb6uZlQGAKETAQYfn9fnlrD3+kQN7Sipl1Pj9YNjcCwDRj4CDDsPnN6p2e1XjrpuNqXbXPdzHrmAKKK/2MCsDADGOgAPLMcao2u3TkarjS0nbD5TLppN//hkAwBoIOIhpLm/dvpijbp9q3F4dddXNzpz4QZAuLrkGgA6FgIOYYEzdht9vKl3BY598Wab4uLh27BUAIFoRcBB1Antlqt0+Vbm8qnb5VO32yn/CrIzHZxRPvgEANICAg3bl8xtV1By/gmnnwQpJavTjCQAAaA4CDtqM329U7fHpqMurylqvjrq8wXvLBPBJ1wCA1kDAQcTtL60OLjtxDxkAQFsg4KBV+PxGVS6vKms9qqz1qrTq+Gbgr521zMoAANoUAQenxOWtu0leZa1XVbVeHXV7Q/bNeH1M1QAA2g8BB81S4/bpsPP4rMz2Ij4ZGwAQvQg4aFCtxydnjUfOWo8qarxhH2cAAEA0I+BAUt2S01GXTxXHQk1jHzQJAEAsIOB0UMYYVVQfv/8MS04AACsh4HQgbq9f5TVulVd7VFHjUVWtt727BABARBBwLK7K5VXZ0bpQU+Ui0AAAOgYCjoVtKypXnM3W3t0AAKDNEXAsotrtVWmlWwfKqoPH3F4/+2oAAB0SASeGub1+HTnqUmmlO7j85PZy9RMAAAScGOP3G5VWuVRa5VJ5tYdP3QYAoAEEnBhg6qWYbQfKlRAX1469AQAg+hFwoliVy6sjVS4dLKsJHvP6jBLINwAANImAE2VqPT59U+nSkaNu1bjrPhqBfTUAALQMAScKuL1+VdTU6EiVW5XcfA8AgO+MgNNOvL7jszLbD5TLnsDl3AAAtBYCThvy+43KazwqrXKpuPz4vhquhAIAoHURcNrI4cpafXmkWl5fXZrxE2oAAIgYrsdpIzVuXzDcAACAyCLgAAAAyyHgAAAAyyHgAAAAy2mTgPPss8+qf//+Sk5O1ujRo/XRRx81Wb927VqNHj1aycnJOuuss/T888+H1SxfvlxDhgyR3W7XkCFDtGLFikh1HwAAxJiIX0W1bNkyzZs3T88++6zOP/98/eEPf9DUqVP1+eef68wzzwyr37dvny655BLNnj1br776qv7f//t/mjt3rnr37q1rrrlGkrRhwwZNnz5dDz74oK6++mqtWLFC06ZN08cff6xx48Y1u2/Vbq8S3K13Y73qem1Vn9BujdunWo8v+NzVyPcNiYbaaOmHlWujpR+xVhst/bBybbT0I9Zqo6Uf7VGbEGcL+zvYGlrSps2YyN6FZdy4cRo1apSee+654LHBgwfrqquuUn5+flj9vffeq7feeku7d+8OHpszZ4527NihDRs2SJKmT58up9Opd999N1hz8cUXq0ePHnr99dfD2nS5XHK5XMHnTqdTmZmZypz3Z8XZO7fKOAEAQGT5XdU68Pg0VVRUqHv37k3WRnSJyu12a+vWrcrJyQk5npOTo/Xr1zf4ng0bNoTVT5kyRVu2bJHH42myprE28/Pz5XA4go/MzMxTHRIAAIgBEV2iKi0tlc/nU2pqasjx1NRUlZSUNPiekpKSBuu9Xq9KS0uVnp7eaE1jbc6fP195eXnB54EZnH/8avJJE2BrKTpSreKK2jb5WQAAtKeu9gSde3rr/311Op1Kf7x5tW1yJ2ObzRby3BgTduxk9Sceb0mbdrtddrs97HjnpAR1Tmqbmzl3SopXciKfNwUAsL7kxPiI/H31tqDNiC5RpaSkKD4+Pmxm5fDhw2EzMAFpaWkN1ickJKhXr15N1jTWJgAA6FgiGnCSkpI0evRoFRYWhhwvLCxUdnZ2g+/JysoKq3/vvfc0ZswYJSYmNlnTWJsAAKBjifj6TF5ennJzczVmzBhlZWXphRdeUFFRkebMmSOpbn/MV199pVdeeUVS3RVTTz/9tPLy8jR79mxt2LBBS5YsCbk66q677tIPfvADLV68WFdeeaXefPNNvf/++/r4448jPRwAABADIh5wpk+friNHjuiBBx5QcXGxhg4dqpUrV6pv376SpOLiYhUVFQXr+/fvr5UrV+rnP/+5nnnmGWVkZOjJJ58M3gNHkrKzs7V06VL9+te/1v3336+zzz5by5Yta9E9cAAAgHVF/D440cjpdMrhcDTrOvrW8uWRozpUzlVUAADr62pP0LAzHK3ebkv+fvNZVG2kiz1BSQmNXzkGAABaT9tcIw2ldLWrV5ckOWu8+qbKpbJqt7y+Djd5BgBAmyDgtCGbzSZH50Q5OifK7zcqq3artMqt8mq3/GQdAABaDQGnncTF2dSrq129utrl9fn17dG6sOOs9ajj7YoCAKB1EXCiQEJ8nPp0T1af7slyeX06UuXWkSq3qlyt/0msAAB0BAScKGNPiFfGaZ2UcVon1bh9Kq1yqbTKpVqPv727BgBAzCDgRLFOSfHK7NlZmT07q7LWoyNVbpVWueRhczIAAE0i4MSIbsmJ6pacqL69Oqu82qPSKpe+PcrmZAAAGkLAiTE2m009uiSpR5ek4Obkb6pcctawXwcAgAACTgyrvzm51hPYr+NWjdvX3l0DAKBdEXAsIjkxXmf06KwzenRWlcur0sq6mwmyORkA0BERcCyoqz1BXe0J6qcuqnH7VFbtVlm1W5W1Xu6xAwDoEAg4FtcpKV6dkuouO/f6/Kqo8ais2qPyajdXYwEALIuA04EkxMcF755sjFGVy6vyao/Kqz066mZ2BwBgHQScDspmswUvPc/sKXl8flXWelVR45GzxqNqNioDAGIYAQeSpMT4OPXskqSeXZIkSW6vX87aurDjrPVyZRYAIKYQcNCgpIQ4pXS1K6WrXZLk8vrkrPHKWetRJYEHABDlCDhoFntCvHp3i1fvbnWBx+Pzq6rWq8parypdHlXVermrMgAgahBwcEoS4+OCd1SWJGOMjrp9qjw2w1NZ65Xbyz14AADtg4CDVmGz2YL330l31B2r9fh01OXVUZdPla66jcteLk0HALQBAg4iJjkxXsmJ8erV9fixGrdPVS6vqlzeY+GHpS0AQOsj4KBN1d148PhensDS1tFg4PGp2k3oAQB8NwQctKv6S1sBxhjVeHw66joWfNxelrcAAC1CwEHUsdls6pyUoM5JCcGZHun4np5qty8Yelx8mCgAoAEEHMSM4J6eese8Pr+qPT5VH1vaqnb7VO32yccaFwB0aAQcxLSE+Dh1j49T9+TEkOO1Ht+xsFMXemrcPtV4fHzeFgB0EAQcWFJgtifw0RPS8b099QNPtdunWoIPAFgOAQcdRv29PfX5/Ua13tDgU3Ms+LDSBQCxiYCDDi8uruHgY4xRrcdfF3jqhR72+ABA9CPgAI2w2WzB+/acyOX1qdZdF35qAwHI45Pb62e5CwCiAAEHOAX2hHjZE+LlUOjm5sByV2Cpq9bjDwYg7uMDAG2HgAO0osaWu6S6T2APhB3XseATWAJjyQsAWhcBB2gjifFxSoyPU7cTLmmXJLfXr1pv3XJXrfv49y6vn5kfADgFBBwgCiQlxCkpIfx+PtLxmZ/AcpfLe/x7D+EHABpEwAGi3PGZn/DXvD6/XF5/cLYnEIRc3rrnbHgG0FHFRbLxsrIy5ebmyuFwyOFwKDc3V+Xl5Y3Wezwe3XvvvRo2bJi6dOmijIwM3XTTTTp06FBI3aRJk2Sz2UIeM2bMiORQgKiUEB+nLvYE9epqV8ZpnXRW764aktFdI8/soXH9e2rkmadpSHp3nd27i04/rZNSuiapW3KCEuNt7d11AIioiM7gXH/99Tp48KBWrVolSbr11luVm5urt99+u8H66upqffLJJ7r//vs1YsQIlZWVad68ebriiiu0ZcuWkNrZs2frgQceCD7v1KlT5AYCxCCbzRa8o7MUvvTl85u6mR5P3Z4fl6duNiiwBMbGZwCxLGIBZ/fu3Vq1apU2btyocePGSZL++Mc/KisrS3v27NHAgQPD3uNwOFRYWBhy7KmnntLYsWNVVFSkM888M3i8c+fOSktLi1T3AcuLD17x1fDrnmPLX65jy1+B8OPy+OX2sfkZQHSLWMDZsGGDHA5HMNxI0vjx4+VwOLR+/foGA05DKioqZLPZdNppp4Ucf+211/Tqq68qNTVVU6dO1YIFC9StW7cG23C5XHK5XMHnTqez5QMCOpjA3p+u9ob/mfD4/HKfEHxc3sAxNkADaF8RCzglJSXq06dP2PE+ffqopKSkWW3U1tbql7/8pa6//np17949ePyGG25Q//79lZaWps8++0zz58/Xjh07wmZ/AvLz87Vo0aJTGwiABgUCUBd7w68HlsCCIcjjl9sX2ATtl8fHJmgAkdPigLNw4cKThoXNmzdLqtsDcCJjTIPHT+TxeDRjxgz5/X49++yzIa/Nnj07+P3QoUM1YMAAjRkzRp988olGjRoV1tb8+fOVl5cXfO50OpWZmXnSPgA4dSdbAjPG1M34+PzBZS+XxxfynGUwAKeqxQHnjjvuOOkVS/369dPOnTv19ddfh732zTffKDU1tcn3ezweTZs2Tfv27dOHH34YMnvTkFGjRikxMVF79+5tMODY7XbZ7Y3830wA7SJkE3QDl8BLobNAx5fD6r4PBCL2QgNoSIsDTkpKilJSUk5al5WVpYqKCv3jH//Q2LFjJUmbNm1SRUWFsrOzG31fINzs3btXq1evVq9evU76s3bt2iWPx6P09PTmDwRA1DvZLJB0fC+QOyT8+I5/7/UTgoAOyGZM5FbBp06dqkOHDukPf/iDpLrLxPv27RtymfigQYOUn5+vq6++Wl6vV9dcc40++eQT/c///E/ITE/Pnj2VlJSkf//733rttdd0ySWXKCUlRZ9//rnuvvtuderUSZs3b1Z8fPgnP5/I6XTK4XCooqLipLNDAGJf/RDk9p0Yhuq+clk80Hq62hM07AxHq7fbkr/fEb0PzmuvvaY777xTOTk5kqQrrrhCTz/9dEjNnj17VFFRIUk6ePCg3nrrLUnS9773vZC61atXa9KkSUpKStIHH3ygJ554QlVVVcrMzNSll16qBQsWNCvcAOh4TrYhWqq7K7Tb55fHa+Ty+cICUV1IIgQBsSKiMzjRihkcAKfC7zd1IcgXHn4CM0Ien2E2CB2e5WdwAMBK4uJsSo4L3B26cSfOBnl8pt4sUOA19gYBkUTAAYBWlhAfp4T4OClJauhjMgI89Ze/fMdngOofIwgBp4aAAwDtJLA36GRODEInzggFvhKEgOMIOAAQ5ZobhLyB8FMv+Hh8xzdIH39OEoL1EXAAwCLqlsakTmp6j1D9zdIenwmZCQo+Z3kMMY6AAwAdTHM3S0uhs0KBGSBv/efe4993vGtyEc0IOACARjV3VkhSyBKY54QA5PXX+97HzBAij4ADAGgVzd0rJIXPDHnrLY2d+D33FcKpIOAAANpcS2aGfH7T8OyQzwTvORQIRV6/YakMkgg4AIAoFx9nU3wz9wwZY+qCjz90eSywb8h7QkBidsi6CDgAAMuw2WxKSrApSYEbLTbN7zfy+MNng4KB6IRwRCCKHQQcAECHFRdnkz0uXvZm/jUMLJd5/U0HImaI2h8BBwCAZgoslzVXYIaosRDk9dfdlToQmNhD1HoIOAAAREhLZ4iMMcfCzrGls2PhJ3ClmTe4nHY8ODFL1DACDgAAUcJmsykx3qbEZl5hJoXPEnlOmCEKXJLvrbfXqCNkIgIOAAAxrKWzRFL4XqJAAAoEI5/fyGfqZocCD78x8vkVMzNGBBwAADqYlu4lqs8Ego8x8vslr98vv18hgSiuefd7jCgCDgAAaDabzaaEeFu9AHFqQSnSoiBjAQAAtC4CDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsJyIBpyysjLl5ubK4XDI4XAoNzdX5eXlTb7n5ptvls1mC3mMHz8+pMblculnP/uZUlJS1KVLF11xxRU6ePBgBEcCAABiSUQDzvXXX6/t27dr1apVWrVqlbZv367c3NyTvu/iiy9WcXFx8LFy5cqQ1+fNm6cVK1Zo6dKl+vjjj1VVVaXLLrtMPp8vUkMBAAAxJCFSDe/evVurVq3Sxo0bNW7cOEnSH//4R2VlZWnPnj0aOHBgo++12+1KS0tr8LWKigotWbJEf/rTn3ThhRdKkl599VVlZmbq/fff15QpU1p/MAAAIKZEbAZnw4YNcjgcwXAjSePHj5fD4dD69eubfO+aNWvUp08fnXPOOZo9e7YOHz4cfG3r1q3yeDzKyckJHsvIyNDQoUMbbdflcsnpdIY8AACAdUUs4JSUlKhPnz5hx/v06aOSkpJG3zd16lS99tpr+vDDD/X73/9emzdv1gUXXCCXyxVsNykpST169Ah5X2pqaqPt5ufnB/cBORwOZWZmfoeRAQCAaNfigLNw4cKwTcAnPrZs2SJJstlsYe83xjR4PGD69Om69NJLNXToUF1++eV699139b//+7965513muxXU+3Onz9fFRUVwceBAwdaMGIAABBrWrwH54477tCMGTOarOnXr5927typr7/+Ouy1b775Rqmpqc3+eenp6erbt6/27t0rSUpLS5Pb7VZZWVnILM7hw4eVnZ3dYBt2u112u73ZPxMAAMS2FgeclJQUpaSknLQuKytLFRUV+sc//qGxY8dKkjZt2qSKiopGg0hDjhw5ogMHDig9PV2SNHr0aCUmJqqwsFDTpk2TJBUXF+uzzz7TI4880tLhAAAAC4rYHpzBgwfr4osv1uzZs7Vx40Zt3LhRs2fP1mWXXRZyBdWgQYO0YsUKSVJVVZXuuecebdiwQfv379eaNWt0+eWXKyUlRVdffbUkyeFwaNasWbr77rv1wQcfaNu2bbrxxhs1bNiw4FVVAACgY4vYZeKS9Nprr+nOO+8MXvF0xRVX6Omnnw6p2bNnjyoqKiRJ8fHx+vTTT/XKK6+ovLxc6enp+uEPf6hly5apW7duwfc89thjSkhI0LRp01RTU6PJkyeroKBA8fHxkRwOAACIETZjjGnvTrQ1p9Mph8OhiooKde/evb27AwAAmqElf7/5LCoAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5BBwAAGA5EQ04ZWVlys3NlcPhkMPhUG5ursrLy5t8j81ma/Dxu9/9LlgzadKksNdnzJgRyaEAAIAYkhDJxq+//nodPHhQq1atkiTdeuutys3N1dtvv93oe4qLi0Oev/vuu5o1a5auueaakOOzZ8/WAw88EHzeqVOnVuw5AACIZRELOLt379aqVau0ceNGjRs3TpL0xz/+UVlZWdqzZ48GDhzY4PvS0tJCnr/55pv64Q9/qLPOOivkeOfOncNqAQAApAguUW3YsEEOhyMYbiRp/PjxcjgcWr9+fbPa+Prrr/XOO+9o1qxZYa+99tprSklJ0bnnnqt77rlHlZWVjbbjcrnkdDpDHgAAwLoiNoNTUlKiPn36hB3v06ePSkpKmtXGyy+/rG7duulHP/pRyPEbbrhB/fv3V1pamj777DPNnz9fO3bsUGFhYYPt5Ofna9GiRS0fBAAAiEktnsFZuHBhoxuBA48tW7ZIqtswfCJjTIPHG/Liiy/qhhtuUHJycsjx2bNn68ILL9TQoUM1Y8YM/fWvf9X777+vTz75pMF25s+fr4qKiuDjwIEDLRw1AACIJS2ewbnjjjtOesVSv379tHPnTn399ddhr33zzTdKTU096c/56KOPtGfPHi1btuyktaNGjVJiYqL27t2rUaNGhb1ut9tlt9tP2g4AALCGFgeclJQUpaSknLQuKytLFRUV+sc//qGxY8dKkjZt2qSKigplZ2ef9P1LlizR6NGjNWLEiJPW7tq1Sx6PR+np6ScfAAAAsLyIbTIePHiwLr74Ys2ePVsbN27Uxo0bNXv2bF122WUhV1ANGjRIK1asCHmv0+nUX/7yF91yyy1h7f773//WAw88oC1btmj//v1auXKlrrvuOo0cOVLnn39+pIYDAABiSERv9Pfaa69p2LBhysnJUU5OjoYPH64//elPITV79uxRRUVFyLGlS5fKGKMf//jHYW0mJSXpgw8+0JQpUzRw4EDdeeedysnJ0fvvv6/4+PhIDgcAAMQImzHGtHcn2prT6ZTD4VBFRYW6d+/e3t0BAADN0JK/33wWFQAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsBwCDgAAsJyIBpz/83/+j7Kzs9W5c2eddtppzXqPMUYLFy5URkaGOnXqpEmTJmnXrl0hNS6XSz/72c+UkpKiLl266IorrtDBgwcjMAIAABCLIhpw3G63rrvuOt12223Nfs8jjzyiRx99VE8//bQ2b96stLQ0XXTRRaqsrAzWzJs3TytWrNDSpUv18ccfq6qqSpdddpl8Pl8khgEAAGKMzRhjIv1DCgoKNG/ePJWXlzdZZ4xRRkaG5s2bp3vvvVdS3WxNamqqFi9erP/8z/9URUWFevfurT/96U+aPn26JOnQoUPKzMzUypUrNWXKlJP2x+l0yuFwqKKiQt27d//O4wMAAJHXkr/fCW3Up2bZt2+fSkpKlJOTEzxmt9s1ceJErV+/Xv/5n/+prVu3yuPxhNRkZGRo6NChWr9+fYMBx+VyyeVyBZ9XVFRIqvtFAQCA2BD4u92cuZmoCjglJSWSpNTU1JDjqamp+vLLL4M1SUlJ6tGjR1hN4P0nys/P16JFi8KOZ2Zmtka3AQBAG6qsrJTD4WiypsUBZ+HChQ2Ghfo2b96sMWPGtLTpIJvNFvLcGBN27ERN1cyfP195eXnB536/X99++6169ep10nZbyul0KjMzUwcOHLDk8peVx2flsUmML5ZZeWwS44tlbT02Y4wqKyuVkZFx0toWB5w77rhDM2bMaLKmX79+LW1WkpSWliapbpYmPT09ePzw4cPBWZ20tDS53W6VlZWFzOIcPnxY2dnZDbZrt9tlt9tDjjX3qq5T1b17d8v9D7k+K4/PymOTGF8ss/LYJMYXy9pybCebuQloccBJSUlRSkpKizvUHP3791daWpoKCws1cuRISXVXYq1du1aLFy+WJI0ePVqJiYkqLCzUtGnTJEnFxcX67LPP9Mgjj0SkXwAAILZEdA9OUVGRvv32WxUVFcnn82n79u2SpP/4j/9Q165dJUmDBg1Sfn6+rr76atlsNs2bN08PPfSQBgwYoAEDBuihhx5S586ddf3110uqS26zZs3S3XffrV69eqlnz5665557NGzYMF144YWRHA4AAIgREQ04v/nNb/Tyyy8HnwdmZVavXq1JkyZJkvbs2RO8qkmSfvGLX6impkZz585VWVmZxo0bp/fee0/dunUL1jz22GNKSEjQtGnTVFNTo8mTJ6ugoEDx8fGRHE6z2O12LViwIGxJzCqsPD4rj01ifLHMymOTGF8si+axtcl9cAAAANoSn0UFAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4DTip599ln1799fycnJGj16tD766KP27lKrWLhwoWw2W8gjcNfpWLRu3TpdfvnlysjIkM1m09/+9reQ140xWrhwoTIyMtSpUydNmjRJu3btap/OnoKTje/mm28OO5/jx49vn862UH5+vs477zx169ZNffr00VVXXaU9e/aE1MTq+WvO2GL53D333HMaPnx48I63WVlZevfdd4Ovx+p5CzjZ+GL53J0oPz8/eN+6gGg8fwScVrJs2TLNmzdPv/rVr7Rt2zZNmDBBU6dOVVFRUXt3rVWce+65Ki4uDj4+/fTT9u7SKTt69KhGjBihp59+usHXH3nkET366KN6+umntXnzZqWlpemiiy5SZWVlG/f01JxsfJJ08cUXh5zPlStXtmEPT93atWt1++23a+PGjSosLJTX61VOTo6OHj0arInV89ecsUmxe+7OOOMMPfzww9qyZYu2bNmiCy64QFdeeWXwj2CsnreAk41Pit1zV9/mzZv1wgsvaPjw4SHHo/L8GbSKsWPHmjlz5oQcGzRokPnlL3/ZTj1qPQsWLDAjRoxo725EhCSzYsWK4HO/32/S0tLMww8/HDxWW1trHA6Hef7559uhh9/NieMzxpiZM2eaK6+8sl3609oOHz5sJJm1a9caY6x1/k4cmzHWOnfGGNOjRw/z3//935Y6b/UFxmeMNc5dZWWlGTBggCksLDQTJ040d911lzEmev+7YwanFbjdbm3dulU5OTkhx3NycrR+/fp26lXr2rt3rzIyMtS/f3/NmDFDX3zxRXt3KSL27dunkpKSkHNpt9s1ceJEy5xLSVqzZo369Omjc845R7Nnz9bhw4fbu0unJHAX9J49e0qy1vk7cWwBVjh3Pp9PS5cu1dGjR5WVlWWp8yaFjy8g1s/d7bffrksvvTTsY5Gi9fxF9KMaOorS0lL5fL7gJ54HpKamqqSkpJ161XrGjRunV155Reecc46+/vpr/fa3v1V2drZ27dqlXr16tXf3WlXgfDV0Lr/88sv26FKrmzp1qq677jr17dtX+/bt0/33368LLrhAW7dujcrbrTfGGKO8vDx9//vf19ChQyVZ5/w1NDYp9s/dp59+qqysLNXW1qpr165asWKFhgwZEvwjGOvnrbHxSbF/7pYuXapPPvlEmzdvDnstWv+7I+C0IpvNFvLcGBN2LBZNnTo1+P2wYcOUlZWls88+Wy+//LLy8vLasWeRY9VzKUnTp08Pfj906FCNGTNGffv21TvvvKMf/ehH7dizlrnjjju0c+dOffzxx2Gvxfr5a2xssX7uBg4cqO3bt6u8vFzLly/XzJkztXbt2uDrsX7eGhvfkCFDYvrcHThwQHfddZfee+89JScnN1oXbeePJapWkJKSovj4+LDZmsOHD4clWivo0qWLhg0bpr1797Z3V1pd4OqwjnIuJSk9PV19+/aNqfP5s5/9TG+99ZZWr16tM844I3jcCuevsbE1JNbOXVJSkv7jP/5DY8aMUX5+vkaMGKEnnnjCEudNanx8DYmlc7d161YdPnxYo0ePVkJCghISErR27Vo9+eSTSkhICJ6jaDt/BJxWkJSUpNGjR6uwsDDkeGFhobKzs9upV5Hjcrm0e/dupaent3dXWl3//v2VlpYWci7dbrfWrl1ryXMpSUeOHNGBAwdi4nwaY3THHXfojTfe0Icffqj+/fuHvB7L5+9kY2tILJ27hhhj5HK5Yvq8NSUwvobE0rmbPHmyPv30U23fvj34GDNmjG644QZt375dZ511VnSev3ba3Gw5S5cuNYmJiWbJkiXm888/N/PmzTNdunQx+/fvb++ufWd33323WbNmjfniiy/Mxo0bzWWXXWa6desWs2OrrKw027ZtM9u2bTOSzKOPPmq2bdtmvvzyS2OMMQ8//LBxOBzmjTfeMJ9++qn58Y9/bNLT043T6WznnjdPU+OrrKw0d999t1m/fr3Zt2+fWb16tcnKyjKnn356TIzvtttuMw6Hw6xZs8YUFxcHH9XV1cGaWD1/JxtbrJ+7+fPnm3Xr1pl9+/aZnTt3mvvuu8/ExcWZ9957zxgTu+ctoKnxxfq5a0j9q6iMic7zR8BpRc8884zp27evSUpKMqNGjQq5vDOWTZ8+3aSnp5vExESTkZFhfvSjH5ldu3a1d7dO2erVq42ksMfMmTONMXWXPC5YsMCkpaUZu91ufvCDH5hPP/20fTvdAk2Nr7q62uTk5JjevXubxMREc+aZZ5qZM2eaoqKi9u52szQ0LknmpZdeCtbE6vk72dhi/dz99Kc/Df772Lt3bzN58uRguDEmds9bQFPji/Vz15ATA040nj+bMca03XwRAABA5LEHBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWM7/D1GwXAyVx0OKAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGxCAYAAABvIsx7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABA3UlEQVR4nO3deXxTVcL/8W8obcrWCJRuUktloIAsA0Voy7AIWEBxV0C04gxUUVERfUaroyzOWNGRccENB0UUAX0QRUXGgmxOi+wiysOggi3Ysglp2QqU8/uDXzOEpKUpTdtcP+/X674gN+eenJOT3Pvt3WIzxhgBAABYSJ2abgAAAEBVI+AAAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADLIeAAAADLIeAA1WDGjBmy2WyuqW7dumrevLn++Mc/ateuXVX6Wk899ZQ++ugjj/nLli2TzWbTsmXLfK6zMssuWLBANptNTZs2VXFxsc+veabs7GxNmDBBBw8ePK96AoXNZtOECRN8Xu7IkSOaMGGC13Eq/Qzu2LHjvNsHBAICDlCN3nrrLeXk5CgrK0vp6emaPXu2evbsqcOHD1fZa5QVcLp06aKcnBx16dKlyl6rPNOnT5ck/frrr17b44vs7GxNnDjxNxNwKuvIkSOaOHGi14Bz5ZVXKicnR9HR0dXfMKAGEHCAatS+fXslJSXpsssu0/jx4/XnP/9Z27dvP+8AIElHjx4t9/mwsDAlJSUpLCzsvF/rXAoKCrRw4UL17dtXoaGhrrBjZUeOHCnzuXONTXVo1qyZkpKSZLfba7opQLUg4AA1KCkpSZL0888/S5ImTpyo7t27q0mTJgoLC1OXLl00ffp0nf2buC1atNDgwYP14YcfqnPnzgoNDdXEiRNls9l0+PBhvf32267DYX369JHk/TDT2rVrNWzYMLVo0UL16tVTixYtdPPNN7vaU1lvv/22Tp48qQceeEDXX3+9lixZ4lHnjh07ZLPZNGPGDI/lzzxEM2HCBP3P//yPJCk+Pt7Vr9J+nDp1Ss8884zatGkju92uiIgI3Xbbbdq5c6dHvYsWLVK/fv3kcDhUv359tW3bVpmZmW5lFixYoOTkZNWvX1+NGjXS5ZdfrpycHLcyEyZMkM1m0/r163XjjTeqcePGatmypaSyx0Y6HfzuvPNONW/eXCEhIYqPj9fEiRN18uTJct/PvXv36u6771a7du3UsGFDRUREqG/fvlq5cqXb+9msWTNJcn0WbDabbr/9dkllH6J688031alTJ4WGhqpJkya67rrrtGXLFrcyt99+uxo2bKgffvhBV1xxhRo2bKjY2Fg9+OCD5334EfCXujXdAOC37IcffpAk14Zpx44duvPOO3XRRRdJklatWqV7771Xu3bt0hNPPOG27Pr167Vlyxb95S9/UXx8vBo0aKBrr71Wffv21WWXXabHH39cksrdY7Njxw4lJCRo2LBhatKkifLz8/Xqq6/q0ksv1ffff6/w8PBK9evNN99UdHS0Bg0apHr16um9997TjBkzNH78eJ/rGjVqlH799Ve99NJL+vDDD12HWNq1aydJuuuuuzRt2jSNGTNGgwcP1o4dO/T4449r2bJlWr9+vasP06dPV3p6unr37q3XXntNERER+s9//qPNmze7Xuu9997TLbfcotTUVM2ePVvFxcV65pln1KdPHy1ZskR/+MMf3Np2/fXXa9iwYRo9erTbYUZvY1NQUKBu3bqpTp06euKJJ9SyZUvl5OTor3/9q3bs2KG33nqrzPfg119/lSSNHz9eUVFROnTokObPn+9qV58+fRQdHa1FixZp4MCBGjlypEaNGiXpv58tbzIzM/Xoo4/q5ptvVmZmpvbv368JEyYoOTlZa9asUatWrVxlT5w4oauvvlojR47Ugw8+qBUrVujJJ5+Uw+Hw+GwCtYIB4HdvvfWWkWRWrVplTpw4YYqKisynn35qmjVrZho1amQKCgo8likpKTEnTpwwkyZNMk2bNjWnTp1yPRcXF2eCgoLM1q1bPZZr0KCBGTFihMf8pUuXGklm6dKlZbbz5MmT5tChQ6ZBgwbmhRde8GnZUitWrDCSzCOPPGKMMebUqVMmPj7exMXFufVh+/btRpJ56623POqQZMaPH+96/OyzzxpJZvv27W7ltmzZYiSZu+++223+119/bSSZRx991BhjTFFRkQkLCzN/+MMf3NpwppKSEhMTE2M6dOhgSkpKXPOLiopMRESESUlJcc0bP368kWSeeOIJj3rKGps777zTNGzY0Pz8889u8//+978bSea7774rs/9nO3nypDlx4oTp16+fue6661zz9+7dW+aypZ/B0vfwwIEDpl69euaKK65wK5ebm2vsdrsZPny4a96IESOMJPP++++7lb3iiitMQkJCme0EahKHqIBqlJSUpODgYDVq1EiDBw9WVFSUPv/8c0VGRkqSvvzyS/Xv318Oh0NBQUEKDg7WE088of3792vPnj1udXXs2FGtW7c+r/YcOnRIDz/8sH73u9+pbt26qlu3rho2bKjDhw97HKaoqNLzbf70pz9Jkuswyc8//6wlS5acV3vPtnTpUklyHYYp1a1bN7Vt29b1etnZ2SosLNTdd98tm83mta6tW7fql19+UVpamurU+e+qsWHDhrrhhhu0atUqj/NsbrjhBq91eRubTz/9VJdddpliYmJ08uRJ1zRo0CBJ0vLly8vt62uvvaYuXbooNDRUdevWVXBwsJYsWVLpccrJydHRo0c93rvY2Fj17dvXY6xsNpuuuuoqj36e7+FMwF8IOEA1mjlzptasWaMNGzbol19+0aZNm9SjRw9J0urVq5WamipJeuONN/Tvf/9ba9as0WOPPSbJ80TVqrgaZvjw4Zo6dapGjRqlf/3rX1q9erXWrFmjZs2aVerE2KKiIn3wwQfq1q2bmjVrpoMHD+rgwYO67rrrZLPZqvxk4/3790vy/l7ExMS4nt+7d68kqXnz5pWu69SpUzpw4IDb/LLGwNv83bt365NPPlFwcLDbdMkll0iS9u3bV2bbpkyZorvuukvdu3fXvHnztGrVKq1Zs0YDBw6s9AnMFX3vStWvX1+hoaFu8+x2u44dO1ap1wf8jXNwgGrUtm1bde3a1etzc+bMUXBwsD799FO3DUlZV1iVtSeiopxOpz799FONHz9ejzzyiGt+cXGx65wPX82ePVtHjhzR6tWr1bhxY4/n58+frwMHDqhx48auPp59kurZG9byNG3aVJKUn5/vEV5++eUX1/k3peeheDvx2FtdZ/vll19Up04djz6VNQbe5oeHh6tjx47629/+5nWZmJiYMtv27rvvqk+fPnr11Vfd5hcVFZW5zLmcq7+VPf8KqC3YgwPUEqU3AAwKCnLNO3r0qN555x2f6rHb7RX6q95ms8kY43HZ8D//+U+VlJT49Jqlpk+frkaNGmnJkiVaunSp2/Tss8+quLhYs2bNkiRFRkYqNDRUmzZtcqvj448/9tonyXMvVt++fSWdDgBnWrNmjbZs2aJ+/fpJklJSUuRwOPTaa695XJFWKiEhQRdeeKHee+89tzKHDx/WvHnzXFdWVdbgwYO1efNmtWzZUl27dvWYygs4NpvNY5w2bdrkcXVXWe+TN8nJyapXr57He7dz5059+eWXrvcOCFTswQFqiSuvvFJTpkzR8OHDdccdd2j//v36+9//7vN9Szp06KBly5bpk08+UXR0tBo1aqSEhASPcmFhYerVq5eeffZZhYeHq0WLFlq+fLmmT5+uCy64wOf2b968WatXr9Zdd93lCh5n6tGjh5577jlNnz5dY8aMkc1m06233qo333xTLVu2VKdOnbR69Wq99957XvskSS+88IJGjBih4OBgJSQkKCEhQXfccYdeeukl1alTR4MGDXJdRRUbG6sHHnhA0unzaJ577jmNGjVK/fv3V3p6uiIjI/XDDz/om2++0dSpU1WnTh0988wzuuWWWzR48GDdeeedKi4u1rPPPquDBw/q6aef9vk9OdOkSZOUlZWllJQU3XfffUpISNCxY8e0Y8cOLVy4UK+99lqZh9AGDx6sJ598UuPHj1fv3r21detWTZo0SfHx8W6XmDdq1EhxcXH6+OOP1a9fPzVp0sQ1tme74IIL9Pjjj+vRRx/Vbbfdpptvvln79+/XxIkTFRoaWqkr3oBapYZPcgZ+E0qvYFmzZk255d58802TkJBg7Ha7ufjii01mZqaZPn26xxVEcXFx5sorr/Rax8aNG02PHj1M/fr1jSTTu3dvY4z3K6F27txpbrjhBtO4cWPTqFEjM3DgQLN582YTFxfndiVWRa6iGjt2rJFkNm7cWGaZRx55xEgy69atM8YY43Q6zahRo0xkZKRp0KCBueqqq8yOHTu8XgmUkZFhYmJiTJ06ddzaUlJSYiZPnmxat25tgoODTXh4uLn11ltNXl6ex+svXLjQ9O7d2zRo0MDUr1/ftGvXzkyePNmtzEcffWS6d+9uQkNDTYMGDUy/fv3Mv//9b7cypVdR7d271+M1yhubvXv3mvvuu8/Ex8eb4OBg06RJE5OYmGgee+wxc+jQIVe5s/tfXFxsHnroIXPhhRea0NBQ06VLF/PRRx+ZESNGmLi4OLfXWLx4sencubOx2+1Gkmscz76KqtQ///lP07FjRxMSEmIcDoe55ppr3K7oMub0VVQNGjTw6E/p+wDURjZjythfCwAAEKA4BwcAAFgOAQcAAFgOAQcAAFiOXwPOihUrdNVVVykmJkY2m61Cv5i8fPlyJSYmKjQ0VBdffLFee+01jzLz5s1Tu3btZLfb1a5dO82fP98PrQcAAIHKrwHn8OHD6tSpk6ZOnVqh8tu3b9cVV1yhnj17asOGDXr00Ud13333ad68ea4yOTk5Gjp0qNLS0vTNN98oLS1NQ4YM0ddff+2vbgAAgABTbVdR2Ww2zZ8/X9dee22ZZR5++GEtWLDA7bdVRo8erW+++cZ1Q6uhQ4eqsLBQn3/+uavMwIED1bhxY82ePdtv7QcAAIGjVt3oLycnx/VbPKUGDBig6dOn68SJEwoODlZOTo7r5l1nlnn++efLrLe4uNjtdvCnTp3Sr7/+qqZNm5737e4BAED1MMaoqKhIMTExbj+K602tCjgFBQWuX1UuFRkZqZMnT2rfvn2Kjo4us0xBQUGZ9WZmZmrixIl+aTMAAKheeXl55f54rlTLAo7k+SN1pUfQzpzvrUx5e2IyMjI0btw412On06mLLrpIeXl5CgsLO+82/yPrP5qRvUMlpzyP9gXVsen2lBZ64PLWPpcFAAD/VVhYqNjYWDVq1OicZWtVwImKivLYE7Nnzx7VrVvX9cu3ZZU5e6/Omex2u9ff8wkLC6uSgHNb77Z6e+1u1fFyNpPNJo3o3VZhYQ18LgsAADxV5PSSWnUfnOTkZGVlZbnN++KLL9S1a1cFBweXWyYlJaXa2nm2+PAGmnxDR9U54/0OstlUxyZNvqGjWoQ3qFRZAABQOX7dg3Po0CH98MMPrsfbt2/Xxo0b1aRJE1100UXKyMjQrl27NHPmTEmnr5iaOnWqxo0bp/T0dOXk5Gj69OluV0fdf//96tWrlyZPnqxrrrlGH3/8sRYvXqyvvvrKn105p5u6xqr9hWEa9MLpdvzxDy10a/c4r4HFl7IAAMB3ft2Ds3btWnXu3FmdO3eWJI0bN06dO3fWE088IUnKz89Xbm6uq3x8fLwWLlyoZcuW6fe//72efPJJvfjii7rhhhtcZVJSUjRnzhy99dZb6tixo2bMmKG5c+eqe/fu/uxKhcQ1/W9AGXd563IDiy9lAQCAb/y6B6dPnz4q7zY7M2bM8JjXu3dvrV+/vtx6b7zxRt14443n2zwAAGBRteocHAAAgKpAwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZDwAEAAJZTLQHnlVdeUXx8vEJDQ5WYmKiVK1eWWfb222+XzWbzmC655BJXmRkzZngtc+zYseroDgAAqOX8HnDmzp2rsWPH6rHHHtOGDRvUs2dPDRo0SLm5uV7Lv/DCC8rPz3dNeXl5atKkiW666Sa3cmFhYW7l8vPzFRoa6u/uAACAAOD3gDNlyhSNHDlSo0aNUtu2bfX8888rNjZWr776qtfyDodDUVFRrmnt2rU6cOCA/vjHP7qVs9lsbuWioqL83RUAABAg/Bpwjh8/rnXr1ik1NdVtfmpqqrKzsytUx/Tp09W/f3/FxcW5zT906JDi4uLUvHlzDR48WBs2bCizjuLiYhUWFrpNAADAuvwacPbt26eSkhJFRka6zY+MjFRBQcE5l8/Pz9fnn3+uUaNGuc1v06aNZsyYoQULFmj27NkKDQ1Vjx49tG3bNq/1ZGZmyuFwuKbY2NjKdwoAANR61XKSsc1mc3tsjPGY582MGTN0wQUX6Nprr3Wbn5SUpFtvvVWdOnVSz5499f7776t169Z66aWXvNaTkZEhp9PpmvLy8irdFwAAUPvV9Wfl4eHhCgoK8thbs2fPHo+9OmczxujNN99UWlqaQkJCyi1bp04dXXrppWXuwbHb7bLb7b41HgAABCy/7sEJCQlRYmKisrKy3OZnZWUpJSWl3GWXL1+uH374QSNHjjzn6xhjtHHjRkVHR59XewEAgDX4dQ+OJI0bN05paWnq2rWrkpOTNW3aNOXm5mr06NGSTh8+2rVrl2bOnOm23PTp09W9e3e1b9/eo86JEycqKSlJrVq1UmFhoV588UVt3LhRL7/8sr+7AwAAAoDfA87QoUO1f/9+TZo0Sfn5+Wrfvr0WLlzouioqPz/f4544TqdT8+bN0wsvvOC1zoMHD+qOO+5QQUGBHA6HOnfurBUrVqhbt27+7g4AAAgANmOMqelGVLfCwkI5HA45nU6FhYVVWb1Hjp9Uuyf+JUn6ftIA1Q8pOz/6UhYAAPi2/ea3qAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOVUS8B55ZVXFB8fr9DQUCUmJmrlypVlll22bJlsNpvH9H//939u5ebNm6d27drJbrerXbt2mj9/vr+7AQAAAoTfA87cuXM1duxYPfbYY9qwYYN69uypQYMGKTc3t9zltm7dqvz8fNfUqlUr13M5OTkaOnSo0tLS9M033ygtLU1DhgzR119/7e/uAACAAOD3gDNlyhSNHDlSo0aNUtu2bfX8888rNjZWr776arnLRUREKCoqyjUFBQW5nnv++ed1+eWXKyMjQ23atFFGRob69eun559/3s+9AQAAgcCvAef48eNat26dUlNT3eanpqYqOzu73GU7d+6s6Oho9evXT0uXLnV7Licnx6POAQMGlFlncXGxCgsL3SYAAGBdfg04+/btU0lJiSIjI93mR0ZGqqCgwOsy0dHRmjZtmubNm6cPP/xQCQkJ6tevn1asWOEqU1BQ4FOdmZmZcjgcrik2NvY8ewYAAGqzutXxIjabze2xMcZjXqmEhAQlJCS4HicnJysvL09///vf1atXr0rVmZGRoXHjxrkeFxYWEnIAALAwv+7BCQ8PV1BQkMeelT179njsgSlPUlKStm3b5nocFRXlU512u11hYWFuEwAAsC6/BpyQkBAlJiYqKyvLbX5WVpZSUlIqXM+GDRsUHR3tepycnOxR5xdffOFTnQAAwLr8fohq3LhxSktLU9euXZWcnKxp06YpNzdXo0ePlnT68NGuXbs0c+ZMSaevkGrRooUuueQSHT9+XO+++67mzZunefPmueq8//771atXL02ePFnXXHONPv74Yy1evFhfffWVv7sDAAACgN8DztChQ7V//35NmjRJ+fn5at++vRYuXKi4uDhJUn5+vts9cY4fP66HHnpIu3btUr169XTJJZfos88+0xVXXOEqk5KSojlz5ugvf/mLHn/8cbVs2VJz585V9+7d/d0dAAAQAGzGGFPTjahuhYWFcjgccjqdVXo+zpHjJ9XuiX9Jkr6fNED1Q8rOj76UBQAAvm2/+S0qAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOQQcAABgOdUScF555RXFx8crNDRUiYmJWrlyZZllP/zwQ11++eVq1qyZwsLClJycrH/9619uZWbMmCGbzeYxHTt2zN9dAQAAAcDvAWfu3LkaO3asHnvsMW3YsEE9e/bUoEGDlJub67X8ihUrdPnll2vhwoVat26dLrvsMl111VXasGGDW7mwsDDl5+e7TaGhof7uDgAACAB1/f0CU6ZM0ciRIzVq1ChJ0vPPP69//etfevXVV5WZmelR/vnnn3d7/NRTT+njjz/WJ598os6dO7vm22w2RUVF+bXtAAAgMPl1D87x48e1bt06paamus1PTU1VdnZ2heo4deqUioqK1KRJE7f5hw4dUlxcnJo3b67Bgwd77OE5U3FxsQoLC90mAABgXX4NOPv27VNJSYkiIyPd5kdGRqqgoKBCdTz33HM6fPiwhgwZ4prXpk0bzZgxQwsWLNDs2bMVGhqqHj16aNu2bV7ryMzMlMPhcE2xsbGV7xQAAKj1quUkY5vN5vbYGOMxz5vZs2drwoQJmjt3riIiIlzzk5KSdOutt6pTp07q2bOn3n//fbVu3VovvfSS13oyMjLkdDpdU15e3vl1CAAA1Gp+PQcnPDxcQUFBHntr9uzZ47FX52xz587VyJEj9cEHH6h///7llq1Tp44uvfTSMvfg2O122e123xoPAAACll/34ISEhCgxMVFZWVlu87OyspSSklLmcrNnz9btt9+u9957T1deeeU5X8cYo40bNyo6Ovq82wwAAAKf36+iGjdunNLS0tS1a1clJydr2rRpys3N1ejRoyWdPny0a9cuzZw5U9LpcHPbbbfphRdeUFJSkmvvT7169eRwOCRJEydOVFJSklq1aqXCwkK9+OKL2rhxo15++WV/dwcAAAQAvwecoUOHav/+/Zo0aZLy8/PVvn17LVy4UHFxcZKk/Px8t3vivP766zp58qTuuece3XPPPa75I0aM0IwZMyRJBw8e1B133KGCggI5HA517txZK1asULdu3fzdHQAAEABsxhhT042oboWFhXI4HHI6nQoLC6uyeo8cP6l2T5y+6/L3kwaofkjZ+dGXsgAAwLftN79FBQAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALIeAAwAALKduTTcAAKxg+77Den9tnnYeOKrmjetpSNdYxYc3qOlmAb9ZBBwAOE/vr83TI/M2yWazyRgjm82m15f/qMk3dNRNXWNrunkIEITkqkXAAYDzsH3fYT0yb5NOGUnGnJ75//99eN4mXdqiiVqwkcI5EJKrHufgAMB5eH9tnmw2m9fnbDab5q7Nq+YWIdCcGZJLThm3fx+et0k79h2u6SYGJAIOAJyHnQeOypTuuTmLMUY7Dxyt5hYh0BCS/YNDVLAsjmejOjRvXO/0xslLyLHZbGreuF4NtAqBhJDsHwScAODLhpqN+mkcz0Z1GdI1Vq8v/9Hrc8YYDeXzVmWsun4L1JBc28eDgFNNcn7c7/b42IkS1/+//ulXhQYHeV1u2dY9mrbyJ9kkGUk2Sa8t/1F39rpYvVtHVLqsleU7j+rheZtOryvOOunzz/M2qW6dOopyhNZcA2E5d/S6WK+v+Mn1catjO/0dvKPXxcp3HlO+81iNts+bfOdRLdu6V3sPFatZQ7v6JDRTtKN2bkgla6/fWkU01Kky9uCcMkatIxp5bENqWkXGI7ll05psIufg1Gb5zqOatvL0SvOUkdu/r6/4SQVnrDR9KWt1y7bulfej2ae/hEu37qnO5uA3oHfrCGVe18H1eGD7KE256fe1dsO7bOsePfjBN/p00y9a9dN+fbrpFz34wTda/p/a+d2w+vot2lFPd/a6WGeehlPHJtls0p29Lq51f5AFyniwB6cWK91Qe8v1pRvqm7td5HNZq9t7qNjr+yCdfn/2Hio+r/oD7S9fX9G/yokM++9G6KbE2DL3yta0MzdOpd+T0n9fX/GTEiLDat0G1d/rt9rwme/dOkItmjbQIx9+K+l0SL68bVStGwspcLY3BJxazJcNtb836oGkWUN7uV++Zg3tla7b227ZTzb9UiO7yf2xUvZn/2rDRqQ2jV9NqW0bp4p8Lvy5fqtNnwl/heSq/u4FyvaGgFOL+bKh9udGPdD0SWimTzb94vU5I+myhMqttGrTX76+rpQrsoLzZ/9qw0akNo1fTapNG6eKfi4qs37z12e+NgR1X/jjuxco25tqOQfnlVdeUXx8vEJDQ5WYmKiVK1eWW3758uVKTExUaGioLr74Yr322mseZebNm6d27drJbrerXbt2mj9/vr+aX2P6JDQrd0V05obal7Kl8p1HNXt1rl78cptmr85VvrP8SxF9Le8PFWmDv45n15Zze3w9/l3R8y0q07+KjEdtOV5fW8avppVunLwpb+NU1d9/Xz4Xvq7f/PWZr8y5SzW53vTXd68y25ua4Pc9OHPnztXYsWP1yiuvqEePHnr99dc1aNAgff/997roIs/doNu3b9cVV1yh9PR0vfvuu/r3v/+tu+++W82aNdMNN9wgScrJydHQoUP15JNP6rrrrtP8+fM1ZMgQffXVV+revXuF23bk+EnVPX6yyvp65Iy6jpxV75lXTUlS8RmPi896rlTj+iH6U0q83vz3dteHqfTqjD+lxOuC+sGuen0pK0krt+3VW9k7PFL9n1Li9YdW4R5t8bW8LwoKj2nltr3af+i4mjYMUc9WzRQV5hlCfGlD9/iminGE6okF30uSLm8bqcvaRCgyLNRjLCpqd+Gxcr/UuwuPVbruUhV5LxZv2V3uX09ZWwp0U2Ksq77y/kJt0bSBa7e4r/2r6Hj40l5/qsz4VfSzKVXsO10ZvrShIpJbNi13D2dKy6Ye74M/vv++fC58Wb/56zPvS72lfH3fqvozVJnvXkU+bxUdj7O3g1XBlzptpqy7C1WR7t27q0uXLnr11Vdd89q2batrr71WmZmZHuUffvhhLViwQFu2bHHNGz16tL755hvl5ORIkoYOHarCwkJ9/vnnrjIDBw5U48aNNXv2bI86i4uLVVz8392uhYWFio2NVezY91XHXr9K+gkAAPzrVPER5T0/RE6nU2FhYeWW9eshquPHj2vdunVKTU11m5+amqrs7Gyvy+Tk5HiUHzBggNauXasTJ06UW6asOjMzM+VwOFxTbCw33gIAwMr8eohq3759KikpUWRkpNv8yMhIFRQUeF2moKDAa/mTJ09q3759io6OLrNMWXVmZGRo3Lhxrsele3BWP9bvnAmwqnz906/V8joV8dryH7V6x6/ebpopm03q1qKJRvduWeny0undq6NnrT+9/C1dZPdyNcAH6/K0aHPB6V9hPksd2+nLJEt3n1amDb6oSHsl6att+/Rm9na3Xc6lu2XL2uVckXp9eS8KCo/p0fnflvleZF7XwbWr3Jd6femfL+PhS3tLVfR9K5W7/7DGf3L6cOSAdpHq0ybC62GcivbP1/fNFyu37dVb/97hddf++bShovX6yl9jXZnPRUX46zPva721YZ3lz3VFRXS/uIlP5SuisLBQ0c9XrGy1XEV19o+Ild4635fyZ8/3pU673S673fPEufohdVU/pHouJKtN98SIDAst97hsZFioW3t9LS+d/mKVWrDpF/VvG+lxpcGBIyfKPf594MgJV72VaUNl2YODyqyrf7tItb/QoaVb97iuorgsIaJCJy6XV68v70WLpg105/+/c+7ZK+U7e12suKb/vVV6/7aR+nyz9+BvJF3eNsqtTRXtny/j4Ut7vSnvfZP+e5VIqawtu/XFlt1erxKpaP98GQ9f5DuP6q3sHW51l25Q3szervYXOlxt8aUNvtTrK1/GOufH/eWWzf5xv+sS9PP9XJTFX595X+utDessX95jf3zm/bF9PelDnX7duoeHhysoKMhjz8qePXs89sCUioqK8lq+bt26atq0abllyqoT7ny9jNrX8mdvcBZtLtDnmwvO69JPf136XRlRjtAqv0+Ir5dd9m4doYTIsHOulEuvKCtrBedto1eR/vk6HhVtr6/OvEqkVOmGvazLfCvSP39dBuvLPWh8aYM/723jy1j7egm6Pz4X/vrM+1qvv9dZZ/4R+cG6PK9/REoVf48D5dJvX/g14ISEhCgxMVFZWVm67rrrXPOzsrJ0zTXXeF0mOTlZn3zyidu8L774Ql27dlVwcLCrTFZWlh544AG3MikpKX7ohfX4+kX1pbwvGxxfVgCVWWn5oqIrC3+pzMqwokErkDYivvLXht1fGydfAoA/g4UvfBnrymwk/fG58Feg9qVef66zKvpHZCl//NESCPx+fGbcuHFKS0tT165dlZycrGnTpik3N1ejR4+WdPr8mF27dmnmzJmSTl8xNXXqVI0bN07p6enKycnR9OnT3a6Ouv/++9WrVy9NnjxZ11xzjT7++GMtXrxYX331lb+7Yxm+rgAqWt6XDY6vKwB/rbR8XVn4g78DXCBtRHzhrw27v8bDlwDg72Dhi4qOdW3aSPrjM+9rvf74jlRmr2VF+HsdVBP8HnCGDh2q/fv3a9KkScrPz1f79u21cOFCxcXFSZLy8/OVm5vrKh8fH6+FCxfqgQce0Msvv6yYmBi9+OKLrnvgSFJKSormzJmjv/zlL3r88cfVsmVLzZ0716d74MD3FUBFyvt7F3VVr7T8tbKojNoQGHzlr41IRflzw+6P8fDXob3qCBb+OIzzW1DV3xF/Ho4MxHVQearlDNu7775bd999t9fnZsyY4TGvd+/eWr9+fbl13njjjbrxxhuronmoQrVlF3VF1bbf5anpwBBo/L1hr+rxqC3nh/iT1TaStY2/f2rDSusgfosKVao27aKuCH+vLGr63J5AVdH3rTZt2CuqNpwf4m9W2kjWNlY8Gdhf/H4n49qosLBQDoejQndChO8+WJunh+dtks1mc12+b4zR5Bs66qautesmi5MX/Z+mrfhJJV5u/hBUx6Y7el2shwe2qVTd76/N0yPzNrkOeQXZbDKqne9DbVKZ923HvsOauzZPOw8cVfPG9TS0a6xahFfuMmOgNtu+77D6PbeszPvVfPlgH0t/9n3ZfhNwCDh+ESgbHH+tLH7rK6HK4n0Dzi2Q/oisar5svzlEBb9oEd6g0ns+qlN8eANNvqFjmSuLym5M31+bd/rGk17+frDZbJq7Ni8g3p/qxvsGnNtNXWN1aYsmAfFHZE0i4OA3zx8ri50HjqqsnaPGGO08cLTSdVsZ7xtQMYHyR2RNIuAAqvqVRfPG9crdE9G8MScae8P7BqCq+PXXxIHfqiFdY8vdEzHU4sfJK4v3DUBVIeAAflB6bk8d2+mrsc7893zO7bE63jcAVYWrqLiKCn4UKFeT1Ta8bwC84TLxcyDgAAAQeHzZfnOICgAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWA4BBwAAWI5fA86BAweUlpYmh8Mhh8OhtLQ0HTx4sMzyJ06c0MMPP6wOHTqoQYMGiomJ0W233aZffvnFrVyfPn1ks9ncpmHDhvmzKwAAIID4NeAMHz5cGzdu1KJFi7Ro0SJt3LhRaWlpZZY/cuSI1q9fr8cff1zr16/Xhx9+qP/85z+6+uqrPcqmp6crPz/fNb3++uv+7AoAAAggdf1V8ZYtW7Ro0SKtWrVK3bt3lyS98cYbSk5O1tatW5WQkOCxjMPhUFZWltu8l156Sd26dVNubq4uuugi1/z69esrKirKX80HAAABzG97cHJycuRwOFzhRpKSkpLkcDiUnZ1d4XqcTqdsNpsuuOACt/mzZs1SeHi4LrnkEj300EMqKioqs47i4mIVFha6TQAAwLr8tgenoKBAERERHvMjIiJUUFBQoTqOHTumRx55RMOHD1dYWJhr/i233KL4+HhFRUVp8+bNysjI0DfffOOx96dUZmamJk6cWLmOAACAgOPzHpwJEyZ4nOB79rR27VpJks1m81jeGON1/tlOnDihYcOG6dSpU3rllVfcnktPT1f//v3Vvn17DRs2TP/7v/+rxYsXa/369V7rysjIkNPpdE15eXm+dhsAAAQQn/fgjBkz5pxXLLVo0UKbNm3S7t27PZ7bu3evIiMjy13+xIkTGjJkiLZv364vv/zSbe+NN126dFFwcLC2bdumLl26eDxvt9tlt9vLrQMAAFiHzwEnPDxc4eHh5yyXnJwsp9Op1atXq1u3bpKkr7/+Wk6nUykpKWUuVxputm3bpqVLl6pp06bnfK3vvvtOJ06cUHR0dMU7AgAALMtvJxm3bdtWAwcOVHp6ulatWqVVq1YpPT1dgwcPdruCqk2bNpo/f74k6eTJk7rxxhu1du1azZo1SyUlJSooKFBBQYGOHz8uSfrxxx81adIkrV27Vjt27NDChQt10003qXPnzurRo4e/ugMAAAKIX++DM2vWLHXo0EGpqalKTU1Vx44d9c4777iV2bp1q5xOpyRp586dWrBggXbu3Knf//73io6Odk2lV16FhIRoyZIlGjBggBISEnTfffcpNTVVixcvVlBQkD+7AwAAAoTNGGNquhHVrbCwUA6HQ06n85zn9wAAgNrBl+03v0UFAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsh4ADAAAsx68B58CBA0pLS5PD4ZDD4VBaWpoOHjxY7jK33367bDab25SUlORWpri4WPfee6/Cw8PVoEEDXX311dq5c6cfewIAAAKJXwPO8OHDtXHjRi1atEiLFi3Sxo0blZaWds7lBg4cqPz8fNe0cOFCt+fHjh2r+fPna86cOfrqq6906NAhDR48WCUlJf7qCgAACCB1/VXxli1btGjRIq1atUrdu3eXJL3xxhtKTk7W1q1blZCQUOaydrtdUVFRXp9zOp2aPn263nnnHfXv31+S9O677yo2NlaLFy/WgAEDqr4zAAAgoPhtD05OTo4cDocr3EhSUlKSHA6HsrOzy1122bJlioiIUOvWrZWenq49e/a4nlu3bp1OnDih1NRU17yYmBi1b9++zHqLi4tVWFjoNgEAAOvyW8ApKChQRESEx/yIiAgVFBSUudygQYM0a9Ysffnll3ruuee0Zs0a9e3bV8XFxa56Q0JC1LhxY7flIiMjy6w3MzPTdR6Qw+FQbGzsefQMAADUdj4HnAkTJnicBHz2tHbtWkmSzWbzWN4Y43V+qaFDh+rKK69U+/btddVVV+nzzz/Xf/7zH3322Wfltqu8ejMyMuR0Ol1TXl6eDz0GAACBxudzcMaMGaNhw4aVW6ZFixbatGmTdu/e7fHc3r17FRkZWeHXi46OVlxcnLZt2yZJioqK0vHjx3XgwAG3vTh79uxRSkqK1zrsdrvsdnuFXxMAAAQ2nwNOeHi4wsPDz1kuOTlZTqdTq1evVrdu3SRJX3/9tZxOZ5lBxJv9+/crLy9P0dHRkqTExEQFBwcrKytLQ4YMkSTl5+dr8+bNeuaZZ3ztDgAAsCC/nYPTtm1bDRw4UOnp6Vq1apVWrVql9PR0DR482O0KqjZt2mj+/PmSpEOHDumhhx5STk6OduzYoWXLlumqq65SeHi4rrvuOkmSw+HQyJEj9eCDD2rJkiXasGGDbr31VnXo0MF1VRUAAPht89tl4pI0a9Ys3Xfffa4rnq6++mpNnTrVrczWrVvldDolSUFBQfr22281c+ZMHTx4UNHR0brssss0d+5cNWrUyLXMP/7xD9WtW1dDhgzR0aNH1a9fP82YMUNBQUH+7A4AAAgQNmOMqelGVLfCwkI5HA45nU6FhYXVdHMAAEAF+LL95reoAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5RBwAACA5fg14Bw4cEBpaWlyOBxyOBxKS0vTwYMHy13GZrN5nZ599llXmT59+ng8P2zYMH92BQAABJC6/qx8+PDh2rlzpxYtWiRJuuOOO5SWlqZPPvmkzGXy8/PdHn/++ecaOXKkbrjhBrf56enpmjRpkutxvXr1qrDlAAAgkPkt4GzZskWLFi3SqlWr1L17d0nSG2+8oeTkZG3dulUJCQlel4uKinJ7/PHHH+uyyy7TxRdf7Da/fv36HmUBAAAkPx6iysnJkcPhcIUbSUpKSpLD4VB2dnaF6ti9e7c+++wzjRw50uO5WbNmKTw8XJdccokeeughFRUVlVlPcXGxCgsL3SYAAGBdftuDU1BQoIiICI/5ERERKigoqFAdb7/9tho1aqTrr7/ebf4tt9yi+Ph4RUVFafPmzcrIyNA333yjrKwsr/VkZmZq4sSJvncCAAAEJJ/34EyYMKHME4FLp7Vr10o6fcLw2YwxXud78+abb+qWW25RaGio2/z09HT1799f7du317Bhw/S///u/Wrx4sdavX++1noyMDDmdTteUl5fnY68BAEAg8XkPzpgxY855xVKLFi20adMm7d692+O5vXv3KjIy8pyvs3LlSm3dulVz5849Z9kuXbooODhY27ZtU5cuXTyet9vtstvt56wHAABYg88BJzw8XOHh4ecsl5ycLKfTqdWrV6tbt26SpK+//lpOp1MpKSnnXH769OlKTExUp06dzln2u+++04kTJxQdHX3uDgAAAMvz20nGbdu21cCBA5Wenq5Vq1Zp1apVSk9P1+DBg92uoGrTpo3mz5/vtmxhYaE++OADjRo1yqPeH3/8UZMmTdLatWu1Y8cOLVy4UDfddJM6d+6sHj16+Ks7AAAggPj1Rn+zZs1Shw4dlJqaqtTUVHXs2FHvvPOOW5mtW7fK6XS6zZszZ46MMbr55ps96gwJCdGSJUs0YMAAJSQk6L777lNqaqoWL16soKAgf3YHAAAECJsxxtR0I6pbYWGhHA6HnE6nwsLCaro5AACgAnzZfvNbVAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHIIOAAAwHL8GnD+9re/KSUlRfXr19cFF1xQoWWMMZowYYJiYmJUr1499enTR999951bmeLiYt17770KDw9XgwYNdPXVV2vnzp1+6AEAAAhEfg04x48f10033aS77rqrwss888wzmjJliqZOnao1a9YoKipKl19+uYqKilxlxo4dq/nz52vOnDn66quvdOjQIQ0ePFglJSX+6AYAAAgwNmOM8feLzJgxQ2PHjtXBgwfLLWeMUUxMjMaOHauHH35Y0um9NZGRkZo8ebLuvPNOOZ1ONWvWTO+8846GDh0qSfrll18UGxurhQsXasCAAedsT2FhoRwOh5xOp8LCws67fwAAwP982X7XraY2Vcj27dtVUFCg1NRU1zy73a7evXsrOztbd955p9atW6cTJ064lYmJiVH79u2VnZ3tNeAUFxeruLjY9djpdEo6/UYBAIDAULrdrsi+mVoVcAoKCiRJkZGRbvMjIyP1888/u8qEhISocePGHmVKlz9bZmamJk6c6DE/Nja2KpoNAACqUVFRkRwOR7llfA44EyZM8BoWzrRmzRp17drV16pdbDab22NjjMe8s5VXJiMjQ+PGjXM9PnXqlH799Vc1bdr0nPX6qrCwULGxscrLy7Pk4S8r98/KfZPoXyCzct8k+hfIqrtvxhgVFRUpJibmnGV9DjhjxozRsGHDyi3TokULX6uVJEVFRUk6vZcmOjraNX/Pnj2uvTpRUVE6fvy4Dhw44LYXZ8+ePUpJSfFar91ul91ud5tX0au6KissLMxyH+QzWbl/Vu6bRP8CmZX7JtG/QFadfTvXnptSPgec8PBwhYeH+9ygioiPj1dUVJSysrLUuXNnSaevxFq+fLkmT54sSUpMTFRwcLCysrI0ZMgQSVJ+fr42b96sZ555xi/tAgAAgcWv5+Dk5ubq119/VW5urkpKSrRx40ZJ0u9+9zs1bNhQktSmTRtlZmbquuuuk81m09ixY/XUU0+pVatWatWqlZ566inVr19fw4cPl3Q6uY0cOVIPPvigmjZtqiZNmuihhx5Shw4d1L9/f392BwAABAi/BpwnnnhCb7/9tutx6V6ZpUuXqk+fPpKkrVu3uq5qkqQ///nPOnr0qO6++24dOHBA3bt31xdffKFGjRq5yvzjH/9Q3bp1NWTIEB09elT9+vXTjBkzFBQU5M/uVIjdbtf48eM9DolZhZX7Z+W+SfQvkFm5bxL9C2S1uW/Vch8cAACA6sRvUQEAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4AAAAMsh4FShV155RfHx8QoNDVViYqJWrlxZ002qEhMmTJDNZnObSu86HYhWrFihq666SjExMbLZbProo4/cnjfGaMKECYqJiVG9evXUp08ffffddzXT2Eo4V/9uv/12j/FMSkqqmcb6KDMzU5deeqkaNWqkiIgIXXvttdq6datbmUAdv4r0LZDH7tVXX1XHjh1dd7xNTk7W559/7no+UMet1Ln6F8hjd7bMzEzXfetK1cbxI+BUkblz52rs2LF67LHHtGHDBvXs2VODBg1Sbm5uTTetSlxyySXKz893Td9++21NN6nSDh8+rE6dOmnq1Klen3/mmWc0ZcoUTZ06VWvWrFFUVJQuv/xyFRUVVXNLK+dc/ZOkgQMHuo3nwoULq7GFlbd8+XLdc889WrVqlbKysnTy5Emlpqbq8OHDrjKBOn4V6ZsUuGPXvHlzPf3001q7dq3Wrl2rvn376pprrnFtBAN13Eqdq39S4I7dmdasWaNp06apY8eObvNr5fgZVIlu3bqZ0aNHu81r06aNeeSRR2qoRVVn/PjxplOnTjXdDL+QZObPn+96fOrUKRMVFWWefvpp17xjx44Zh8NhXnvttRpo4fk5u3/GGDNixAhzzTXX1Eh7qtqePXuMJLN8+XJjjLXG7+y+GWOtsTPGmMaNG5t//vOflhq3M5X2zxhrjF1RUZFp1aqVycrKMr179zb333+/Mab2fu/Yg1MFjh8/rnXr1ik1NdVtfmpqqrKzs2uoVVVr27ZtiomJUXx8vIYNG6affvqpppvkF9u3b1dBQYHbWNrtdvXu3dsyYylJy5YtU0REhFq3bq309HTt2bOnpptUKaV3QW/SpIkka43f2X0rZYWxKykp0Zw5c3T48GElJydbatwkz/6VCvSxu+eee3TllVd6/CxSbR0/v/5Uw2/Fvn37VFJS4vrF81KRkZEqKCiooVZVne7du2vmzJlq3bq1du/erb/+9a9KSUnRd999p6ZNm9Z086pU6Xh5G8uff/65JppU5QYNGqSbbrpJcXFx2r59ux5//HH17dtX69atq5W3Wy+LMUbjxo3TH/7wB7Vv316SdcbPW9+kwB+7b7/9VsnJyTp27JgaNmyo+fPnq127dq6NYKCPW1n9kwJ/7ObMmaP169drzZo1Hs/V1u8dAacK2Ww2t8fGGI95gWjQoEGu/3fo0EHJyclq2bKl3n77bY0bN64GW+Y/Vh1LSRo6dKjr/+3bt1fXrl0VFxenzz77TNdff30Ntsw3Y8aM0aZNm/TVV195PBfo41dW3wJ97BISErRx40YdPHhQ8+bN04gRI7R8+XLX84E+bmX1r127dgE9dnl5ebr//vv1xRdfKDQ0tMxytW38OERVBcLDwxUUFOSxt2bPnj0eidYKGjRooA4dOmjbtm013ZQqV3p12G9lLCUpOjpacXFxATWe9957rxYsWKClS5eqefPmrvlWGL+y+uZNoI1dSEiIfve736lr167KzMxUp06d9MILL1hi3KSy++dNII3dunXrtGfPHiUmJqpu3bqqW7euli9frhdffFF169Z1jVFtGz8CThUICQlRYmKisrKy3OZnZWUpJSWlhlrlP8XFxdqyZYuio6NruilVLj4+XlFRUW5jefz4cS1fvtySYylJ+/fvV15eXkCMpzFGY8aM0Ycffqgvv/xS8fHxbs8H8vidq2/eBNLYeWOMUXFxcUCPW3lK++dNII1dv3799O2332rjxo2uqWvXrrrlllu0ceNGXXzxxbVz/Gro5GbLmTNnjgkODjbTp08333//vRk7dqxp0KCB2bFjR0037bw9+OCDZtmyZeann34yq1atMoMHDzaNGjUK2L4VFRWZDRs2mA0bNhhJZsqUKWbDhg3m559/NsYY8/TTTxuHw2E+/PBD8+2335qbb77ZREdHm8LCwhpuecWU17+ioiLz4IMPmuzsbLN9+3azdOlSk5ycbC688MKA6N9dd91lHA6HWbZsmcnPz3dNR44ccZUJ1PE7V98CfewyMjLMihUrzPbt282mTZvMo48+aurUqWO++OILY0zgjlup8voX6GPnzZlXURlTO8ePgFOFXn75ZRMXF2dCQkJMly5d3C7vDGRDhw410dHRJjg42MTExJjrr7/efPfddzXdrEpbunSpkeQxjRgxwhhz+pLH8ePHm6ioKGO3202vXr3Mt99+W7ON9kF5/Tty5IhJTU01zZo1M8HBweaiiy4yI0aMMLm5uTXd7Arx1i9J5q233nKVCdTxO1ffAn3s/vSnP7nWj82aNTP9+vVzhRtjAnfcSpXXv0AfO2/ODji1cfxsxhhTffuLAAAA/I9zcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOUQcAAAgOX8Pxtwl7LQWDagAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "from statsmodels.tsa.stattools import adfuller\n", "from statsmodels.graphics.tsaplots import plot_acf, plot_pacf\n", "\n", "df['Close'].plot(figsize=(12,6), title=\"Apple Stock Closing Prices\")\n", "plt.show()\n", "\n", "result = adfuller(df['Close'])\n", "print(\"ADF Statistic:\", result[0])\n", "print(\"p-value:\", result[1])\n", "\n", "plot_acf(df['Close'], lags=40)\n", "plot_pacf(df['Close'], lags=40)\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 716 }, "id": "KaLRag6iJPzo", "outputId": "33bbb26e-dbcf-4182-9f2d-0d2e5953904b" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Hp\\anaconda3\\Lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.\n", " self._init_dates(dates, freq)\n", "C:\\Users\\Hp\\anaconda3\\Lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.\n", " self._init_dates(dates, freq)\n", "C:\\Users\\Hp\\anaconda3\\Lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:473: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.\n", " self._init_dates(dates, freq)\n", "C:\\Users\\Hp\\anaconda3\\Lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:836: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.\n", " return get_prediction_index(\n", "C:\\Users\\Hp\\anaconda3\\Lib\\site-packages\\statsmodels\\tsa\\base\\tsa_model.py:836: FutureWarning: No supported index is available. In the next version, calling this method in a model without a supported index will result in an exception.\n", " return get_prediction_index(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9oAAAH5CAYAAAB+sEb2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACt9UlEQVR4nOzdd3hUZdoG8Ht6em8EEkLvHQQBBRakKMWKLqig7lpwUey6fio2sKyIwqqrIiDqYm+4ioBUUekdqaEmISE9mcnU8/0xM2fmTElmkpnMJLl/15UrM+ecOfOGZTH3PO/7vDJBEAQQERERERERUUDIQz0AIiIiIiIiouaEQZuIiIiIiIgogBi0iYiIiIiIiAKIQZuIiIiIiIgogBi0iYiIiIiIiAKIQZuIiIiIiIgogBi0iYiIiIiIiAJIGeoB1IfFYkFeXh5iY2Mhk8lCPRwiIiIiIiJq5gRBQGVlJTIzMyGX116zbpJBOy8vD1lZWaEeBhEREREREbUwZ8+eRZs2bWq9pkkG7djYWADWHzAuLi7EoyEiIiIiIqLmrqKiAllZWWIerU2TDNr26eJxcXEM2kRERERERNRofFm+zGZoRERERERERAHEoE1EREREREQUQAzaRERERERERAHUJNdo+8psNsNoNIZ6GNQCqNXqOlv8ExERERFRy9Asg7YgCCgoKEBZWVmoh0IthFwuR7t27aBWq0M9FCIiIiIiCrFmGbTtITstLQ1RUVE+dYUjqi+LxYK8vDzk5+cjOzubf9+IiIiIiFq4Zhe0zWazGLKTk5NDPRxqIVJTU5GXlweTyQSVShXq4RARERERUQg1u0Wl9jXZUVFRIR4JtST2KeNmsznEIyEiIiIiolBrdkHbjtN3qTHx7xsREREREdk126BNREREREREFAp+B+1NmzZh0qRJyMzMhEwmwzfffCM5X1VVhX/84x9o06YNIiMj0a1bN7z99tuSa/R6PWbPno2UlBRER0dj8uTJOHfuXIN+ECIiIiIiIqJw4HfQrq6uRp8+fbB48WKP5x944AH89NNP+Oijj3D48GE88MADmD17Nr799lvxmjlz5uDrr7/GypUrsWXLFlRVVWHixIlc3xoEI0eOxJw5c0I9DCIiIiIiohbD767jEyZMwIQJE7ye/+233zBjxgyMHDkSAHDnnXfiP//5D3bs2IEpU6agvLwcS5YswYoVKzBmzBgAwEcffYSsrCysXbsW48aNq99P0sTVtcZ3xowZWLZsmd/3/eqrr9gFm4iIiIiIqBEFfI328OHD8d133+H8+fMQBAHr16/H0aNHxQC9c+dOGI1GjB07VnxNZmYmevbsia1bt3q8p16vR0VFheSrucnPzxe/Fi5ciLi4OMmxN954Q3K9vbt6XZKSkhAbGxuMIRMREREREZEHAQ/ab775Jrp37442bdpArVZj/PjxeOuttzB8+HAAQEFBAdRqNRITEyWvS09PR0FBgcd7zp8/H/Hx8eJXVlaWX2MSBAFagykkX4Ig+DTGjIwM8Ss+Ph4ymUx8XlNTg4SEBHz22WcYOXIkIiIi8NFHH6G4uBh//etf0aZNG0RFRaFXr17473//K7mv69TxnJwczJs3D7fffjtiY2ORnZ2Nd999168/TyIiIiIiIvLO76njdXnzzTfx+++/47vvvkPbtm2xadMmzJo1C61atRKninsiCILX6dNPPPEEHnzwQfF5RUWFX2FbZzSj+9Orff8hAujQc+MQpQ7MH/Njjz2G1157DUuXLoVGo0FNTQ0GDBiAxx57DHFxcfjhhx9wyy23oH379hg8eLDX+7z22mt4/vnn8c9//hNffPEF7rnnHlx++eXo2rVrQMZJRERERETUkgU0aOt0Ovzzn//E119/jauuugoA0Lt3b+zZswf/+te/MGbMGGRkZMBgMKC0tFRS1S4sLMTQoUM93lej0UCj0QRyqE3SnDlzcO2110qOPfzww+Lj2bNn46effsLnn39ea9C+8sorMWvWLADW8P76669jw4YNDNpEREREREQBENCgbTQaYTQaIZdLZ6QrFApYLBYAwIABA6BSqbBmzRpMnToVgHV98oEDB/DKK68EcjiiSJUCh54LTZO1SJUiYPcaOHCg5LnZbMZLL72ETz/9FOfPn4der4der0d0dHSt9+ndu7f42D5FvbCwMGDjJCIiIiIKF8cLK7FgzVHcN7oTumbEhXo41EL4HbSrqqpw/Phx8Xlubi727NmDpKQkZGdnY8SIEXjkkUcQGRmJtm3bYuPGjfjwww+xYMECAEB8fDzuuOMOPPTQQ0hOTkZSUhIefvhh9OrVq9ap5Q0hk8kCNn07lFwD9GuvvYbXX38dCxcuRK9evRAdHY05c+bAYDDUeh/XLuQymUz8IISIiIiIqDm5dck25JXXYPupUmx/Mjh5g8iV3+lzx44dGDVqlPjcvnbavv3UypUr8cQTT2D69OkoKSlB27Zt8eKLL+Luu+8WX/P6669DqVRi6tSp0Ol0GD16NJYtWwaFInDV35Zg8+bNmDJlCm6++WYAgMViwbFjx9CtW7cQj4yIiIiIKDzkldcAAIoq9SEeCbUkfgftkSNH1tpJOyMjA0uXLq31HhEREVi0aBEWLVrk79uTk44dO+LLL7/E1q1bkZiYiAULFqCgoIBBm4iIiIiIKIQCvr0XNZ6nnnoK/fv3x7hx4zBy5EhkZGTg6quvDvWwiIiIiIhCTmcwY/0R9iGi0JAJvm70HEYqKioQHx+P8vJyxMVJGxrU1NQgNzcX7dq1Q0RERIhGSC0N/94RERERhZfHv9yHldvPSo6deumqEI2GmoPacqgrVrSJiIiIiKjJM5qlzX1dQ7ZKIWvM4VALx6BNRERERERN2qajRejxzGqMX7gJ728+6fEajTKIjZeLTwCnfg3e/anJYdAmIiIiIqIm7cHP9sBgsuDPgkq88MNhlFa7b3cbrQli0F7UH1h2JVBwIHjvQU0KgzYRERERETVpUWrpZkp6kwVKuXSqeKN0pnpnGPDFHY3wRhTuGLSJiIiIiKhJi49USZ4XV+thskiTtesa7qA58EXjvA+FNQZtIiIiIiJq0uIipRXtvLIat2uM5iCVtC2NFOCpSWHQJiIiIiKiJi0uQlrRPleqdbvGEKyKtsk91DfOPHUKZwzaRERERETUpEVrpBXtc6U6AEC3VnFIi9UAAEyNGbRN+uC8FzUZDNpERERERNSkWVwqyPaK9pD2Sfj5gctt1wBmS+2V5vxyHTYfK4LgT0XaY9DW+f56apYYtMOETCar9WvmzJn1vndOTg4WLlwYsLESEREREYUTk9k1aFuDbqv4CKgUjshTV0O0S+f/gluWbMOvx4v9eHNWtMmdsu5LqDHk5+eLjz/99FM8/fTTOHLkiHgsMjIyFMMiIiIiIgp7rgH6RFEVACAzIVIStA1mCyJU7vtpbzhSiD9yS8Tn206VYHinFB/f3EPQNrKi3dKxoh0mMjIyxK/4+HjIZDLJsU2bNmHAgAGIiIhA+/bt8eyzz8JkMomvnzt3LrKzs6HRaJCZmYn77rsPADBy5EicPn0aDzzwgFgdJyIiIiJqTlyDdo3R+rxLeixUCsfvv6/89Cfu/HCH23rtmUu34+0NJ8Tn0Wr3MO5VyUn3Y+FY0TbWAIbqUI+ixWgZFW1BAIzunQcbhSoKaGC4Xb16NW6++Wa8+eabuOyyy3DixAnceeedAIBnnnkGX3zxBV5//XWsXLkSPXr0QEFBAfbu3QsA+Oqrr9CnTx/ceeed+Pvf/97gH4eIiIiIKNysPVzo8XhaXARkMhlUChmMZgEf/X4GAHAgrwJ9sxK83i9K40dM2vtf92PhtkbbZAD+fQkgVwD3bgcULSMGhlLL+BM2aoF5maF573/mAeroBt3ixRdfxOOPP44ZM2YAANq3b4/nn38ejz76KJ555hmcOXMGGRkZGDNmDFQqFbKzs3HJJZcAAJKSkqBQKBAbG4uMjIwG/zhEREREROGkssbo9VyUrTKtUshhNJvF485lsCMFlW6vUyt8LJTpq4CjP7kf9zSdPJQq84Gy09bHebuArEtCO54WgFPHm4CdO3fiueeeQ0xMjPj197//Hfn5+dBqtbjhhhug0+nQvn17/P3vf8fXX38tmVZORERERNRc6U2eG5wp5DJxfbZGKY09NUZH6P5i51m31xq83NNN0Z+AxcPv3Z4apIWSrtTxuOJ86MbRgrSMirYqylpZDtV7N5DFYsGzzz6La6+91u1cREQEsrKycOTIEaxZswZr167FrFmz8Oqrr2Ljxo1QqVQNfn8iIiIionDlrZN4pFPTs0iVAqVwVL6dw7lS4V579Bbe3djXZ7cdDmT2BX5bbH0ebkH77B+Ox4YQLaltYVpG0JbJGjx9O5T69++PI0eOoGPHjl6viYyMxOTJkzF58mTce++96Nq1K/bv34/+/ftDrVbD7DRVhoiIiIiouTCarFt7RaoU0DlVqp27i7t2GneuaJdpDW739Dlo27uLa2KAcS8CebuB07+GX9Be87Tjcah6V7UwLSNoN3FPP/00Jk6ciKysLNxwww2Qy+XYt28f9u/fjxdeeAHLli2D2WzG4MGDERUVhRUrViAyMhJt27YFYN1He9OmTbjpppug0WiQkuLjVgVERERERGHOYKtoqxQydEqPx75z5QCACJWjUu0atE8XO8JmabX7Gu/zZToUVeqRGqup/c3NtpCutF2njLB+D6c12jUV0uDPoN0ouEa7CRg3bhxWrVqFNWvWYNCgQRgyZAgWLFggBumEhAS89957GDZsGHr37o1169bh+++/R3JyMgDgueeew6lTp9ChQwekpqaG8kchIiIiIgoo+9RxtVIOhdzRxEwyddxlu64X/3dYfFzqoaL9yR9nMOjFtaiopdEaAEeAVbgE7XCqaJ9YJ33OqeONghXtMDRz5kzMnDlTcmzcuHEYN26cx+uvvvpqXH311V7vN2TIEHG7LyIiIiKi5sRktk4dVynkUDoHbbV0jbY3ZVrvYXrHqRL8pWt6LW9u2y/bXtFW2PojndsODLytjpE3kvx90udG7qXdGFjRJiIiIiKiJssxdVwOpdzzdPHjhVXur7Otw/ZU0bbTGepYq+06dfzQN9bvez6uY9SNyP5hgB0r2o2CQZuIiIiIiJoso9Ma7YQox447zkH7iu7uVenzZToIgiBWtKPV7lVvvamOhsKuU8c7XuHP0BuHfYwR8dbvzlt9UdAwaBMRERERUZNldKpop8dFiMcjnZqhPXBFZ7xz8wAcf3ECuqTHAgBOF1ej2mAWK+I/zbnc7d51dh83uVS0Rzxm/R7bqj4/SnDYK9pxbazfq4tCN5YWhEGbiIiIiIiaLOdmaGlxji7hzuuyk6LVGN8zA0qFHNnJUQCAMyValFYbxNe2SYzE81f3lNxbb/Sxom0P2lFJthdWAYJQ3x8psOxjjG9t/V5yEjjzR/iMr5li0CYiIiIioibLYNtHWymXoUdmvHjcdUsvu+wkW9Au1orTxhOjVJDJZNAopPHIXu32yr5GW6G2ftfE2V5YCczPAo6t8edHCQ4xaNsq2hXngQ/GAoe/D92YWgAGbSIiIiIiarJMFsfU8f7ZCeJxb93E29oq2qdLtCjTWYNyYpQ1KGtU0nikN9YRtI0663dVpPW7JtZxzlAJfHy9Lz9CcJXkWr/HtZYeZ9AOKgZtIiIiIiJqspynjsdGOJqh7T9f7vF654q2vfO4RmmNRWqXinada7R1JdbvkbYp46oIx17a4cBQDRQetD52DdpKdeOPpwVh0CYiIiIioibLaHLsow0A1w+wTpG+8/L2Hq/PiLcG4YtVelhsy5Tltv231UrXoF3HGu3qYuv3qGTHMefHkCGkqi44HhuqHJ3HAcd0dwoKZagHQEREREREVF8Gp+29AGDeNb1w85C26N063uP1EUrr2m29yQKzLWnLZdbXapTSdd11VrS19qCd5DgWmWRdBw0ACpX7axqTc8MzmRyITgVqbJV+hcbzayggWNEmIiIiIqImy3l7L8Bale6blSBWqV3Z12HrTWYItiCqsAXtmAhpHbJKb6r9zfUV1u/OlWLn0C0PcV3T3qwNAPr8FYhKcTzn1PGgYtAOQ1u3boVCocD48ePdzp06dQoymUz8io+Px5AhQ/D999JmBsuWLUNCQoLkuUwmQ7du3dzu+dlnn0EmkyEnJ8ftnE6nQ2JiIpKSkqDT6eoc+9y5cyXjs3+tXbu27h88TG3YsAEymQxlZWWhHgoRERERuTCZpVPH62KvWhvNAoy2irYtZ6NX63jcP7oTLm1vnf5d7qWhmuPNbR297c3QAOnUcXmIK9r2PbRjWwHqKCAy0XGOFe2gYtAOQx988AFmz56NLVu24MyZMx6vWbt2LfLz8/HHH3/gkksuwXXXXYcDBw7Uet/o6GgUFhbit99+c3u/7Oxsj6/58ssv0bNnT3Tv3h1fffWVT+Pv0aMH8vPzJV+XX365T691ZTAY6r6IiIiIiFos16njddE4rcOuMVjXYCts1W+FXIYHruiMGUPbAgDKdLUEbbMJsNgq3s4N0Jwr2jIA1Rd9GldQmG3jF7cfi3Gcc/5wgAKOQTvMVFdX47PPPsM999yDiRMnYtmyZR6vS05ORkZGBrp27YoXX3wRRqMR69evr/XeSqUS06ZNwwcffCAeO3fuHDZs2IBp06Z5fM2SJUtw88034+abb8aSJUt8+hmUSiUyMjIkX2q19f/c+/fvx1/+8hdERkYiOTkZd955J6qqqsTXzpw5E1dffTXmz5+PzMxMdO7cGQBw/vx53HjjjUhMTERycjKmTJmCU6dOSd73gw8+QI8ePaDRaNCqVSv84x//EM8tWLAAvXr1QnR0NLKysjBr1izJ+54+fRqTJk1CYmIioqOj0aNHD/zvf//DqVOnMGrUKABAYmIiZDIZZs6c6dOfAxEREREFn+vU8bo4B22d0Rq07Wu07eIjrb+7lmprKfrYq9mAS9B2qmjXlAMLugO5m30aW8CZbRVtpa16fdlDjnOyEDdqa+ZaRNAWBAFaozYkX4JzAwIffPrpp+jSpQu6dOmCm2++GUuXLq31HkajEe+99x4AQKWqe2rKHXfcgU8//RRarRaAdUr5+PHjkZ6e7nbtiRMn8Ntvv2Hq1KmYOnUqtm7dipMnT/r18zjTarUYP348EhMTsX37dnz++edYu3atJBADwLp163D48GGsWbMGq1atglarxahRoxATE4NNmzZhy5YtiImJwfjx48WK99tvv417770Xd955J/bv34/vvvsOHTt2FO8pl8vx5ptv4sCBA1i+fDl++eUXPProo+L5e++9F3q9Hps2bcL+/fvx8ssvIyYmBllZWfjyyy8BAEeOHEF+fj7eeOONev8ZEBEREVFg+Ru0lQq5WMHW2iraruu5U2OtQftCeY3338Xt07IBR5AFHFt92Zn1wE9P+DS2gLOP0V7RTusG9J9hG1cd68+pQVpE13GdSYfBnwwOyXv/Me0PRKmifL7eXkEGgPHjx6Oqqgrr1q3DmDFjJNcNHToUcrkcOp0OFosFOTk5mDp1ap3379u3Lzp06IAvvvgCt9xyC5YtW4YFCxZ4DNAffPABJkyYgMTERHE8H3zwAV544YVa32P//v2IiXFMS+nevTu2bduGjz/+GDqdDh9++CGio6MBAIsXL8akSZPw8ssvi2E/Ojoa77//vlgF/+CDDyCXy/H+++9DZvvkbenSpUhISMCGDRswduxYvPDCC3jooYdw//33i+87aNAg8fGcOXPEx+3atcPzzz+Pe+65B2+99RYA4MyZM7juuuvQq1cvAED79o7tIJKSrP9YpqWlSda9ExEREVHoGW1rtF235qqNRimH1mB2qmhLz2clRUEuA6oNZhRV6vHjgQIs2ZKLpbcNQodU2++59oq2XAXInbqVR7kEbQCoLvR5bAFz5Cfg3DbrY+etvOwN2iwM2sHUIiraTcWRI0ewbds23HTTTQCsU7BvvPFGyVRvu08//RS7d+8WK7fvv/++GAjrcvvtt2Pp0qXYuHEjqqqqcOWVV7pdYzabsXz5cjH0A8DNN9+M5cuXw2yufT/BLl26YM+ePeKXvSJ8+PBh9OnTRwzZADBs2DBYLBYcOXJEPNarVy8xZAPAzp07cfz4ccTGxiImJgYxMTFISkpCTU0NTpw4gcLCQuTl5WH06NFex7R+/XpcccUVaN26NWJjY3HrrbeiuLgY1dXVAID77rsPL7zwAoYNG4ZnnnkG+/btq+NPkYiIiIjCgcHk3xptwDF9XGewhk2FyzRqjVKBrCRrsezkxWo8891BnCnR4vZl2x0X2YO287RxQFrdttOVWb9XFwMbXgJKT/s81nqpKgL+eyOw+TXrc+egbd9yzFJHozdqkBZR0Y5URuKPaX+E7L19tWTJEphMJrRu3Vo8JggCVCoVSktLxcoyAGRlZaFTp07o1KkTYmJicN111+HQoUNIS0ur832mT5+ORx99FHPnzsWtt94KpdL9r8Hq1avFddHOzGYzfv75Z0yYMMHr/dVqtWTatvPPIvOyFsT5uHMQBwCLxYIBAwbg448/dntdamoq5PLaPy86ffo0rrzyStx99914/vnnkZSUhC1btuCOO+6A0Wj9B+Zvf/sbxo0bhx9++AE///wz5s+fj9deew2zZ8+u9d5EREREFFomizVoK+v4ndCZtfO4EdVepo4DQLuUaJwu1iL3YrV4LL/MaV22fVq2yiVoe9rSyx5uv7kbOPYzsGsF8OBBn8frN/te2XZKVrQbW4uoaMtkMkSpokLy5S1YujKZTPjwww/x2muvSarBe/fuRdu2bT2GTLsRI0agZ8+eePHFF316r6SkJEyePBkbN27E7bff7vGaJUuW4KabbpKMZc+ePZg+fbrPTdFcde/eHXv27BGryADw66+/Qi6Xi03PPOnfvz+OHTuGtLQ0dOzYUfIVHx+P2NhY5OTkYN26dR5fv2PHDphMJrz22msYMmQIOnfujLy8PLfrsrKycPfdd+Orr77CQw89JK59t1fX66rkExEREVHjKtMaxIq2P1PH7ftlV9i6invacrtdirX44xy0BTit1zbZtr51rWhnX+p+M3vQPrnB+r3inM9jrRfXEO28zlwM2vzdNphaRNBuClatWoXS0lLccccd6Nmzp+Tr+uuvrzPcPvTQQ/jPf/6D8+fP+/R+y5Ytw8WLF9G1a1e3c0VFRfj+++8xY8YMt7HMmDED3333HYqKivz+GadPn46IiAjMmDEDBw4cwPr16zF79mzccsstHpuxOb8uJSUFU6ZMwebNm5Gbm4uNGzfi/vvvx7lz1n+k5s6di9deew1vvvkmjh07hl27dmHRokUAgA4dOsBkMmHRokU4efIkVqxYgXfeeUfyHnPmzMHq1auRm5uLXbt24ZdffhH3HG/bti1kMhlWrVqFoqIiSbdyIiIiIgqNnadL0fe5Nfhsh/X3QaWntOxFrC1ol9uCtsLDa9vbgva7mxy9jCR90Upyrd+jU6QvjEoCbv5Sekym8HCDIHKdFt5moOOxPWibOXU8mBi0w8SSJUswZswYxMfHu5277rrrsGfPHuzatcvr6ydOnIicnByfq9r27bU8sTcr87TmedSoUYiNjcWKFSt8eh9nUVFRWL16NUpKSjBo0CBcf/31GD16NBYvXlzn6zZt2oTs7Gxce+216NatG26//XbodDrExcUBAGbMmIGFCxfirbfeQo8ePTBx4kQcO3YMgLUB3IIFC/Dyyy+jZ8+e+PjjjzF//nzJe5jNZtx7773o1q0bxo8fjy5duoiN0lq3bo1nn30Wjz/+ONLT0926pBMRERFR4/v4d+k654SounfgsYuNsF5rD9qeZqG2S4lxOyaJyae3Wr97qmB3GA1c8x9rozTAEXwFi89jbBB7RTs6Fbh7C/CXpx3nOHW8UcgEf/efCgMVFRWIj49HeXm5GLTsampqkJubi3bt2iEiIsLLHYgCi3/viIiIiBrXG2uP4fW1R8XnS2cOwqiudfcrAoB7P96FH/bnIzspCmdKtJjcJxNv/rWf5JrzZToMe+kXyTG5DDg5/yrrk7cuBQoPAVNXAN0ne36j0tPAG70BVRTwZD7wbKIjbM8t9/yaQDi7HVgyBkjIBubsl57b9CrwywtA/1uByYscxy0WwI917i1RbTnUld9/kps2bcKkSZOQmZkJmUyGb775xu2aw4cPY/LkyeL62SFDhuDMmTPieb1ej9mzZyMlJQXR0dGYPHmyOAWYiIiIiIioLvZ11napsR66fXvhOnXc06zz5Gi12zGxQllTYQ3ZgOeKtp2927dJD5z5vREr2rYKutxDlV9h+3MyaB3H/vwf8FI2cHhV8MfWQvgdtKurq9GnTx+v031PnDiB4cOHo2vXrtiwYQP27t2Lp556SlLlmzNnDr7++musXLkSW7ZsQVVVFSZOnMhmU0RERERE5BOTWRpa0xoStD0kbbXCPSqJc4FryqzflRFATKr3N7IHbcEMfDDO5/E1mH1auKcO6Iltrd9LTzmOrfwrYKgEPp0e9KG1FH5v7zVhwoRat3Z68sknceWVV+KVV14Rj7Vv3158XF5ejiVLlmDFihUYM2YMAOCjjz5CVlYW1q5di3Hj3P8C6vV66PV68XlFRYW/wyYiIiIiombE6BK0kzxUoL2xr9G2k3tYo+0pfAPA2xtO4LbOBkQA7h3HXSl8XzceUPZGZ57eP9m2DW/xMesnBz7ukkT+CegkfIvFgh9++AGdO3fGuHHjkJaWhsGDB0uml+/cuRNGoxFjx44Vj2VmZqJnz57YunWrx/vOnz8f8fHx4ldWVlYgh01ERERERE2M0SxtNaX0UIH2JtZl2rnCj7D58k9/4uNfbWvD6wzavof/gDm8CvjoWutjjxXtdtbvNeWAtkR6ztP1VC8BDdqFhYWoqqrCSy+9hPHjx+Pnn3/GNddcg2uvvRYbN24EABQUFECtViMxMVHy2vT0dBQUFHi87xNPPIHy8nLx6+zZs3WOpQn2eKMmjH/fiIiIiBqXa0XbH24V7Tq2BuveStr46njeResDVRhWtH98zPHYU3BWRwFxbayPi49Lz6migzeuFiagH1lYLNa/7FOmTMEDDzwAwLq10tatW/HOO+9gxIgRXl8rCILHtvoAoNFooNH4tuZCpbL+ZdZqtYiMjPRn+ET1ZjAYAAAKhSLEIyEiIiJq/nadKcXBvPovJ02OkVaa69qCO0qtQHykSlzTrRRsy1rrqmjLQ/C7YXJ7oMLWaLrGS2fz5A7Wa4qPA9mDHcfVUcEfXwsR0KCdkpICpVKJ7t27S45369YNW7ZsAQBkZGTAYDCgtLRUUtUuLCzE0KFDGzwGhUKBhIQEFBYWArDuwewtwBMFgsViQVFREaKioqBUcroNERERUTCdKdbi2rc8Lzn11aXtk5EUrUZJta1YUkfSVipkSI5RO4K2xWA74XsDtkYT19rxuPiY52sSc4DcjUC5y0xhFYN2oAQ0FajVagwaNAhHjhyRHD969CjatrV2txswYABUKhXWrFmDqVOnAgDy8/Nx4MABSQO1hsjIyAAAMWwTBZtcLkd2djY/1CEiIiIKsnV/XnA7tvS2QX7dI0KlwA0D2uA/m04C8NwMzZlKIUdKtAYni6oBAGqxou3DDNrpXwAfX+/X+BrE3gitNhHx1u/6SulxVrQDxu+gXVVVhePHHXP5c3NzsWfPHiQlJSE7OxuPPPIIbrzxRlx++eUYNWoUfvrpJ3z//ffYsGEDACA+Ph533HEHHnroISQnJyMpKQkPP/wwevXqJXYhbyiZTIZWrVohLS0NRqMPf9GIGkitVkMuD2jLAyIiIiLyYMepUsnzR8Z1waguaX7fp32qYz1yXUFbKZchxmm6uUqwZQxfKtodA5NxfGY21H2NxrbmXO8y/Z5rtAPG76C9Y8cOjBo1Snz+4IMPAgBmzJiBZcuW4ZprrsE777yD+fPn47777kOXLl3w5ZdfYvjw4eJrXn/9dSiVSkydOhU6nQ6jR4/GsmXLAr6+VaFQcM0sEREREVEzsS23BD/sz5ccUynqN6MwzqkhWl1rtJUKuWRdt8pe0Vb5UNFu7BmP9j20a6OJtX7XVwEWs+M4K9oB43fQHjlyZJ0dlm+//XbcfvvtXs9HRERg0aJFWLRokb9vT0RERERELdT/XEI2YJ3WXR/OncfrWqOtUcqRHO2oXp+VtwYG3g6kda/lVSHiXNG2TxF3pYmxftdXSqePc412wHCuKxERERERNQlag3u1Nlpdv7ZTzntpe+uz89AVnZESo8aj47oixami/WVpLEacT8Sr+uR6vXdQ2ddop/UA/r7e8zViRdslaIeiS3ozxRbJRERERETUJGgNZrdjqXH16/zdJtEx7XvP2VKP18we3Qn/+EtHyGQyJMc43kcVvxslEauxIf9PXJ5v7fKtlCshl3mpY2rU7scKd0ueyhCgKebmKuv7DbgJMFcChXvcr9FftF5jKgMKdjjGZ6rwfH0j6Z7cHWqFhz+rJohBm4iIiIiImoQao3vQToutX9B2Ds5qpfdKrr3anRDlmGpuquwBTdpqnNHtx99+/lvdb5aZ4X7sx1t9H6w/FLb3+/M961etY9ICfzztGJ/xBPDjLcEZlw9+vu5ntIppFbL3DyQGbSIiIiIiahI8VrTrGbQB4Pt/DMebvxzDY+O71nmtc/M0iyENxrL+UCXsAgC0jmkNlVwFAV56WRUfdz+W3FF8WFcPLL+UnwPMeiC2lfc112aDYw/tmHSgyrZlmirK+roQUTSjqesM2kRERERE1CR4CtrOTcr81atNPN67daBP1zqv6QaAmoJrMKZzJ0zudgnG5oyt/cVzXZqSRcQDf1vlz1B999ZQoPAUcMvbQIdRnq8pPw+8bmvklhgBlNqazHUcA1z7ZXDG1cIwaBMRERERUZPgaep4XR3DA8W5SzkAQFBhStu/44qcdP9vVlMemEF5Yu86XttaZ3vXcQAozXU8trj/+VL9sOs4ERERERE1CToPQbuxuFa0gfrv4Q0AKD7RgNHUwt5FXBnh/Rp1rOOx8/RyfSXw7kjglxeCMrSWhEGbiIiIiIiaBKPJErL3VinkyIyXhld1PffwBgAUHWngiDyovghUFQCQAamdvV8nlwPdJlkfG7WO4+d3AHm7gU2vBn5sLQyDNhERERERBYWnqd4NYTCHLmgDwEvX9ZY8VysbEKe87N3dINVF1u+RiY69sr1J6RL49ycRgzYREREREQXcgp+PoPfcn7H3bFnA7mmwVbQfG98VESo5/j2tf8Du7QvXYK3ytaI9wVYhnvSG41gw1mmbjdbvvuxF7bxOuz6MOmDplcCGlxt2n2aKQZuIiIiIiALuzV+Ow2C24N/rPWxtVU/2ivbE3q1wYO44XNW7cbeiqnfQHnwn8NgpYMBMoPvV1mOBDtrVF4H8vdbHClXt1wINr2gf/Qk4/SuwYV7D7tNMses4EREREREFlPOUcbdu3Q1gNFv3m1Yr5VA2ZH10PbmuyfZr6nhkou17gvW7riwgYxIt7OVYb+1L0O44uvbzZhOgqCUuauIcj3Wljp+PALCiTUREREREAXa8sEp8rFYGZi2y2SLAbLEF7RCEbADQuATreo0jwrandmV+AEbkxLmpmdyHoK3U1F7VNunqeL1TY7iSXO/XtVAM2kREREREFFCH8ivEx8VVhoDc0+DUcVzVkCZkDeA2dbw+HyLYg/bOpUDBgQCMCoAgSJ/7skYbAK54zvs5Y00d7+nUmK7kpG/v14IwaBMRERERUUD9mV8pPi6uDlDQduo4HqqKdoxGOpW6QRVtANj8rwaOyMbkEoprm/LtrMt4YOqHgEJT9z1dCU4d5UtZ0XbFoE1ERERERAF12KmiXRKooO1c0VYEYWssHyRESSvF9aqsRyQ4HisjvF7mF32V9LkvU8ftuk8BZu/wcM9K92POLE5Bu+SU7+/XQjBoExERERFRwAiCgMMFjqB9sUofkPsabRVttUIOWTD2oPaBQi6TVLHrV9FOcDxWeqgk14fBJRT7++eTkA2k9ZAeq8yr/TXO09XLz/j3fi0AgzYREREREQXMhQo9yrRG8bneaKnlat/ZK9p+dfoOgpgIx7Rsn7f3cuY8dTxYFe3zu/y/R0ya9Hn5+dqvd546btB6v66FYtAmIiIiIqKAuX/lbgCODt0GswWCa7OuetDZtgyLUCkafK+GcF6nrZDXo7Ju394LCGBF2yVoW4yer6uNKlL6XFfi/VqLBfhkquO5kUHbFYM2EREREREFRLXehD9yrQFN6RRC7dty+epsiRb7zpVJjmkNJgBAlDq0QTs2wsdGY95oYh2Pfe0OXhfXina9uHxosPdToGC/50svHpU+Z9B2w6BNREREREQBUap1ND6Ldqr8Gs3+Be3LXlmPyYt/xdkSR4DTGqwV7SYftCMTHY9VUQ27l53rGu36cK2CFx0G3hnu+VrBZTmA89RxsxH46Hrg238AZ7dZq98tEIM2EREREREFhPPa7IQoR+drYz3DlnP38nAJ2jEaPzp6e6LUABm9rY89VbSPrwNOb/Xvnq4dwmMz/R+X2Y/u8M7rswHAqHM8PrEeOL4G2L0CWHIFsO9T/8fSDDBoExERERFRQDhXtEd1cTTXMpp8D9rO67lfWX0EMz7Yhiq9yWnqeAMryg3U4Io2AKTbOny7BtaqIuCja4GlE6RdvetinzreaRzwl6eA2/7n/5jMJs/HLWb3Y0aXPbaN1Y7xlp2Wntvxgf9jaQYYtImIiIiIqN6+2HkOP+zLBwCUOlW054zpLK7TNvmxRtt5mvnxwipsPFqEAc+vQXGVNcRHNvWp4wAgt/0MFpdw67ylltmPhmb2inJsOnD5w0BSO//H1PsGz8ddG60B7muyBYujIu4arNXR/o+lGQjtx0FERERERNRk5ZXp8PDnewEAY7qPR5mtoj2+RwYi1QooFTKYLIK4NZcvDGb3a/UmC1744TAAIC6igVO3G6hjWkzDbyK3xTDXKfUmp+nbFhMAH5qlnd0GrH/B+rgh24X1uwWIz7J2H//oOkeYrqmQbkkGSKeK25kNwM9PAYWHpMflLTNytsyfmoiIiIiIGuxEkaPamV9Wg9JqaxU2MdoahlUKOWqMFhg9hGdv9EYPU5WdtIoP0N7T9fTXS7Jx7EIVhnVMqf9NZB4q2pUXgFObHc993aJryRWOxw3pYi5XAB1HWx8/dhpY0A3QXnRf/w147jJ+fiew7T/ux0017sdaAAZtIiIiIiKql+OFjqCdV6ZDmc5akU2IsgY+lcK6UtWfqeOeKtrOWiWENmirFHI8f3XPht3EXuWtKQfObgfaDAS+uRs48YvjGm9rpmsTqH25lWpHaPcU+D1OJ/cSqA3VgRlTE8OgTURERERE9XLMKWhPX/KH2A8rMcpe0bau0V5z6AI6p8e6vd7VhYoaHCmQVlDjIpSoqHGEziu6pTd02KFnX6P9x9vWr2velYZswPeKtjNFgII24DS93UPgL8l1P+ap8g0A2mJrozSZzPP5ZorN0IiIiIiIqF6OXXCEK+cm2faK9oUKPQDg1dVHcLFKX+u9qvQmjPrXBsxcul1yPCfF0Uzrhat7Ii0utBXtgJC7NHTbt9J9S643+gB5e/y7b6Aq2gAgt0VFT13Hi4+5H9OXe75P2WlgXmtgw0uBG1sTwKBNRERERERu1v9ZiCmLt4hhev2RQhzKc+xrXa03SZ47S4xyXyt833931/p+m48WiXtlO4uPdDQ/i9E0kwm5MpegLVe5h29TDbBymn/3DWjQrqWiffG4+7Eaz38XAFi3/9owPzDjaiIYtImIiIiIyM1ty7Zj77ly3LF8B5b+movblm7H3R/tFM8fOF+Oag/BGHBMHZ82OFs8tvVEsWSPbFcH8twrohEqOSb3cVR6m03Qdu3ELVd63s6r4ryfNw7g9GxvQdtiBkpOul9vnzre7nLgyQKgxzXu15SfC9z4whyDNhEREREReXWmRItnvz8kPraHZW0t3cGToq0V7XnX9JIcd94j21WZVho0v541FAfmjkPXjDjxWHSzCdquFW2F58pxXQQBkDlFOl1Jw8YlGZM9aLv871x2BjB7WAagt1W0NXHWLcJuWAbEuKynP74ucOMLcwzaRERERETkM71tT+zatuHKcNqCa4xT8zKdlwo4YJ2KDgBPXtkNp166Cv2yE6FUyCX3CvXWXgHjWtFWqPxvflZ8wjodW3Dq0l59seFjs7N/GOAatL1V2e0VbVWk41iUyxZox9cGZmxNQDP5SIiIiIiIiBpDcbUBchmgqyVoR6kdMWPxtH7o+tRPAKyviYfK42uq9Nb7uVatU2M1WD3ncpRUGySN0Zo0mUu9U670fzuv5ZPcQ2/boQ0bl+uYAODiUeva73aXWZ9728bLqLO9zul/36gk6TX+Nndrwhi0iYiIiIjIjUIug9nD/tfT3/sdp4q1GNUl1e3cpD6Z6NMmXnIsQqVAbIQSlTUm/LA/HxcqavDQ2M7QKKXTp+0V7WiNy7RqAF0y6t4arEnxtEbbXtFWqAGzoe57uIbsGz8GulwZmPEBjoZtq5+wfr93O5Da2fO0cQAw2Y47f4gQ7VLRNukCN74wx6BNRERERERuVArPQftUsRYAsP5Ikdu5RX/t5/FekSoFKmtMeH6Vda13j8w4TOnbWnJNtcEWtNUtIKIoXKr6zs3QfA3arrpNbPi4XMfk7MIBa9A2eQna9gAudwrarlPHTQbg6GrgwkFg+APNem9trtEmIiIiIiI3KkXgokKUWlql3n2mzO2ai5XWoJYQ5XlqebPiug2XTAbA9qGGocpxPK5Now3JjWvDtmrbByvePgQw2Y47V7Sjkl2uqQE+mQqsexY4vTUw4wxTLeDjIiIiIiIi8pfax6DdLzsBMgCPje/q9ZpIlyr1nrNlkucl1QbklVvX/ja7aeKeKFyCtsJ933EA0uqwM3/Xc9eHa0VbW2z9bvKyRtvsw9Rx52nn+lr23W4GWNEmIiIiIiI3Mh+n9fZpk4CvZg3D4PbJXq9JiZEGyUN5FdCbHM3UDtr20G6XEo3YiBZQ0XYN1s7Pr1rgqGR7C9Sua53TugdubHauQds+td1UV0XbqRLu2gzNmWtDuGamef90RERERETkt2MXKnGxystaXFjXXD8/pQdGdE7F/aM71Xm/jDjptlwGswWnbWu9AeDAeWt1s0dmHFoE1w8xjE7Bud8twPTPrY+9bfklWSctA65fGtDhAXAP2vax2KvS6b2Adpc7rvNU0XZdo+3Mvh1YM8WgTUREREREomq9CVe8vqnWa/51Qx/ccmkOlt9+CRKjvUx7dpLhYf9r5z217RXtHpnxbtc1Ty5B2zk4K1SOZmle10Pbpm/LlcAjx4E079P26811jba9ov3bW9bvaV2BGd87thQTx+T0OnWM9/sbqgMzzjDFoE1ERERERKL3Np/0eHzupO6IUiuwdOYgXNW7lV/39BS09SaL+Ph8mbWi26657JPtL/tUcJnCWu0Wq8Tepo7bgrkq2n0ddKB4CtrVF4HKPOvz42tt19k+FPDUDE3l/r+7yLnpWzPkd9DetGkTJk2ahMzMTMhkMnzzzTder73rrrsgk8mwcOFCyXG9Xo/Zs2cjJSUF0dHRmDx5Ms6dO+fvUIiIiIiIKMAWrj3m8fj1A7NwYO44jOqa5vc9XaeOA5Cs0S6ssAbH9DiN23XNkuvU8dLT1u/2tdr2796mjtunmrt2Lw8k16njVReAX15wPO8wWnqdOHXc6WdTRXq/v0Hr/Vwz4HfQrq6uRp8+fbB48eJar/vmm2/wxx9/IDMz0+3cnDlz8PXXX2PlypXYsmULqqqqMHHiRJjNZg93IiIiIiKiULiyV4b4WKOUQy6v377H6Z6CttGCGqMZVXoTCiut047TPFzXLLkG7fM7rN/tYVWcOm4EBPe9zB0V7SD+ebkG7T9XATud1oKPf8n6XeFa0XaqhCtrCdqWRuicHkJ+b+81YcIETJgwodZrzp8/j3/84x9YvXo1rrrqKsm58vJyLFmyBCtWrMCYMWMAAB999BGysrKwdu1ajBs3zt8hERERERFRELROcAQlZT1DNgC08rRG22jGxEVbcKGiBkazNUzGRrSU3Ye9/FkKtun0YsgVAIsZULj8uRhsjcRUUUEZnXQMHrQbAcSkSq/z1Ayttg8CmnnQDvgabYvFgltuuQWPPPIIevTo4XZ+586dMBqNGDt2rHgsMzMTPXv2xNatnjct1+v1qKiokHwREREREYUzg9Ma5KYqWuMIW75u9+VJkoeGabP/uxvHC6tQWeMIXJEqhdt1zVLbYbWfVzhtceZp+rh9T+vauno3VG1BOzrV8dg+Vntwdg7aLbiiHfCg/fLLL0OpVOK+++7zeL6goABqtRqJiYmS4+np6SgoKPD4mvnz5yM+Pl78ysrKCvSwiYiIiIgCZsXvp9H1qR+x7vCFUA/Fb/Z10i9d2wsxmsBUmGUyGR4d3wU3DGhT63UqRQvp1RybDjx8DLj8Ec/n5U5B297tu/Q0sOlVYM9/gWpb0I72vnd5g9W2/tu5AZvcZd9z5yZqtd2jmQftgM7N2LlzJ9544w3s2rXL70+8BEHw+ponnngCDz74oPi8oqKCYZuIiIiIwtZT3xwAALy76SRGd0sP8Wj8Y7EtCe7VJh4Xq7xsL1UPs0Z2BAB8vpNNkAEAMWmAJtbzOYWHoL12LnDwK+vjzralvFFBDNqKWrZtc66ku3Ynd65o15YJLc27P1dAPzLavHkzCgsLkZ2dDaVSCaVSidOnT+Ohhx5CTk4OACAjIwMGgwGlpaWS1xYWFiI93fM/QhqNBnFxcZIvIiIiIqJwJDg1r9IamlaYEAQBVbap3NFqJS7vlIJHx3fBBzMHBuw90mJbSGdxX8i8TJWXKxyB1T51vLrIcf7sH9bvCW2DN7bagrZzJV3hUtGWuUTMqxYAQ+8Duk60PrdXwL11VG8mAlrRvuWWW8QGZ3bjxo3DLbfcgttuuw0AMGDAAKhUKqxZswZTp04FAOTn5+PAgQN45ZVXAjkcIiIiIqJG5xyuzRYPHaPDWO7FauiMZmiUcmQmREImk4mV6ED5/O5LMeLVDQG9Z5PlWg2WnFNZG4zZK9r2Lb0AQFdi/Z7WPXhjq23ad1QtU8ddg/agO6zfDVogbzeQuwnY+BKnjruqqqrC8ePHxee5ubnYs2cPkpKSkJ2djeRk6fQFlUqFjIwMdOnSBQAQHx+PO+64Aw899BCSk5ORlJSEhx9+GL169XIL6URERERETU2x03TrBvQPC4k9Z8sAAD1bx0OtDM566bbJ0RjTLQ1rDxcG5f5NimvV2Pm5wha07ZVfU43769O6BnFsKu/nnNdo11XRtlNHATnDHNX4Zh60/f5/z44dO9CvXz/069cPAPDggw+iX79+ePrpp32+x+uvv46rr74aU6dOxbBhwxAVFYXvv/8eCkUL6TJIRERERM1WUZVefGw0N63O47vPlAEA+mUlBPV9pg9xTHm+fVg7xGiUuHlIdlDfMyypXLpyz1jleOy8lzYgrWgDgDoGiA9i3yqf12i71G69BW3X65v5Gm2/K9ojR46UrDupy6lTp9yORUREYNGiRVi0aJG/b09EREREFNaKnYK2ydy0po7bK9p9sxOC+j6pMY5pyV1bxWLXU1dApWhi5f9AcJ6ePehvQPZgx3O5S9B2rWindgnulAmz0xrqKf8Gvr3X8Ty6lqCtr2MrZjFoN++KdkvZEZ6IiIiIqFEUVzumjhuaUEW7xmjG4XxrSOob5Ip2WpwjYEarlUGbph72lBGOxxHx0nMKl6ZhrhXt1G7BGxcAGKocjzN6Sc9FJDgeu04dF+r4O28P2ubm3Qythf6NJiIiIiIKjuImOnW8sEIPk0VAhEqO1gmRdb+gAZKjHUHbYG7eU4hr5VzR1rjsrCQGUlvl11NFO5j0TkHbdYq63ClGRiZKz9VVqbY3gGvmFW0GbSIiIiKiAHLee7opTR3XGa2BN1qthCzIXdwUcsf9EyJrWQvc3NVa0bb9uZgNgCC4V7Rj0oI7Nn2l43FUkvfrelwDxLV2PK9r7bVYqW/eH7AwaBMRERERBdBFp4p2U5o6rjVYK4wRqsZpULx4Wj/ceXl7jOic2ijvF5YkQdulou08ddxsAODyoY06JqhDw7D7rN/73WL9Pnmx9fv0L6TXxaQBDxx0PK+zos012kRERERE5KdSraOi3ZSmjuts+39HqRsnaE/snYmJvTMb5b3ClvPUcdeKtvPUcddqNgBoghy007oBT5wH1NHW5/1vsX554jwDgkEbAIM2EREREVFA2QMr0DSnjjdW0CYASqe18AltpeecK9qe9tBWaNyPBVp9wnxdU8JbyBptBm0iIiIiogByni5usgiwWATI5eG/dZXW9gFBY00dJwDJHYA+fwXiMoGUTtJz9iBtqvFc0a5rv+pQqTNot4yu4wzaREREREQBpDdKp4tXG0xQKeRhH2Dta7RZ0W5EMhlwzTuez9mnktdUOCraUcmAttj6OC5Mp90LdQRtVZT1u8nDhwfNSJh+DEJERERE1DS5NkCbsvhXdH3qJ/y4Pz9EI/LNrtNlAICspKjQDoSsxKBdDujKrI/lSmDm/4CbPgESsry+NKTqmhKuibV+ry4GTm9ttpVtBm0iIiIiIj+dK9XieGGlx3OuFe2TF6sBAPd8vAt7z5YFe2j1tvdcGQDgsk4tuAt4OLEH7YtHgR8fsT6uugDkDAO6XhW6cdXF16BdcQ5YOgFY91zwxxQCDNpERERERH4QBAHDX16PMQs2ocypw7id3uR96uz+8+XBHFq9CYKAk0XWDwS6pMeGeDQEwBG0d68ACvaHdiz+qGuNtsZlG7OtbwZvLCHEoE1ERERE5IeKGkfF7lyp+zpTg8n7ll6nbNXtcFOlN4lT3tPiGqGbNdXNdbsvAIjJaPxx+KrNIOv3fjfXfp2mZXyQw6BNREREROSHokrHVktag3v1Tl9L0H5/Sy7MlvDb8qtMa10nq1GGf9O2FsNT0L5xReOPw1czfwD+sQPoPK726zSxgFzVOGMKIQZtIiIiIiI/FFbqxcelLlPHzRYBpjqC9Bc7zwZkHIIQuMBuD9qJUeqA3ZMayFPQjm3V+OPwlVLjvkWZJ3KFdVuzZo5Bm4iIiIjID0VOQdt1jbbztPFoL9tkfbXrfIPeXxAEfPzHafSa+zMWrTuGf3yyC4fyKhp0z6Iqa5U+Iar5VxqbjMgE92Mx6Y0+jKBI7hjqEQQd99EmIiIiIvKDc9AuqZZuTeTcCC1ao0S109TyV6/vjUe+2IeSavcGav6896AX14rPX1tzFABQWWPC8tsvqdc9jxRU4rPt5wAAXTJaxvrZJsG1oh2VAiibyYyDlM6hHkHQMWgTERERUZNRVKlHjEaJSC/V4sYag51rRdu+Plshl7mNcUQX67ZZx4uqUK03IVrj/6/i728+6fH47yeL/b4XYJ3qfuWbm8V1471ae5iuTKHhGrTjwnjauL9aQNDm1HEiIiIiahLs1dwh89eFfBx2rmu07VPHNUo5lHKZ5FxabARaxUdAEIAD9dzmy9v6b73JgkKnJm2+qqwxSpqzMWiHEdegHc7rs/3FoE1EREREFB52ni4FAJTrjHVcGVxFVY6gXVzlWtG2ThVXK+WSjuSPju8CwBFk67OftiAIOHqh0uv5dYcL/b6n659lDwbt8OG633RsGG/t5a/MvkB0qu2JDDCbaru6SWLQJiIiIqImQaVwVIgD2XHbX4UVjqB9waWKXGN0VLTzyx3nZo20Nn/qalsDfbIe+2l/uycPm49d9Ho+r8x9T++6OAftmUNzEFOP6ewUJHKX5RHNqaItVwAPHbFV7QWgYG+oRxRwDNpERERE1CQoFY5fXWvbqzrYnCva+WXSoG0w24O25zXkcZHWrt5avf8VvCVbcms9v+iX4/hsu39bh9mDdpf0WMyd3MPvMVGQJeY4HjenoA1Yw3b2UOvj01tDO5YgYNAmIiIioibBec1zjdFcy5XBYzRbJF3Di6sNKKysweF86/ZaeltFW610/JodF+GoEkeprY+du5H7ql1KdJ3XPLfqkM/3KyivwS1LtgEAMuIj/B4PNYIZqxyPxanWzUjbS63fm2HQ5twQIiIiImoSnGeLaw1mJEQ1/hiWbz0lPo7VKFGpN2HIvHWwCMAXd18qrtHWOAXtdqkx4uNojbXSXV2PinZSdN1bO7VPrTuM2z3+1T7xcbdWcbVcSSGjinQ89rSvdlPXdpj1+8mNgMUCyJtPHbj5/CRERERE1KwZzY7p4roQVbRf+OGw+DjHVmG2N+3+evd5seu4WinHUxO7IyVGjddu6C2+JroBFW3XKv7GR0biySu7YdbIDuKx7CTfP304mFchPu7WivtnhyWFyvFY0wz/N2rVB1BFAcZq4JUc4MLBUI8oYBi0iYiIiKhJkATtegTVQMtOlobag3kVKLOtedYo5bhjeDtsf3IMOqY5AlKUraJdnzXazl3M7xvdCW2To/H3y9vjbqegbTL71iROEATJNmWsaIcpuXPQbob/GylUAGxLQmrKgei0kA4nkBi0iYiIiKhJMDqFSIM5dM3Q7Nq6VI/3nC3Do19Yp2Pbm6HJZNK9tGM11uBUUeP/FmVagzWcT+iZgXtHOcJ1XIQKr1xnrZr/dLAAe8+W1Xkv1+7l7X1Y/00hoI4Cel4PdJssbYzWnBidOvDHNJ916AzaRERERNQkmCyOcG2xhGZ7r1a2pmHPT+mBtsnep2k7N0NzlhJrXWd9oULv989gr2iP75nh1tVcpXQE+in//rXOe32565z4uHurOElHdwoz1y8BblwBuHxoQ+GN/48iIiIioibB4LSllzlEQdve5Kxbqzhk1bIeWuMtaMdoxMff7j3v13vbg7a9c7kzlZ9B2fn612/s69driahuDNpERERE1CSYnMJ1iHK2uH+3RqlA22Tv06297aPtHHC35Zb69d46MWi739s1aAtC7X9AFqfzndJiarmSiOqDQZuIiIiImgTnZmiWOoJksIhBWyVHqzjve097mzoOADcOzALg/0xgrdG6RjvSQ9BWuwTtUm3ta8AvVNQAABZM7QO5nFOSiQKNQZuIiIiImoRQTx1/f/NJlFQbAFiDbW0B1dvUcQDo2draPbq4Su/1Gk+0et8r2vYg7U1BufV8Ri0fFhBR/TFoExEREVGT4Lyll7mRK9q/nSiW7KGtUVl/jb6kXZLH62sL2sm2ddrFVQa/xmBfox3tcY22NPQX+Bq04xm0iYKBQZuIiIiImoTiakcwrWsNcqD9fKhA8jzCyxpsu9qCtr0hWnG1ARuPFuGBT/egXFf7VG9BEKAzWoO2p6njrtX1j38/jfNlOo+V/8oaI6ptoZ1Bmyg43D8OIyIiIiIKQ6VaR9Bu7G20V247Kz6O1SiREKVyuyYjLkKsJEd4CMN2yTHWLb4uVukx44NtAID4SBXmTu7h9TVVepP4OEbj/it8x9QYRKsVYoBee7gQaw//ApVChqEdUvDSdb3QKj4SALD+SJF4H08dzImo4VjRJiIiIqImoaTaOWg3bkXbec/sDmkxkHnoZOY8XXts93Sv90qJtla0K2sc4fl8ma7W97dXvNVKOSJU7iE+MVqNHf93Be4Z2UFy3GgWsPFoES6d/4t4j/v+uxuANLwThUzXidbv3a8O6TACjUGbiIiIiJqEkhBOHdc4hduOXrbDGt4xBQBw06AsdEyL9XqvuEgllC5Tvetq/G0PyfGR7pV0u0i1AlmJ3vf23n2mFKXV/q0LJwq6a94BrlsCTPl3qEcSUJwrQkRERERh79TFahzMqxCfN3YzNJPTXPWBbRPFx3ERjl+nn5vSA7vOlOHqvpm13ksmkyE5Ro0LFY6u4/I69vryJWgDQEa8ptZ7fLnrXK2vJ2p0mlig1/WhHkXAMWgTERERUdgb+a8NkueNPXXcZLa+X1ZSJK4f0EY8/sykHiioqMEdw9uhfWoM2qd6rna7SonR+BW0jxdW2V6nrvW6tFjvzc32nC3D0l9Pic+frWVNOBE1DKeOExEREVFYs29F5czS2BVti7Wi/er1faB02rM6KykKq2Zfhmv6tfH2Uo8G5Ui3BbPn7GMXKjHspV+w4vfTkvN/5JYAAC7rlFrrfaM9NEqz23O2THz8wcyBmDE0x/cBE5FfGLSJiIiIKKzdtWKH2zFLI3cdN9kq6K77VdfX+J4Zkuf2ivbLP/2J82U6PPXNAcn5k0XVAICuGd7XfgNApIdGaXa7z5QBsHZN/0tX783aiKjhGLSJiIiIKKztPVfudqzx12hb308pD8yvz8nR0ing9qnwnn4si0VA7kXr1PEOdUxNj1C5j2/64GzJ80p2GycKOgZtIiIiIgpbBpPn0rWlkdZoF5TX4Jc/L8Bga4amqKs9uI/USumv4VqDNfx62rorr1yHGqMFKoUMbRIja72v8+tTYzUY3yMD947qiOha9vUmosDzO2hv2rQJkyZNQmZmJmQyGb755hvxnNFoxGOPPYZevXohOjoamZmZuPXWW5GXlye5h16vx+zZs5GSkoLo6GhMnjwZ586xAyIRERERSR3Mc69mA4AvObtca8TV//4VS3/Nrff7j/zXety+bAeKKq2Ny1SKwNSpXO+jNZgBADqjWTxm73RunzbeNjlasj7cE41TgL/r8vZ455YByEyIxP/uvywg4yYi3/j9L0V1dTX69OmDxYsXu53TarXYtWsXnnrqKezatQtfffUVjh49ismTJ0uumzNnDr7++musXLkSW7ZsQVVVFSZOnAiz2ex2TyIiIiJquc6UaAEAl+Qk4c/nx2NcD+vaYl+mjr+98QT2nC3Ds98fqtd7G80W1BilFXVlgNZou1a07QHbvo0XAPx2shgWi4ATRfZp49F13lfm1L3cufreNjka6XHWrb/UAfqwgIi883t7rwkTJmDChAkez8XHx2PNmjWSY4sWLcIll1yCM2fOIDs7G+Xl5ViyZAlWrFiBMWPGAAA++ugjZGVlYe3atRg3blw9fgwiIiIiao6MtrXRURoFIlQKMTz6MnW8osZY5zW1OVJQ6XZMGaCp464V7WrbuuniKseWX7cs2YbnpvQQK9q+bh1m57pl2PLbL8GLPxzGg1d0rs+QicgPQf84q7y8HDKZDAkJCQCAnTt3wmg0YuzYseI1mZmZ6NmzJ7Zu3erxHnq9HhUVFZIvIiIiImr+7NOn7QHXHh592Ue7Ieu41x66gImLtrgdr2vqtq80rhVtgxmCIKCwUi85vviX4zhpa4TWPqXuirazhCiV5HnXjDisuGMw+mUn1mPEROSPoAbtmpoaPP7445g2bRri4uIAAAUFBVCr1UhMlP4fPD09HQUFBR7vM3/+fMTHx4tfWVlZwRw2EREREYUJo0Xa7dsetH3ZR9uXMO7NwnVHPR5XBamirTWaUaEziWu17fQmizh9PsfHoP30xO64slcGruzVKiBjJSL/BS1oG41G3HTTTbBYLHjrrbfqvF4QBMmaEmdPPPEEysvLxa+zZ88GerhEREREFIbM9oq2bW20OHXcl6DdgC3ASqs9TzsPVNdx1/toDWZ8vdu9ObBcBuSV1QAAshKjfLr37cPb4a3pAwLWuI2I/BeU//cZjUZMnToVubm5WLNmjVjNBoCMjAwYDAaUlpZKXlNYWIj09HSP99NoNIiLi5N8EREREVHzZxIr2q5Tx+t+bUOmjrs2K7ML1NRxVwaTBXM9NG2zCI7KfEqM2u08EYWngP9LYQ/Zx44dw9q1a5GcnCw5P2DAAKhUKknTtPz8fBw4cABDhw4N9HCIiIiIqAmzN0OzB1x7zvWlou2cs02+JHMnelsX8G6tHAWeSJUCkR72uQ4m5y7kwQr5RBR4fncdr6qqwvHjx8Xnubm52LNnD5KSkpCZmYnrr78eu3btwqpVq2A2m8V110lJSVCr1YiPj8cdd9yBhx56CMnJyUhKSsLDDz+MXr16iV3IiYiIiIgAR0BWKaQVbV+q1c5Tx8t0RqTEaHx+X73J+r4vX9cL+eU1SIpWI1qt9FrpJiJy5nfQ3rFjB0aNGiU+f/DBBwEAM2bMwNy5c/Hdd98BAPr27St53fr16zFy5EgAwOuvvw6lUompU6dCp9Nh9OjRWLZsGRSKxv2EkIiIiIjCm33quOua5tfWHMXs0Z1qfa3Z7AjaX+48h7tGdPD5fe1BOy5Chd5tEnx+nT9uH9YOO06XYN+58qDcn4hCx++gPXLkSAi1TNWp7ZxdREQEFi1ahEWLFvn79kRERETUgpgs9u29rJXki1UGAEBcRN2/xtaYHB28Pe2JbWc0W/B/Xx9A+9RoMYwbbEE7mBXspyd1BwDkPP5D0N6DiEKDc1+IiIiIKGyZzNJmaPeMbA8AiNbUHbS1ekfQLqrSe73u+715+HTHWcz/8U9YLAIsFgEG25R11/2uG8MlOUmN/p5EFFh+V7SJiIiIiBqLazO0+EgVAEBnNHt9jZ3WaBIfV+g8b9d19EIlHvxsr/i8qEovvgcAaBqh+dl7tw7E3z/cAQDIiIvA4un98PHvZzC4XRJiI1R4bc0R3DAgK+jjIKLAYdAmIiIiorBltkibocVorCG4qsYEQRAgk3nf19q5ol3uIWgLgoCnvjkgOXa+TIcIpSNcN0ZFOy3W0aRtYu9WSIuNwANXdBaPLbvtkqCPgYgCi0GbiIiIiMKW0aUZWqxtbbbJIkBvsiCilopztcFR0XYN2udKtbjhnd+QX14jOb71+EWkx0UAsE5XV8q9B/lAca6gq9jVnKhZ4P+TiYiIiChsObb3sv7aGqVWwF7ErqwxeXsZAEBrcFS0y3RGscEZAOw4VeoWsgHgXz8fxZliLQCgTWJkrRXzQIlzCtrBfzciagwM2kREREQUtlyboclkMsTYGqFV6b0HbUEQJEFbEIDCSkewNpotnl4GADhbYg3aWUlR9R+4H5w7qPuy9pyIwh+DNhERERGFLb2HbbZibUG7ssZzgzMAMJgtMNumnSdGWSvG50t14nmjWbolbfvUaPFxbnE1AKBtcuMEbXujNwDQGRi0iZoDBm0iIiIiClta2zrraLWj6htjqwC/sfYYBEHw/DqnRmjtU2MAADe++ztqbBVjg0kaaOeMcTQf23OmDADQNikajU3LoE3ULDBoExEREVHYsgfPSLWj6Zl96vi6Pwvx04ECt9fklenERmhqpRwZ8RHiuS3HLgKAuE+2454KJEerAQA7T5cCALIbqaLtjEGbqHlg13EiIiIiClv2NctRzkE7wtE87HhhleT6ldvO4PGv9ovPo9QKRDl1Jl+0/jh2nilFtFrarVyjVCA1VoPiaoMYwrMbaY22M4uXCj0RNS2saBMRERFR2Kq2NTyLcpo6bl+jDQCusdQ5ZAPW7cCctwDbe7YMb284gV226eF2CrkMqU77WSdHq9ExLaaBo/fd0xO7IyVGg39e2bXR3pOIgocVbSIiIiIKW/bmYFEepo4D1m7itYnRqJBomxLuzLVjeWqsBqkxjqA9qU+muKVYY7h9eDvcNiynUbYTI6LgY0WbiIiIiMJSSbUBeba9rmMj3JuhAcDra4/i4c/3er1HbIQStw3NcTtepjUAAMZ0S8fS2wahQ2oMUpwq2u1SGr8RGkM2UfPBoE1EREREYed4YRVuX7YdAJAZHyEJvs4VbQD4Yuc5CIIgbuflzGS2IDFaja9nDZUcP3rBura7e2YcRnVJAwBJRTs9TgMiovri1HEiIiIiCjuLfzmGPWfLAADtUqMl1V7n6rad0Szgi53n3I7XGK2NzbxVqDVO+3M7r9FOi4vwdDkRkU9Y0SYiIiKisHPyYrX4uFtGnOScRqVwvRx6kxnrDl9wO/7XwdkAgIQo96o2AKid1mEnxzjWcmcwaBNRA7CiTURERERhw2IRUFSlh9xWwR7WMRl3jegguca5Cm1XY7TA7KEzWo9MR0jvl53odl6lcFTKI50CvHN1m4jIXwzaRERERBQ2HvliH77c5ZgC/o9RndxCr6egrTeZ4WGJttt6bldqpSNc98lKQP/sBGQnRTVqx3Eian4YtImIiIgobDiHbMDzemxvFe3zpVqfrnWmdjqvUsjx1axhvg6ViMgrflRHRERERGHLU0Vao3Rfo11jNONcqc7teHoda62dp44TEQUKK9pEREREFLYi1e6hemCO+1rrvDId9CYL5DLggTGdkR4XgRFdUhHhoXGas7oq3kRE9cGgTURERERhy1MQjo1Q4bZhOVj66ynx2MajRQCAtNgIzB7dyef7qxm0iSgI+C8LEREREYUtT9PEAeC6/m0kzz/+4wwAIMpDBbw2aoV/1xMR+YJBm4iIiIjClreKc8/W8fjloREY2FY6jVzm55JrrtEmomBg0CYiIiKisKWQew/C7VNjkBEvbXYmqyNpp8SoJc85dZyIgoH/shARERFR2PC3OVlcpEryvK769NKZl0ieM2gTUTDwXxYiIiIiChvKWirYnrjus13X1HHX672tASciaggGbSIiIiIKCyazBXqTxa/XRLps3yWro6atdFmTHe9SESciCgQGbSIiIiIKC/vOl8NkEfx6jWtFuq6KtlIu/fWXQZuIgoH7aBMRERFRWDhRWAUA6N4qDgUVNRjXI6PO1/i7ptu5uZpGKecabSIKCgZtIiIiIgoLZ0u0AIC+2Ql4bnIPKBV1h2CNyr+gHKNx/PqbFqfxb4BERD5i0CYiIiKisHC2VAcAyEqM8ilkA0CE29Tx2ueOR6oV+PKeS7H64AVc1imlfgMlIqoDgzYRERERhYUztop2dlKUz69xrWj7MpV8QNskDGib5N/giIj8wEUpRERERBQW6hO0XSVHqwM1HCKiemPQJiIiIqKQ0xnMKKrUAwCykiJ9fl2Z1ih53ibR99cSEQULgzYRERERhdy5Ums1OzZC6deWWykxjoZmfbISMGdM54CPjYjIX1yjTUREREQhZ582npUYVWdDM2dju6fjgTGdMTAnEcM6srkZEYUHBm0iIiIiCrm8MmvH8dZ+Tv2Wy2W4f0ynYAyJiKjeOHWciIiIiEJOb7IAACJVijquJCIKfwzaRERERBRyFkEAACjkvk8bJyIKVwzaRERERBRyZmtBG3I/1mcTEYUrBm0iIiIiCjlHRTvEAyEiCgC//ynbtGkTJk2ahMzMTMhkMnzzzTeS84IgYO7cucjMzERkZCRGjhyJgwcPSq7R6/WYPXs2UlJSEB0djcmTJ+PcuXMN+kGIiIiIqOkyWzh1nIiaD7+DdnV1Nfr06YPFixd7PP/KK69gwYIFWLx4MbZv346MjAxcccUVqKysFK+ZM2cOvv76a6xcuRJbtmxBVVUVJk6cCLPZXP+fhIiIiIiaLHvQ5tRxImoO/N7ea8KECZgwYYLHc4IgYOHChXjyySdx7bXXAgCWL1+O9PR0fPLJJ7jrrrtQXl6OJUuWYMWKFRgzZgwA4KOPPkJWVhbWrl2LcePGNeDHISIiIqKmiM3QiKg5CegqmNzcXBQUFGDs2LHiMY1GgxEjRmDr1q0AgJ07d8JoNEquyczMRM+ePcVrXOn1elRUVEi+iIiIiKj5sAdtVrSJqDkIaNAuKCgAAKSnp0uOp6eni+cKCgqgVquRmJjo9RpX8+fPR3x8vPiVlZUVyGETERERUYjZu46zok1EzUFQ+jrKXD6JFATB7Zir2q554oknUF5eLn6dPXs2YGMlIiIiotBzVLRDPBAiogAIaNDOyMgAALfKdGFhoVjlzsjIgMFgQGlpqddrXGk0GsTFxUm+iIiIiKj5EJuhMWkTUTMQ0KDdrl07ZGRkYM2aNeIxg8GAjRs3YujQoQCAAQMGQKVSSa7Jz8/HgQMHxGuIiIiIqGURt/fiGm0iagb87jpeVVWF48ePi89zc3OxZ88eJCUlITs7G3PmzMG8efPQqVMndOrUCfPmzUNUVBSmTZsGAIiPj8cdd9yBhx56CMnJyUhKSsLDDz+MXr16iV3IiYiIiKhlYddxImpO/A7aO3bswKhRo8TnDz74IABgxowZWLZsGR599FHodDrMmjULpaWlGDx4MH7++WfExsaKr3n99dehVCoxdepU6HQ6jB49GsuWLYNCoQjAj0RERERETQ330Sai5kQmCLaPD5uQiooKxMfHo7y8nOu1iYiIiJqBJ77aj/9uO4MHr+iM+0Z3CvVwiIjc+JNDg9J1nIiIiIjIHxYLp44TUfPBoE1EREREIWcWOHWciJoPBm0iIiIiCjlHRTvEAyEiCgD+U0ZEREREIWNvF8SKNhE1JwzaRERERBQSn+84i97P/ozfThSz6zgRNSsM2kRERETU6PafK8cjX+xDZY0JT397gPtoE1GzwqBNRERERI2qXGvEpMVbxOdagxkWi/WxnEGbiJoBBm0iIiIialTHCislz8+X6WA0W5O2glPHiagZYNAmIiIiokZ1pkTrdqyixgiAXceJqHngP2VERERE1KhKtUa3YzVGa0WbzdCIqDlg0CYiIiKiRnPsQiWeX3XI7bjWYALAZmhE1DwwaBMRERFRo3n8q/3i46EdkqFWWn8dvVhlAADER6pCMi4iokBi0CYiIiKiRlGtN2Hn6VLx+eQ+mYhWKwAA5TrrdPKEKHVIxkZEFEgM2kRERETUKIptVWsAePm6Xri6X2uxom2XFM2gTURNnzLUAyAiIiKilqFKb12HnRKjwY2DsgEAKpc244lRnDpORE0fK9pERERE1CiqbQ3PYjQK8ZhrRTsugkGbiJo+Bm0iIiIiahR5ZToAQLTGMalSJZf+Oipn13EiagYYtImIiIioUTz59QEAwMG8CvFYcbXB2+VERE0WgzYRERERNQr7Gu1IlWPq+MUqvfj4knZJjT4mIqJgYNAmIiIioqDTGkyQ2WaFf3nPUPG4877ZK+64pLGHRUQUFAzaRERERBR0RwoqIQhASowa3TPjxOMr7xyC/tkJWHbbIGiUilruQETUdHB7LyIiIiIKipJqA/69/jhuGNgGh/MrAQDdWsVJrunWKg5fzRoWiuEREQUNgzYRERERBcUz3x3E93vzsGRLrnisu0vQJiJqjjh1nIiIiIiCYs/ZUrdjrhVtIqLmiEGbiIiIiIJCIXPfE3t4p5QQjISIqHExaBMRERFRUOiMZsnzf93QBykxmhCNhoio8TBoExEREVFQRKikXcQ7pcWEaCRERI2LQZuIiIiIgiLVpXrdgUGbiFoIBm0iIiIiCopTxdWS5zEabnhDRC0DgzYRERERBVxFjREXqwyhHgYRUUjwY0UiIiIiCgiT2YIHPtuLflkJbufS49gEjYhaDgZtIiIiIgqIH/bn4/u9efh+b57k+FW9WuHBsZ1DNCoiosbHoE1EREREAVFS7T5VPEIlx7+n9w/BaIiIQodrtImIiIgoIIxmi9ux56f0DMFIiIhCi0GbiIiIiALCaBYkz6/q3QrXD2gTotEQEYUOgzYRERERBYTJJWj3z06ETCYL0WiIiEKHQZuIiIiIAsJkkU4dj9EoQjQSIqLQYtAmIiIiooBwnToeo1GFaCRERKHFoE1EREREAWFyaYY2KCcxRCMhIgotBm0iIiIiCogak1l83CYxEmlxESEcDRFR6DBoExEREVFAaPWOoH1559QQjoSIKLQYtImIiIgoIKoNJvFx+5ToEI6EiCi0Ah60TSYT/u///g/t2rVDZGQk2rdvj+eeew4Wpy6UgiBg7ty5yMzMRGRkJEaOHImDBw8GeihERERE1Ii0BkdF+6rerUI4EiKi0Ap40H755ZfxzjvvYPHixTh8+DBeeeUVvPrqq1i0aJF4zSuvvIIFCxZg8eLF2L59OzIyMnDFFVegsrIy0MMhIiIiokZgMFlwulgLAJh3TS+0io8M8YiIiEIn4EH7t99+w5QpU3DVVVchJycH119/PcaOHYsdO3YAsFazFy5ciCeffBLXXnstevbsieXLl0Or1eKTTz4J9HCIiIiIqBF88GsuzpRokRilwoSeGaEeDhFRSAU8aA8fPhzr1q3D0aNHAQB79+7Fli1bcOWVVwIAcnNzUVBQgLFjx4qv0Wg0GDFiBLZu3erxnnq9HhUVFZIvIiIiIgofe86UAQDuGdkBidHq0A6GiCjElIG+4WOPPYby8nJ07doVCoUCZrMZL774Iv76178CAAoKCgAA6enpktelp6fj9OnTHu85f/58PPvss4EeKhEREREFiL0RWkqMJsQjISIKvYBXtD/99FN89NFH+OSTT7Br1y4sX74c//rXv7B8+XLJdTKZTPJcEAS3Y3ZPPPEEysvLxa+zZ88GethERERETdb+c+V46psDKK02hGwM1Xpr0I7WBLyOQ0TU5AT8X8JHHnkEjz/+OG666SYAQK9evXD69GnMnz8fM2bMQEaGdc1OQUEBWrVydKMsLCx0q3LbaTQaaDT8dJSIiIjIk2nv/Y5KvQnHCiux8s5LG/39q/Qm7LJNHY9WM2gTEQW8oq3VaiGXS2+rUCjE7b3atWuHjIwMrFmzRjxvMBiwceNGDB06NNDDISIiImp2KmqM2Hm6BCeLqjBx0WZU2qrJv58swS9/XoDJbKnjDoG14jfH8r8ojaJR35uIKBwF/CPHSZMm4cUXX0R2djZ69OiB3bt3Y8GCBbj99tsBWKeMz5kzB/PmzUOnTp3QqVMnzJs3D1FRUZg2bVqgh0NERETU7Mz97iC+2nXe47nbl+3Ao+O7YNbIjo02nt1nSsXHgiA02vsSEYWrgAftRYsW4amnnsKsWbNQWFiIzMxM3HXXXXj66afFax599FHodDrMmjULpaWlGDx4MH7++WfExsYGejhEREREzY63kG33n40ngx609SYz1Ao59CYLfj1+UTzeq3VCUN+XiKgpkAlN8GPHiooKxMfHo7y8HHFxcaEeDhEREVGjynn8h1rPq5VyHH1hQtDe/2yJFpe9sh4A0CcrAXvPliEzPgK/Pv4Xr81tiYiaOn9yKLtVEBEREYU5s0XA86sOoahKj7WHLtR5vVIe3LDrXFHfe7YMADChVyuGbCIiGwZtIiIiojBWYzTj7x/uwOZjF71e88N9wxGjUeL9zblY8ftptIqPCMpY8st1KK4ywGA2u5278/L2QXlPIqKmiEGbiIiIKIy9se5YrSEbANqlRCNKrcRNl2Rhxe+nUVFjCvg4BEHAsJd+gcVl0eF9f+mIm4e0RVpccMI9EVFTxKBNREREFMZWHyio85oIpXVLrbgIFQCgssYY8HGcKKpyC9kZcRF4cGyXgL8XEVFTF/B9tImIiIgocC5U1IiP7xvdCZku08Kj1ArIbWuy4yKtQbvGaEGN0X16d0NsOupeVf/39P4BfQ8iouaCQZuIiIgoTNUYzag2OAKzWiFDcoxGck2UWiE+jotQQq2w/npXXG0I6Fi2npAG7cs6pWBA28SAvgcRUXPBoE1EREQUppzDbYxGiSl9WyM5Ri25xuw0n1smk4nniyr1AR1LfnmN5LlKwV8jiYi84b+QRERERGFq6/FiAMB1/dtg/9yxyEqKwpD2yZJr0mKlU8lTY60V74sBDtoVLuu+r+7XOqD3JyJqTtgMjYiIiChMlWit0787psWIe1TfMbwdqmpMiI9U4dcTF3Flz1aS16TYppZfrApw0NaZxPfvkBqDSb1b1fEKIqKWi0GbiIiIKEyV2tZZJ0c7pourFHI8PM7a6fvvHvauTgnC1HGLRRA7md91eXtu5UVEVAdOHSciIiIKUyW2oJ0Yra7jSgdx6niVHpuOFmHc65uw52xZg8ZRUWMUt/aydzYnIiLvGLSJiIiIwpR96niSH0HbMXXcgFs/2IYjFypx29JtDRrHqWItACAtVoMIlaKOq4mIiEGbiIiIKMz8dqIYl73yC86W6ABIp47XxR60i5zWaJdqjd4u98np4moAQE5ydIPuQ0TUUnCNNhEREVGYuWP5dmid9s/2Z+q4PWhvyy0J2HjOlVoDf5vEyIDdk4ioOWNFm4iIiCjMOIdsAIiL8L02khgd+DXU58usQbs1gzYRkU8YtImIiIjCTITK8SvamgcuF7f28kW0OrATFnUGM3KLrFPHWycwaBMR+YJTx4mIiIjCiMFkgcFkAQBs++dov7fSilQHrlmZwWTBsJd/Ebufs6JNROQbVrSJiIiIwsjp4mpYBCBKrRC36vJHVACD9vkynRiyATZDIyLyFYM2ERERUZiwWAS8t/kkAKBnZrxfU8btIpSBC9p6k2OtuFwGZCVFBezeRETNGYM2ERERUZj48LdT+GzHOQDA1EFZ9bqHXO45nNcYzR6P16ayxiQ+HtUlrV7jISJqiRi0iYiIiMLEluPFAIBW8RG4rn/rgN7beQq4N2sPXUDO4z/gs+1nAQCVNY79t1+8pldAx0NE1JwxaBMRERGFiRNFVQCA127oU69p43Y9W8e5HXv4870wW4RaX/e3D3cAAB79ch8EQUCFzlrRHtohGRnx/jVlIyJqyRi0iYiIiMKA1mBC7kXrNlod0mIadK/RXdPdjm09UYwvd53z+R5FlXr88mchACAuIvB7cxMRNWfc3ouIiIgoDHzyxxkAQGqsBmn16DbuTK30XEs5X6qr9XWxEUpxXfYN//kNp4u1AACzUHslnIiIpFjRJiIiIgoxg8mCtYcvAABuHty2QdPGAUCl8Px6k8VS6+taJzj2ybaHbAAortI3aDxERC0NK9pEREREIXS8sApjFmwUn1/dL7PB91Qp5E6PZTCarRVpk7n2yrTe5DmIaw3+dywnImrJWNEmIiIiCqGPfj8tPu6YFoO2ydENvqdz0G4V76hS/2fTyVoboum9bAHWIbVha8aJiFoaBm0iIiKiEFp/pFB8/K8b+gTknmpJ0JZ2C99/vtzr6zxVtK/ono5nJnUPyLiIiFoKTh0nIiIiCpHci9U4XayFSiHD7qfHIkYTmF/NVErHGu1Mp3XXgPeqNQDUeDj3zs0DoJA3bM04EVFLw4o2ERERUYjsOl0KAOiXlRiwkA0ACrnjV7xUlw7mJi9TxwVB8FjRZsgmIvIfK9pEREREIXLOtt1WTkpUQO/bLysBSdFqZCVGIj1OOnXcYPbc8OxgXgVMFgEapVwM3F0zYgM6LiKiloJBm4iIiKiRXazS4x+f7MLvJ0sAAG0SAxu0s5KisOPJMZDLZfjvtjOSc0YvncVX7csHAPylaxp+PFAAAA3eZoyIqKXi1HEiIiKiRiIIAgRBwPKtp8SQDVgbjgWa3DblO0Il/XXP6GGLL0EQsGpfHgBgUh/H9mKcNU5EVD+saBMREREFUV6ZDqsPFuC6AW1w339340RRFVq7NCgL5hTtCKVC8tzoYer44fxKnCvVIUqtwKguaRjRORUbjxZhxtCcoI2LiKg5Y9AmIiIiCpILFTW47u2tyC+vwbPfHxKPny3RiY/7tIkP6hTtNJc12nqTe2fxXWesTdkGtE1EpFqB/9wyAMcuVKFn67igjYuIqDlj0CYiIiIKAkEQMHjeulqviY1QYvG0/kEdR//sBMnzGqN7RbuwUg8AaJtsXSseoVKgV5v4oI6LiKg54xptIiIioiA4Vayt85o3b+qHrKTANkJzJZPJ8Lfh7cTnOpe9sgVBwJvrjgEAYiNUQR0LEVFLwaBNREREFGCCIOBvy7d7PDdnTCfxsese142hxiVoV+pN4uOSKkNjD4eIqFli0CYiIiIKsK92nceJomoAwJhu6Xj3lgFonxqNhTf2lYRr+1TtYHNeAm6vaO84VYK8Mh0qdEbxnMni3pGciIj8xzXaRERERAG24vfTAICHruiM2aOtFeyxPTIAADtPl4rXhWKqdo3BjAPny3H9O78BAH64b7h47p6R7Rt9PEREzRGDNhEREVEAfbvnPPacLQMAjOuZ4XZ+QNtE/OeWAeiYFtNoY3Lual5jtGDHKcce3uW2ina7lGh0TAveNmNERC0JgzYRERFRgBw4X445n+4BAKgVcq9Tw8f1cA/gjUVnNEMudwTvae/9AQBIjGIjNCKiQOEabSIiIqIA+fFAPgTbMuev7x0KjVIR2gHZOO/S/d3ePBhM7lt8xUUyaBMRBUpQgvb58+dx8803Izk5GVFRUejbty927twpnhcEAXPnzkVmZiYiIyMxcuRIHDx4MBhDISIiImo0pVrrNOw5YzqhR2b47kP98R9n3I7FM2gTEQVMwIN2aWkphg0bBpVKhR9//BGHDh3Ca6+9hoSEBPGaV155BQsWLMDixYuxfft2ZGRk4IorrkBlZWWgh0NERETUaMq01u2xEqPUIR5J7fLLdW7H4riHNhFRwAR8jfbLL7+MrKwsLF26VDyWk5MjPhYEAQsXLsSTTz6Ja6+9FgCwfPlypKen45NPPsFdd93ldk+9Xg+9Xi8+r6ioCPSwiYiIiBqktNqA/+0vAAAkhPl65xqjp6njbN1DRBQoAa9of/fddxg4cCBuuOEGpKWloV+/fnjvvffE87m5uSgoKMDYsWPFYxqNBiNGjMDWrVs93nP+/PmIj48Xv7KysgI9bCIiIqJ6EwQBl72yXnyeEGYV7fEeup+74tRxIqLACXjQPnnyJN5++2106tQJq1evxt1334377rsPH374IQCgoMD6SW96errkdenp6eI5V0888QTKy8vFr7NnzwZ62ERERET1tvZwIar0JvF5QpiF1n7ZifjXDX1qvYZTx4mIAifgc4QsFgsGDhyIefPmAQD69euHgwcP4u2338att94qXue8nyNg/STY9ZidRqOBRqMJ9FCJiIiIAmL9kULJ83Bco90+NbrW8+w6TkQUOAGvaLdq1Qrdu3eXHOvWrRvOnLF2t8zIsE5dcq1eFxYWulW5iYiIiJqC7bklkufxYbhGW7DvO+aF3EvBg4iI/BfwoD1s2DAcOXJEcuzo0aNo27YtAKBdu3bIyMjAmjVrxPMGgwEbN27E0KFDAz0cIiIioqA6XVyNY4VV4vPkaDViNeHXWKx7q9q3G4uLCL8xExE1VQEP2g888AB+//13zJs3D8ePH8cnn3yCd999F/feey8A65TxOXPmYN68efj6669x4MABzJw5E1FRUZg2bVqgh0NEREQUVE9/exAAoFbK8eU9Q/Hd7OGQy8OvOhypVmDV7OGSY09PtM5CzEmOwqUdkkMxLCKiZingH10OGjQIX3/9NZ544gk899xzaNeuHRYuXIjp06eL1zz66KPQ6XSYNWsWSktLMXjwYPz888+IjY0N9HCIiIiIgsZiEbDxaBEAoEdmHAa0TQzxiGrn2ll8SPtknHrpqhCNhoio+QrKHKGJEydi4sSJXs/LZDLMnTsXc+fODcbbExEREQWV2SIg92I1CsprxGOLp/UP4Yh8o1FKJzOqFOFXeSciag64GIeIiIjIT8u2nsLzqw6Jz6/um4nWCZEhHJFvNEqF5LlSEfBVhEREhCCs0SYiIiJq7vafK5M8v2FgVmgG4ie1S0VbGYZryYmImgMGbSIiIiI/lWqN4uMx3dIwtIk0EnMN2q7PiYgoMDh1nIiIiMhPZVoDAOC9Wwfiiu7pIR6N7xRyGRRyGcwW657arGgTEQUHP8YkIiIKAzVGM3aeLhEDEIW34mpr0E6MUtVxZfhRO63L5hptIqLg4L+uREREYeDJrw/gurd/w8d/nA71UKgWNUYzvt1zHudKdQCArKSoEI/If73bxIuP2XWciCg4GLSJiIjCwJe7zgEAFv1yPMQjodq8ue4Y7l+5R3yeFqsJ3WDqaWiHFPGxUs5fBYmIgoH/uhIREQWRIAhY8ftpjF+4Cbcs+QMms8XtGudjiVEqCAKnj4daRY0RFpdp/H8WVOCtDSckx2SyplcRHt0tTXzMijYRUXCwGRoREVEQHb1Qhae+OQAA+LOgEj8dLMDPBy9g+uBsDG5v7VS9al++5PrhL6/Hj3MuQ1xE01v/2xycLdFi9Gsb0Tc7AX/pmoa+WQkY0j4Z4xdullw3umualzuEt56t4zF3UndEqZVN8oMCIqKmgEGbiIgoiA6cL5c8/8cnuwEA3+3Nw6mXrsK5Ui0e/XKf5JrzZTpsOlqEib0zG22c5HAwrxwGswXbckuwLbcEAPDStb0k19wypC0eHtclFMMLiJnD2oV6CEREzRqnjhMREQXR0QuVXs8JgoAtxy7CYLIgJ1naVCtao4QgCDhbosW6wxcgCAL0JjOnlTeCCp3J7djjX+2XPL9xUBbiIznjgIiIPGNFm4iIKIiO2IJ2l/RY8bHduVKdGOB6tI7HjYOy8fJPfwIAblu6HamxGhRV6gEA79zcH49+sQ8juqRh0V/7NeJP0PKU64x1XtMhNaYRRkJERE0VK9pERERBdLTAGq6nD8l2O3fZK+vFx0UVetwzsgP6Zyc4jtlCNgDc/dEuVNSY8P3evOANlgDUHrTjIpT4x6iOiFQrGnFERETU1LCiTUREFGAVNUZEqhSo0BmRV14DAJjStzWe/vag19c8Ot663tds4dTwULtQYf3fbM6YTvhL1zS8vuYoqvVmzL+uFyvZRETkEwZtIiKiAMov12HkqxvQPTMOl7RLAgB0zYhFfKQKL17TE09+fcDtNd/cOwx9sxIAACYG7UZVYzRDpZBDIbd2315z6AK+sO1p3iU9Fr3bJGDpbZeEcohERNQEceo4ERFRAO05Uwa9yYLdZ8rwn40nAQD3jOwAAJg+uC2W334J1j88En+9xDqVfObQHDFkA6xoB8Pxwipc/e9fsfbQBcnxg3nl6PnMalz/zlax2dw/PtkFQQDS4zQY2jElRCMmIqKmjkGbiIgogM6X6STPb720Lab0bS0+H9E5Fe1SojH/2l449dJVmDu5h+T67plx4uMBbRM9vkdzCuPf7D6PfefKgvoej325D3vOluFvH+6QHH/os70wWQTsPlMGndGM/LIa6E0WAMBP91/OruJERFRvnDpOREQUQOdKrUG7XUo07hnRAdf0b13HK6SevLIbThdrcU2/1rh5SFuU64yY8cE27DlbJl5jMFmaRTOu134+gkW/HAcA/Pn8eESoAvszGUwWlGoN2Hm6VHJ86/GLWLjuGP4scHSBf/zL/dh+yrpndofUaCRGqwM6FiIiallY0SYiIgqg08XVAIA7hrfD1EFZUCn8+09tcowGX94zFDcPaQsAiI9UYenMQYh2CtYbjhTCYKu8NmX2kA0Aq/blB/z+T369H4PnrXM7Pu39P7Att0Ry7Lu9eci3Na7LTIgM+FiIiKhlYdAmIiJqILNFwK/HL2L1wQJsPnYRANA+JTpg90+MVmPtQyPE5/d8vAu3fvBHwO7fmCwWAQ99thf/981+yfFV+wK7bVmZ1oDPd57z+P51kclkAR0LERG1PJw6TkRE1ADVehP+/uEObD1RLB7rn52Awe2TA/o+reIjEaVWQGswAwB+P1lSxyvC0/GiKny5yz0AF9iqyfWhN5mx6ehFdM2IRVqcBje//we2n3JMFx/eMQVbjls/ACnRGuq83+iuafUeCxEREcCgTURE1CBLtuRKQjYALJrWX9wuKpASIlVi0AaAyhojYiOaTsOukmoD3lh7zOO5Uh8CsDcL1x7D2xtOeDw3dWAbvHxdbwx6cS0uVhnwz6/2e7wOAGb/pSP6ZydiaMfAfkhCREQtD6eOExERNUDuxWrxcUqMBtueHI3WQVrj2y9b2oU8r6z+VeBQeOzLffhhv+e12Bcq9Cis9P/nMVsEfOWhQm43sG0SZDIZWsVb/zf52WWLrxGdUwEANw3KwgNjOmNU1zRolE2/0RwREYUWK9pEREQNUFJtrcS+en1v3DAwK6jvNTAnURJUz5Vq0SUjNqjvGQh7z5ZJun/Pu6YXzBYLnvr2oOS6NYcuYPrgtj7ds6C8BhEqOeb/709cqNC7nR+Uk4jYCBUm980EAGQlRWL/+XLJNSM6p+KNm/ribIkOvdrE1+dHIyIi8ohBm4iIqAHsQTupEbaDGtg2SfL8TIk26O/ZUD/uz8c9H++SHLuqdytU1hgBW9CePjgbH/9xBofzK3y65/ubT+KFHw5Ljl3SLknsJL5q9nD0bC0NzlmJUZLnfxveDk9e1Q0ymQwJUdzKi4iIAotBm4iIqAHKdNagnRAV/LXS3TPjcHnnVGw6WgQAOF0c3kFbEAS89NOfkmNJ0WrERSgRH6nCv27og2i1AgazxRa0K73cSco1ZAPW9dUms4AotcItZANAm0THdP6bBmXh/yZ29/OnISIi8h2DNhERUQPobM3JojXB/0+qQi7Dh7dfgo9+P43/++YAzoZ5RfuP3BLxw4Cc5Chc2iEZ1/RrI26fdf2ANgCAPwuslezjhVW13q+yxojKGpPHc0M7pNTagK5NkqOi3btNgs8/AxERUX0waBMRETWAvQt4pKrxGmhl20JjuE0d/3bPeby57hjeuXkAOqXH4hVbNfvGgVl4+freXl9nbx5XrjOiSm9CjJcPLf763u84cN4ayuUyQKWQQ2+y4Mf7L6uzy3uWU0U7JzmqliuJiIgajl3HiYiI6uFsiRY7T5dCZ7QFbXXjB+1jhVX442RxHVc3nvtX7sGJomo8/MU+nLpYjV1nygAAd45oX+vrYiNUiIuwhuu8Mp3Ha4oq9WLIBoCclGhsfGQUvpo1FN1axdU5tjZOa7TT4iLqvJ6IiKghGLSJiKjF0pvMePjzvXj62wMwmS0+v04QBNyy5A9c9/ZWCIL1WGNWtFsnRkKttP4n/MZ3f8cBl27aoZZXpsMhW2OzPm3i0SE1ps7XZNqq2tPe+x2l1e57ai/fekp8nBStxivX9UZGfAT6u2x55k2ESoGHx3bGbcNy0CE12qfXEBER1RenjhMRUYv1ze7z+GKndQ/mD387jfdvHYgx3dO9Xl9SbcD+8+V4f/NJnHJpRNaYQVulkCMzPkIcwx+5JR4bgIVKUaUeb6w9BgDomlF3tRmwNiv7s6ASF6sMeOjzvfhg5iDxnM5gxvtbTgIA3ripL67ono4otf+/wvzjL538fg0REVF9MGgTEVGL5BwG7f724Q7seuoKt626ci9WY9S/NtR6P6WicSeJGc2C+PhcaejXamsN0iZlRy5UIiVGjbtHdvDp9Rnxjuncv/xZCLNFENdd55frUGO0IEajxOQ+mWIzNSIionDFqeNERNSsvfTjn5j6zm/YfKwI1XoTdp0pxRtrj+Hpbw8gr7wGaoUcXTNixesnLdqCcq1RfC4IAu5fubvW92gV3/hrfk0Wx1T3P33cFitYBEHAze//4Xb86Uk90C7Ft2naZosged577mpxOn9RpR4AkBqrYcgmIqImgRVtIiJqtoxmC97ZeAIAcMuSbR6veeLKrrhtWDs8/e0BfPjbaZwv02HJr7l48IrOKKyowZxP92DfOcca6L9f1g5DO6ZgVJc0bD9Vgnc2nMCNg7Ia5edxlhytwYUKawD9s6ACgiCELISuPlggNj6z0yjlmNwn0+d7dEyLlTyvNphxoqgaXTJiUVRl/TlTYtSeXkpERBR2GLSJiKjZqmtfZsDavRoAHp/QFT8eKEBRpR5vrjuGMd3SMHnxr5Jrs5Ii8eAVXcQO44NykjBoZlLgB+6Df93QB7M+3olTxVqUao0o0xqRGK3G3O8O4uTFaiydOajOLa8C5bcT1s7nCrkMX9x9KQwmi9jczFc3D8lGUaUen/xxGhW2vbLzy3XokhEr7sXd2s97EhERhQqnjhMRUbMkCAI+2JILAEiL1YjHs5Ii8evjf8Fb0/tj5tAcDO+YAgCIUivx2g19xOtcQ/bcSd2x4eFRjbqNV226Z8ZhwyOjxCZslTUmlGuNWLb1FDYdLcKRgsabTr7XVvFfMLUP+mUnYnD7ZGQl+bdXtUapwOMTuuLdWweKx86WWrf6OnbB+rN0So/1+FoiIqJww4o2ERE1Sx/9fhqf2zqKL5jaF8M7pcBiESC3VXlbJ0Tiyl6tJK+5rFMKpg5sg892nHO738Q+mY1WIfZHtEYJndGMihojFq93NHcz+LFdWUNcqKgRtxfr3Sahwfcb0j4ZwzumYMvxizhTXA3Aul84AHRMq3ubMCIionDAoE1ERGFJEAS8vzkXepMZ947q6Pf64y3HLwIA7hnZAcM7WavW8jqCskwmw8vX9caqffnQGszok5WA6we0Qd82CUiJ0dT62lCJ0ShwsQr4dPtZyQcEVTWmWl4VOOv/LITJIqB3m3jkJPtXxfZmXI90bDl+Ee9tzsV7m3PF477sx01ERBQOGLSJiCgsffzHGbz4v8MAgNHd0tGtlW/7MduV66ydw/19nUwmw0/3X45lW0/hnpEdkBobngHbLlpj/U/5L38WSo5X1hg9XR5wO0+XArDOBghUM7Yp/Vrjk21ncTi/QnI8NUw/7CAiInLFNdpERBQ0xwsr8eBne7DxaFGd15rMFkx773dMfec3lGkNeHvDCfHctPd+hyAIXl97sUqPJVtyUVhZIx4r11kruvGRKr/HnZ0chacndQ/7kA04gvb5Mp3keKU+eBVtk9mCdYcv4MFP94jT8we2DVxTuLgIFX6YPRzDOiaLx2QyIDaC9QEiImoaGLSJiCgoThRV4e6PduGrXecx44NtWHvoQq3X//JnIbaeKMa2UyXo+9waSXAs1RrdKrbOFv9yHM+vOoS/f7hTPGZf31ufoN2UZMR53sP7d1sn8IY4V6qFzmCWHNt5ugQdn/wRdyzfga92nxeP98tOaPD7OZPLZXjjpn7ic0Goe+o/ERFRuGDQJiIi0ZGCSqw7fEFSPTaYPDfVOnWxGle9uRnvbDzhVm0urTZgyuJfJdtr3fXRTpwr1Xp97/9uO+PxeOd067rcOZ/uQbnWfTr0xSo9lm09BQDYe7YMgLVLdbUtIDb3LaH+fll7yfNr+7cGAKzalw+zxfssgLpsOlqE4S+vxzVvObqvrz5YgOve/s3j9QlRgd/jOiVGg+v6twHARmhERNS0BD1oz58/HzKZDHPmzBGPCYKAuXPnIjMzE5GRkRg5ciQOHjwY7KEQEVEtjGYLblnyB+5YvgO3L9uOMq0BT3y1D53/70fc9O5vbiH5juXbcTCvAi/9+CdmLN0OQRBQYzRjwhub0e/5Nahymbpstghid2pn+eU6aA0mbPVQge2RGYeVd14KwLp91bd7z4vB32i2oLLGiIEvrJW8RhAEnLNVw7OToprE9O+G6NpKuuXV7L90AmDtOl5cpYfeZPb0sjrZZxD8WVCJu1fsxMyl23DXip2SazLjrdX0Gwdm1es9fPHydb3w3JQeeOX63kF7DyIiokAL6mKn7du3491330Xv3tL/OL7yyitYsGABli1bhs6dO+OFF17AFVdcgSNHjiA2lntkEhGFwuJfjqOwUg8AWH+kCPP+dxhf26YG/36yBA98ugef3z0UepMZMz7YhhNF1eJrNx0twq4zZfizoELSwGr64GzMGtURr60+gq92n5e8BrBOTR7x6gax8qqQy/DC1T2RER+BYxcqMbF3JpKi1bi8cyo2HS3C098exL/XH8eP91+Om979DUcvVMFVRY0JlbaO2829mg0AKoUcU/pmYuPRInx+16VolxKNWI0SlXoTLpm3Dh3TYvDznMv9nnZ9tsTxwcpPBwsk51bccQku65SK08XV2HL8Iq7t1yYgP4snSoUct16aE7T7ExERBUPQgnZVVRWmT5+O9957Dy+88IJ4XBAELFy4EE8++SSuvfZaAMDy5cuRnp6OTz75BHfddVewhkRERF7sO1eGN9ZZ92C+rFMKNh+76LaX9PZTpVj6ay4qdCb8frIEgLVifLFKD63BjOve3ipeq1bI8dSk7pg6sA00SgU62Kb9vrr6CO4Z0UEMfUcKKiXTmyNVCvz1kmwAwKguaeLxyzulYJOtodqFCj0W/XLMLWRHqhTQGc0o0xpQYes4HhfZMppnLbyxL4xmAWqldaKa3mkP7eOFVSjVGpDsR8duvcmM30+6zzD4S9c0XNE9HZd1SgUAtE2ORtvk6AaOnoiIqPkJ2tTxe++9F1dddRXGjBkjOZ6bm4uCggKMHTtWPKbRaDBixAhs3brV9TYAAL1ej4qKCskXEREFzi7bFk0jOqdi3jW9JOcuaefoJv3s94fw+tqj4vM3buqLlXcOcbvfxkdH4pYhbaFRKgAA3TMdW2xttu1vDQDF1QbxcZRagWcn9/A4Ptf9k/fY1mLbrbxziNj0rEJnQoVta6vYiObdCM1OJpOJIRsA+rZJkJy/WGWAP9YcuoBqgxkpMRpsfnQUXr2+N46+MAEfzBwkfhBCRERE3gUlaK9cuRK7du3C/Pnz3c4VFFinn6Wnp0uOp6eni+dczZ8/H/Hx8eJXVlbw1oIREbU0lTVGzP3+EACgXUo02iRKp1sP75gC11nHcRFKHHx2HPplJ6J3mwSM6Jwqnls1ezhaxUvvMbJzKpKjrc2yZnywDQfzrGu1S2xB+9p+rXHw2XG4boDnKciue2HvPlMmPo6PVGFQTpIYtMt1RhTbgmViVMsI2q5euKYnHh3fRXw+buEmbHX6gKM2giDgxR+s+5eP6pKKrKQo3DAwSxLkiYiIqHYBn1N39uxZ3H///fj5558REeF5yxHA+um7M0EQ3I7ZPfHEE3jwwQfF5xUVFQzbREQB8tUuxxZNqbEayGQy/Htaf+w8XYq/XdYOreIjcGWvDBzMq0BFjQlbj1/EbcPaifs3A8Dy2y/B8q2nkBKjQc/W8W7vIZPJsPLOIbji9U0AgCe/PoBv7h2GgvIayft6k+aloVlmfAS+/cdwKOQyMWh/tfsctHprA7DMFrBG25PO6bHonB6Lbbkl2HDEOuX+2e8PYfUDl9f52rMlOuTb/neZMTQnmMMkIiJqtgIetHfu3InCwkIMGDBAPGY2m7Fp0yYsXrwYR44cAWCtbLdq1Uq8prCw0K3KbafRaKDRNO+usUREoXL0QqX4eHjHFADAVb1b4arejn+jO6bFomOatVnlLUPaerxPXaGsU3osWidE4nyZDvtt3cdPXrQ2R2uXUvs6X9dGXrEaJa7u1xrPTOoOpcJaac1MsH646/zBQZvEqFrv29w9Nr6rGLRjI3z7T7592n16nOcPTYiIiKhuAZ8HNnr0aOzfvx979uwRvwYOHIjp06djz549aN++PTIyMrBmzRrxNQaDARs3bsTQoUMDPRwiombts+1nMfWd3zw2rvJFjdGM7/fmAQDuGdkBfbISAjg6d8tuGwTAutXXe5tO4qAtcHdKr3uP5GcmdcegnETsfXos9j87Ds9f3VMM2QDw1MTubq8Z0j7J7VhL0q1VHGaN7ADA96Ctte0/HqVuGY3kiIiIgiHg/xWNjY1Fz549Jceio6ORnJwsHp8zZw7mzZuHTp06oVOnTpg3bx6ioqIwbdq0QA+HiKjZMJot2HW6FAPaJkKpkOP7vXl49Mt9AIDbl23Hgql90D41Bp3Tfd8mcePRIlTUmJAZH4GHx3ap+wUNFBfpWDP94v+s64DVSrlPldPbhrXDbcPaeT2fHKPBazf0wUOf7wUATBuc3WKaodWmf3YiAN8bomkN1q3RIlWKoI2JiIiouQvJx9WPPvoodDodZs2ahdLSUgwePBg///wz99AmIvLAbBGwbOspbMstxuqDF3DToCxM7puJp789IF6jNZhx90e7AAAzh+bgqYndofCyb7LOYMZbG45jcLtkca/kgTlJXq8PpPhI9+Dbt02C2J28oa4b0Aa928Tj95PFmDqIvTwAIMW2vv1ilR5bj1/E77klWHf4Am66JFtcBiAIAoqq9Mgvq8HMpdsBWLvAExERUf3IBEEQ6r4svFRUVCA+Ph7l5eWIi4ur+wVERE3Ym+uOYcGaox7PJUer8dWsoRjx6gbJ8V6t47Hor/2Q42Ht84s/HMJ7m3MRo1Hi+gFtsGzrKdw2LAfPTPK8tVYgCYKAIfPX4UKFXjw2a2QHPDq+a9Dfu6U6V6rF8JfXux3vlBaDNQ+OAAC8uvpP/Hv9Ccn5jmkxWGs7T0RERP7lUO7VQUQUxiprjF5DNgC8e+sAtE2OxuQ+mZLj+8+X4wXbFk3Ozpfp8N7mXABAld6EZVtPAYC49VawyWQyXN4pVXJsUE7LXkcdbCkxnpuJ6k0WlFYbsO9cmVvIBoDjhVXBHhoREVGzxU4nREQNsPFoEc6X6nBF93SkOm1BZbYIMJotUCnk9Z6SfaZYi8tfda9E2r09vT8GtLWG1H9e2Q3tU6OhUsjx6mrr7g72vaoB4GyJFl/vPu81tLdObLxtsK7p1xqf7zwnPu/fNrHR3rslilApEKtRolJvkhwvrKzBmAUbUVztee32PbYmakREROQ/Bm0ionoq0xrwt+XbYTQLePGHQ1h556WIi1SiVXwkbnhnK/aeswbdR8Z1wb2jOvp9/9UHC9yOfXH3pcgrr4HFImB8zwzxeEZ8BOaM6QwAuHlIW/R59mfkl9fgb8t3YO3hC273aRUfIe6VDADjemS4XRMsQzumYObQHCzbegqRKoXHddsUWCmxGjFoj+ySig1HilBjtKDG6AjZ8ZEqlOusW3stntYP4xvx7wQREVFzw6BNRFRPty2zhmwAqDaYMWnxFo/Xvbr6iF9BO/diNR7+fC9qjGbx2MvX9UJljQkDfZhmHR+pEoO0a8ieOTQH1w9ogy4ZsTh6oRLpcRFepxYH09zJPTC+ZwbaJrfsfa4bS2qMBrm2PctbJ3ievXD/6E7onhmHMq0B43u28ngNERER+YZBm4ioHgrKa7D7TJlP1yrkMgiCAJms9inkgiBgzaELuHPFTsnx6we0wY2Dsv0a36CcJHxn2x/b7q+XZOOZSd3FcfTIrHtLrWAa0j45pO/fkgzIScS2UyUAgEwPQVsuA4Z1TEGXDO7+QUREFAgM2kRE9fDV7nMej6998HKYLcCqfXkY1yMDExdtgdkiQGc0I0rt/Z9cg8mCf68/jjfWHXM7V5+p1Xde3l4M2v+8sivuvJzrbVuyKX0z8fYGa8OzJJfGd8tuG4SuGXHIiI8IxdCIiIiaJQZtIiI/CYKAL23NvF65rjcq9SY8v+oQFt7YFx3TrBXBLhldIAgC1Eo5DCYLCiv0yEnx/k/unE9343/73ddkA9b11P7q2Toeq2YPxw/78/2uhlPz0zUjDn3axOPIhUoMbudYfjCsYzJGdE6tc7YFERER+YdBm4jIT/et3IMTRdb1rhN6ZSA2QoWr+2Yi2WWts0wmQ4/MOOw+U4ZxCzdhyYxB2HriItqnxmBQTiKyEqMgl8tQrTdh7aFCAMDNQ7Jx3+hOOF2sxYOf7YFWb8ZVveu3XrZn63j0bB3a6eEUPv575xDoDGbEOc2QuG1oO4ZsIiKiIGDQJiJyYW9CFqFSuJ3be7YM39umZGcnRSE2whpaXEO23Y0Ds7D7TBn0JgtuXvKH5NyskR1w76iOmP/jYRjMFmQlReL5KT0hk8mQFhuBTY+MgskiQKWQB/LHoxYqSq1ElFoJQRAcxzTuf8eJiIio4Ri0iYhsVm47g58OFmDDkSK0SYzEazf0wcCcJCjkMpgtAv62fDvWHykSr39kXJc67zmpTyYe/2q/x3NvbTiBt2zrZgH36qJMJoNKwWojBZZMJkPb5CicKdGiT5uEUA+HiIioWZIJzh9tNxEVFRWIj49HeXk54uLiQj0cImriaoxmlGmNGPbyLzBbpP8kZiVF4skru+Pxr/ahTGvdY1gmA9Y+OAIdUmN8uv/BvHJc9aZ166/B7ZKQFhchVsXt3preH1f24pZK1Dj0JjNMZgHRGn7eTkRE5Ct/cij/C0tELYrRbIFSLoNMJsOhvArc9O5vqKgxSa4Z0TkVm48VwSIAZ0t0uPsjx3ZbSdFqPDOpu88hG7Buo3V551Qczq/A4mn9kRClwl2Xt0ep1oA31h7D0I4pDNnUqDRKBZixiYiIgocVbSJqMUa/tkFsYubNlL6ZeOOmfhAEAVP/8xu2nyoVz904MAsvX9+7Xu9tsQiwCAKUXG9NRERE1CSxok1E5GTfuTL8mV9Za8hWyGV46dpeGN8zA4B1Hevndw/FqYvVUMhl2HG6BJP7tK73GORyGeTgemsiIiKiloBBm4iarZ2nS/Cv1Ufx28liyfHHxnfFyaIqtE+NwaUdktE3K8HrPXJSogEAWUlRwRwqERERETUjDNpE1CydKdbipnd/h9HsWB3TvVUcZgxtixsHZYdwZERERETU3DFoE1Gzc75Mh+vf2SqG7G/uHVZr1ZqIiIiIKJDYlYeImhW9yYzbl25HYaUeAPDvaf0ZsomIiIioUTFoE1Gz8v7mXBy5UAkAeOnaXriqN7fNIiIiIqLGxaAdpsq0Bjz02V5sOlrU4Hv9dCAfv7s0g7Jb8ftp3L9yN1b8dgq5F2vf9sib44VV+GzHWTTBneKomZn6n9/w6uojAID/u6obbrqEa7GJiIiIqPFxjXaYWrj2GL7cdQ5f7jqH4y9OqPfeu2sPXcDdH+2CRinH3mfGIkKlEM9tP1WCp745AAD4dk8eAOCafq3x3JQeiI1Q+XT/ar0J1/z7V1TqTdAo5ZjSt/7bHxE1RI3RjG25JQCAWy9ti9uHtQvxiIiIiIiopWJFOwyV64xYtvWU+LzrUz9h1b48v+9TWWPEM98dBADoTRa8teH/27vzsCjLvQ/g3xmWGZZhEHAYEFTcMFFzyUAytwSpTDtW7+ty8Nirp8Vss8XTqfeglal1Ttar5VIezBbN0o6mhUsiZuKSjooQKCIqyyibM+zDMPf7BzI5ASIyMzjw/VzXXJfzPPc8z33741F+c2/nUFZthBACb/wnBY+tSm7wme80uZj2yWEs230Gh6/rBddV1qDW1LDHevX+LJRWGwEASVbofSe6VfrKGvOfF04Mg1TKPauJiIiIqG2wR/s2k67VY/LHBy2OGU0Cc7/SoNYkEN1Pjc+Ss7Fy3zm8/sAduH+A2tz7fOR8MVycJPCUOSPEzwOz1v2K3KuV5uv8309n8X8/nYWvhyuKyg0AALWXHF193HEkuxgKmTNKq41IydUhJVeHD386a1GPEb388PbD/eEpd4afpwy1JoGvj140n78+0SGyN921nz9vdxdIJEyyiYiIiKjtSIQDTqzV6/VQKpXQ6XTw8vJq6+pYzYGzhZjx78Oo7zi+M0iJkzk6izIP3RmI70/+3rvt5+mKiB6+SMvTI6uJOdauzlIYjKZGz2W98wCkUgmEEJBIJEhMv4JXvj2JwjLDDevaV61AL5Untp/KNx/zcHVC6psxN9NUIqv6eF8mVuzNRIWhFl193LH/1TFtXSUiIiIiamdakoeyR/s28u2xSzAJYGCQEoseHoABQUoAwNYTuXh+4wkAsEiyAaCwzGCR7DZmRkQ3fHrgfIPjr4wPNQ+vre8BHNNXhZ9eGo2E0/lI15Yi/pdsKN1czL2F9dK1pUjX1q3sPLirNzQXr6LcUIsF21Lx2gN9IXN2gj2UVtVAKpHAQ8Yf5Y7kdK4OVytqcDS7GCcuXbWYtuDj4dqGNSMiIiIiYqJ9W9FcugoAeDk61JxkA8DEOwMRqlYg5oOfb/j5YB83RIT4Ymp4V0z++CC83V2w68WRcJZKkZCqRXm1EbrKGsyL6oORfTpjQBdlo9dRurngv4fVrdYc91AYAMBkEvjr+l9xMkeHx+4Kwsp95wAAvh6uWP8/d2P+5lP4IUWLdQezcTLnKjY+EWHzZLu0qgZj/pmEwrJqzI/pi9jh3eDJhPu2UlVTa7EAX2sZa014d2cG1uzPavT81Lu74iFu50VEREREbYxZyW2iqKwaF4oqAAB3BntbnJNIJOirthyakPbmeKzZn4UP9tTNo341JhSPR4bAzbUuqdH8bxRqhYCfpwwA8POrYyCRSGAwmuDq3PI18KRSCT79y10AgNQ8vTnRXjx5ABRyFyyfOgRCHMePp7XQXLyKTb/mICZMjV8yCzHxzkCrLkwlhMCBzELErj1iPrY0IR2peTosnzoYW0/kwcVJisFdvRHo7Yazl0tRbTQhLNCLc3dtqKqmFpNW/AInqQT9u3ghQ1uK03l6bHpyOIZ269Ti6x27UIz1yRdw8FwRVAoZwkN8cbXCgC2aXHOZQcHeGBikhIfMGZMGBTZ4ToiIiIiI2gIT7TYmhMD3p/Lx3AYNAKBnZw8o3RrfWmvjExHYdjIPbzx4B9xdnfHCuD54alRPSCWSBslzpz8Mn61PMG8lyf7jNXqpPM3Huvq6AwCcpBKs/PNQfLI/C4t++A0rEzOxaEcaqmrq5oY/PNg6235pdVWIXpYEfZWxwbnf8vX4TpOLeZtOmo95yZ3NZYd174QvZ0e06u+gIxNCYEdKPsIClQjx82hw7pkvjyPjct10grR8vfnczlRtixLtwrJqzFh7xOIaBaXVSM37/f38mL74670hcJJK+OUJEREREd12mGi3oU2/XsKr356yOBbVT91k+Ygevojo4WtxzJrDcm+W3MUJb00Kw2V9NUL9FRbnYod3w6cHspCnqzIfe+HrE/goMRNLHx2IIV0bT7h2pWohc3HCqD6db3jv3b9dtkiy/xzRFU/c2xMj30vEuYJyfHHogkX568sezS7BV4cvYCb3V74lxy9exdyv6r4Q8nZ3wczI7ghQyhETFoDPkrPxU/oVAEBnhQyh/gocyCwEAGw5nouZkd0R6O3W7D0OnC3En9cetjg2opcfMi6XoqC0GjJnKSJ7+mLWiJBb3lueiIiIiMjWmGi3oT8m2f87oR9iI7q1UW1aJnZ490aPy12cENnTD99dN7wXAM5eKcOSH9Ox6cnhDT6z9sB5vLU9DQDg6iTF0G6dsOSRAejm69GgbPEfVkN/7r7e8PWQIdjHDZeKK3H84lUAwMODAhHUyR0rEjMtyq9IzGSifYvOXOutBoCrFTXmaQvzN6eYj/9jQj/8z4i6v9/CsmrcuzQRhWXVGPVeIg69dh+83V3hdG0awW/5enyUmImgTu4YFOyNsX1V+PCnM+ZrPXdfb8yL6mN+X2mohdxFyh5sIiIiIrrtMdFuQ24uTqisqYW3uwuS/3afeX61o2tq6Puv2cVIy9Nj06+XMLirNx4aGIi96VfMSTYAGGpNSM4qwuPxR/HjC/daLKhWbazFsj1nLK7p6yGDk1SCp0b1xOvfnTYffzWmLwK93RAd5o8n1h+Du6sTsgrLUVhmwNnLpej9h574tvD10YuoNpoQG9HNIZLH3JLKG55/dGgQHr+nu/m9n6cM70zujxe/PomaWoGhb++BVFIXGy+5CxZ+n4rq67adu36Y/6NDg/Dc2F4W128vzwcRERERtX9MtNtAebURq/dnobKmFgDwzZPD21USMeXuYCSdKUBXH3cknSmAj4crXJ2k0Oqr8Oiqg6gw1GLdQZi3LGtMVmE5Pk++AC+5CxZcS8hqTb9v+f7IkCCE9/Ax945evwhWj84eCFDKAQADg7xx6O/3odJQi7sX7UFptRFRy/bj0Gv3QX2tjL2UVxvx8jcn8eNpLfqqFebt0foFeOGu7j52rcv1LhZVIF9XiQ1HLqKkogZ+njJMuTsYw66rU61JIKekbrG+1+7viwcGBCDzShkSTmtRVm3EpEGBiOrn3+ALgz8NDsKZy2XmxfNMAljyY7pFmQFdlEjJ1ZmT7Ht7++Gfj91pyyYTEREREdmURAghmi92e2nJRuG3g41HLmLB96l4dmxvPDOmFxb/8BtWX7c90bE3xsH32urg7YkQAidzdOirVmDG2iM4kl3cZNlPZ9wFhdwZlTW12H+mEP/+peG+3/Xu76/Gyj8PtThmMgm8veM39FR5YHp448Pvz1wuRfSy/QCAKcOCsWBi3dZl1TUmKN0b74W3luJyA4a8tbvRc0+P7on5MX1tev+mrE46h3d3Zlh8iVFv0Z/6Q19pxH80uThfWA5DbV3v84ppgzFhYOBN30MIgfEf7MeZy2UNzp2Mi4aX3BlzN2iw41Q+XJ2k2PBExC2tUk5EREREZEstyUPZo21DJeUGrDuYjQ9/qpvL+t7ODBzKKkJ5teWK2d7uro193OFJJBIMurZVWXOJ7LAQH/OQ80pDbZOJ9rg7VHj30YENjkulEvzjoX43vEcffwU6K2QoKK3GxqOXsPHoJQCAzFmKXS+ObHROeGsJIXA6V4+zV0qbLLNy3zkEKOWY0cS8d1vZcjwHi6/rXVa6uWB4D18kpGoBwGIo/vW6+ri36D4SiQRfzApHxuVSiy3ZXo7uY475R9OG4F+P1UJfVQOVwr4jDYiIiIiIrI2Jtg19+NNZrDuYbXHs57OFDco5WXGP6duVdxPztt+aFIbRoSqLed0jevuZ//zvmXfhxxQtnhzVA85SKbr7tS4ZXj51MKasOWRxrNpowts7fsPH04fAxUorWesqazD3q+MN4n1nsDeeGd0TB88VITzEB98cy8He9CuI25YKD1dnTB7SxebztYUQWPh9mvlnc3gPX7wSE4pQfwU8ZM6oNtbi5W9O4fuTeQ0+6ySVoM8tzG9Xecmh8pLjzNv3Y/wH+5FTUoGY/gEWZeQuTm2yij4RERERkbUx0bahWSNCGiTa9aL7+UPlJUP/QKV9K9VGvK/r0e7k7oLhPX0xaVAXjA9ruJ2ZQu6C7CUPmt+P7etvtXrcEeAFZ6kExj8Mld6ddhmPrDyIbXNHtOr6BqMJrs5SbD+V1+iXKrNGhCA6TI3oa+0O7+GLIW/thhDAS9+chK6yxrxqt618cyzH4ufyxag+FtuuyZydsHzqYDw1qgfOXi5DWKAXoq4NuY/u59+qZNjVWYrNT0fiaoUBPTp7Nv8BIiIiIiIHxETbhoJ93DF5SBdsOZ6LXipPjLvDH6uSzsHb3QWLJw9ol/OymzK0Wyd88nPdcHCF3AUfTx/azCdsQ+nmgjUzhsJYKxAdpoZWV4UJyw+gsKwap3J0KCk3oJPHrQ3lf2t7Gr44dAEPDgjAlmvbm0X29MWfI7rhVI4OtSYTYv7wxYKPhytOLYjGa5tTsCMlH0lnCmyeaF/fU/1SVB8M6974fOiwQCXCApWoNQl093WHvsrY7PD8m+Hj4QqfW/w7JiIiIiJyBEy0bSzuoTAMCvbGPb38oPaSw1kqwfgwdYdKsgFgfJgadwYpcTJHZzE0vC1c30OuVsrx6xvjcM+Svci9WonMgjIM86hbbXt9cjZO5+qwcGL/ZleFP1dQhrUH6r5I2HLdHuL/eKgf+qq98MCAgKY+Ci+5C/40uAt2pOTjaoWhyXKbj+VgVdI5hKoVePyeEPTs7IGfzxbi/v5qODcz5L20qgbrky+gwmDEhaK61cM/n3U37u3d+YafA+qGi+947l4Ya4XNF40jIiIiImoPmGjbmNLNxWKRq5fHh7ZdZdqQRCLBR9OHIOG0FlPu7trW1Wmgl8oTuVcrMf/bU8gqLMfH04fgH1tTAQCbfs3Bkb/fB5WX5SJdVTW1kDlLIZFIsOra9lX13FycEP/4MIttx26kk0ddAltSUdPoeZNJ4L2dGdDqq3D2Shm2n8o3n5sW3hV/u79ub+rG/JpdjMfXHUVpleUifJ1asAifh4z/VBARERER3Sz+9kx2E9TJHbPv7dHW1WhUL5Unks4UIKuwHAAw58vjFueX783Ei1F9IHeRwt3VGcculGDKmmSMCVVhXD9/fHMsBwCwcGIYRvbpjAClvEVzmetXni9pokf70PkiaPVVjZ776vBFfHX4Ij6cMgihagX6qBQorTbCxUmCjxPPYUViZqOfu9Uh8kREREREdGNMtIkA9FbdeGGuzw9dwOeHLiBQKcfns8Mx+7OjqKkV2JV2GbvSLpvL9e+iRMgtrIyuUtRNJSitMmJP2mWE9/CB4loP9aGsIkz75DAAYOrdwRjZuzPiD2bjgf5qlBtq8d7ODADA8xtPAADG3eGPxIwrDfbG3vDXCBSVV2PuVxrIXaTwZaJNRERERGQTTLSJULdYm0QCOEslqKkVTZbL01Xhvn8lNXpu8uAu5n3DW0ohd4FKIcOV0mrMXv8rQvw8MKpPZzhJJea539193fHcfb0RoHTD/dfN+e6t8sQTnx8zv9/z2++Jv5NUgqdH9UR4Dx8M7+kLAPD1kEEqAbfSIiIiIiKyEYkQoums4hYsXrwYW7ZsQXp6Otzc3BAZGYmlS5ciNPT3uclCCCxcuBBr1qxBSUkJwsPD8dFHHyEsLOym7qHX66FUKqHT6eDldXNzYImac66gDGovOTxkzqiqqcWBs4X44vAF7MsoaLT8K+NDYTCa8OXhC1gz4y6LLbJuxQsbNfjPiYZ7V9fbM28UejXR8378Ygk+/TkLP6RozcfenBSGUH8Fwnv4tqpeRERERETUsjzU6ol2TEwMpkyZgmHDhsFoNOL1119HSkoK0tLS4OFRN6R26dKlWLRoEdatW4c+ffrg7bffxv79+5GRkQGFQtHsPZhok738klmIx+OP4r+GBSFA6YZeKk/klFTC3dUJU4YFQyKRWO1eWl0VVu7LxJ7frqCm1oQrpdXmcwfmj0FQJ/cbft5kEnj525PYcjwXMyO7Y8HEm/viioiIiIiImtemifYfFRQUQKVSISkpCSNHjoQQAoGBgXjhhRcwf/58AEB1dTX8/f2xdOlSPPnkk81ek4k22VNNrQkuzWyfZQtPf3EMP57W4rmxvTAv+uZWqxdCIDVPj14qTw4NJyIiIiKyopbkoTbPHnQ6HQDAx6dub+Lz589Dq9UiOjraXEYmk2HUqFE4ePBgo9eorq6GXq+3eBHZS1sk2QCw9NGB+G5OJF6M6nPTn5FIJOjfRckkm4iIiIioDdk0gxBCYN68eRgxYgT69+8PANBq6+aQ+vv7W5T19/c3n/ujxYsXQ6lUml/BwcG2rDbRbcFL7oLBXTtZdXg6ERERERHZnk0T7blz5+LUqVPYsGFDg3N/TB6EEE0mFK+99hp0Op35denSJZvUl4iIiIiIiKi1bLa917PPPott27Zh//79CAoKMh9Xq9UA6nq2AwJ+36LoypUrDXq568lkMshkMltVlYiIiIiIiMhqrN6jLYTA3LlzsWXLFuzduxchISEW50NCQqBWq7F7927zMYPBgKSkJERGRlq7OkRERERERER2ZfUe7WeeeQZfffUVtm7dCoVCYZ53rVQq4ebmBolEghdeeAHvvPMOevfujd69e+Odd96Bu7s7pk2bZu3qEBEREREREdmV1RPtlStXAgBGjx5tcTw+Ph4zZ84EALz66quorKzEnDlzUFJSgvDwcOzateum9tAmIiIiIiIiup3ZfB9tW+A+2kRERERERGRPt9U+2kREREREREQdCRNtIiIiIiIiIitiok1ERERERERkRUy0iYiIiIiIiKyIiTYRERERERGRFTHRJiIiIiIiIrIiJtpEREREREREVsREm4iIiIiIiMiKmGgTERERERERWRETbSIiIiIiIiIrYqJNREREREREZEXObV2BWyGEAADo9fo2rgkRERERERF1BPX5Z30+eiMOmWiXlpYCAIKDg9u4JkRERERERNSRlJaWQqlU3rCMRNxMOn6bMZlMyMvLg0KhgEQiaevqNEmv1yM4OBiXLl2Cl5dXW1eHmsA4OQbGyTEwTrc/xsgxME6OgXFyDIyTY3CEOAkhUFpaisDAQEilN56F7ZA92lKpFEFBQW1djZvm5eV12/6w0O8YJ8fAODkGxun2xxg5BsbJMTBOjoFxcgy3e5ya68mux8XQiIiIiIiIiKyIiTYRERERERGRFTHRtiGZTIa4uDjIZLK2rgrdAOPkGBgnx8A43f4YI8fAODkGxskxME6Oob3FySEXQyMiIiIiIiK6XbFHm4iIiIiIiMiKmGgTERERERERWRETbSIiIiIiIiIrYqJNREREREREZEVMtImIiIiIiIisiIl2MxYvXoxhw4ZBoVBApVLh4YcfRkZGhkUZIQQWLFiAwMBAuLm5YfTo0UhNTbUos2bNGowePRpeXl6QSCS4evVqg3t1794dEonE4vW3v/3Nls1rF+wZIwDYsWMHwsPD4ebmBj8/P0yePNlWTWtX7BWnffv2NXiO6l9Hjx61dTMdnj2fpzNnzmDSpEnw8/ODl5cX7rnnHiQmJtqyee2GPeN0/PhxREVFwdvbG76+vnjiiSdQVlZmy+a1C9aIUXFxMZ599lmEhobC3d0dXbt2xXPPPQedTmdxnZKSEsTGxkKpVEKpVCI2NrbJ/8PIkj3jtGjRIkRGRsLd3R3e3t72aF67Ya84ZWdnY9asWQgJCYGbmxt69uyJuLg4GAwGu7XVkdnzeZo4cSK6du0KuVyOgIAAxMbGIi8vzy7tvFlMtJuRlJSEZ555BocOHcLu3bthNBoRHR2N8vJyc5l3330X77//PlasWIGjR49CrVYjKioKpaWl5jIVFRWIiYnB3//+9xve780330R+fr759cYbb9isbe2FPWO0efNmxMbG4vHHH8fJkyfxyy+/YNq0aTZtX3thrzhFRkZaPEP5+fmYPXs2unfvjrvuusvm7XR09nyeHnzwQRiNRuzduxfHjh3DoEGDMGHCBGi1Wpu2sT2wV5zy8vIwbtw49OrVC4cPH0ZCQgJSU1Mxc+ZMWzfR4VkjRnl5ecjLy8M///lPpKSkYN26dUhISMCsWbMs7jVt2jScOHECCQkJSEhIwIkTJxAbG2vX9joqe8bJYDDgsccew9NPP23XNrYH9opTeno6TCYTVq9ejdTUVCxbtgyrVq1q9vd3qmPP52nMmDHYtGkTMjIysHnzZpw7dw6PPvqoXdvbLEEtcuXKFQFAJCUlCSGEMJlMQq1WiyVLlpjLVFVVCaVSKVatWtXg84mJiQKAKCkpaXCuW7duYtmyZbaqeodhqxjV1NSILl26iE8//dSm9e8obPksXc9gMAiVSiXefPNNq9a/o7BVnAoKCgQAsX//fvMxvV4vAIg9e/bYpjHtmK3itHr1aqFSqURtba35mEajEQDE2bNnbdOYdqq1Maq3adMm4erqKmpqaoQQQqSlpQkA4tChQ+YyycnJAoBIT0+3UWvaL1vF6Xrx8fFCqVRave4diT3iVO/dd98VISEh1qt8B2LPOG3dulVIJBJhMBis14BWYo92C9UPW/Dx8QEAnD9/HlqtFtHR0eYyMpkMo0aNwsGDB1t8/aVLl8LX1xeDBg3CokWLOFTlFtgqRsePH0dubi6kUikGDx6MgIAA3H///Q2GYtLNsfWzVG/btm0oLCxkD9wtslWcfH19cccdd2D9+vUoLy+H0WjE6tWr4e/vj6FDh1q3ER2AreJUXV0NV1dXSKW//7rg5uYGADhw4IA1qt5hWCtGOp0OXl5ecHZ2BgAkJydDqVQiPDzcXCYiIgJKpbJV/3Z2VLaKE1mXPeOk0+nM96GWsVeciouL8eWXXyIyMhIuLi5WbEHrMNFuASEE5s2bhxEjRqB///4AYB7i6O/vb1HW39+/xcMfn3/+eWzcuBGJiYmYO3cuPvjgA8yZM8c6le8gbBmjrKwsAMCCBQvwxhtvYPv27ejUqRNGjRqF4uJiK7WgY7D1s3S9tWvXYvz48QgODr71CndQtoyTRCLB7t27odFooFAoIJfLsWzZMiQkJHDuYgvZMk5jx46FVqvFe++9B4PBgJKSEvMQyvz8fCu1oP2zVoyKiorw1ltv4cknnzQf02q1UKlUDcqqVCpOw2ghW8aJrMeecTp37hyWL1+Op556ykq17zjsEaf58+fDw8MDvr6+uHjxIrZu3WrlVrQOE+0WmDt3Lk6dOoUNGzY0OCeRSCzeCyEaHGvOiy++iFGjRmHgwIGYPXs2Vq1ahbVr16KoqKhV9e5IbBkjk8kEAHj99dfxyCOPYOjQoYiPj4dEIsE333zTuop3MLZ+lurl5ORg586dDeb10M2xZZyEEJgzZw5UKhV+/vlnHDlyBJMmTcKECROYwLWQLeMUFhaGzz77DP/617/g7u4OtVqNHj16wN/fH05OTq2ue0dhjRjp9Xo8+OCD6NevH+Li4m54jRtdh5pm6ziRddgrTnl5eYiJicFjjz2G2bNnW6fyHYg94vTKK69Ao9Fg165dcHJywowZMyCEsF4jWomJ9k169tlnsW3bNiQmJiIoKMh8XK1WA0CDb2GuXLnS4NualoqIiAAAZGZmtuo6HYWtYxQQEAAA6Nevn/mYTCZDjx49cPHixdZUvUOx57MUHx8PX19fTJw48dYr3EHZOk579+7F9u3bsXHjRtxzzz0YMmQIPv74Y7i5ueGzzz6zTiM6AHs8T9OmTYNWq0Vubi6KioqwYMECFBQUICQkpPUN6ACsEaPS0lLExMTA09MT3333ncXQSLVajcuXLze4b0FBQat/D+lIbB0nsg57xSkvLw9jxozB8OHDsWbNGhu0pH2zV5z8/PzQp08fREVFYePGjfjhhx9w6NAhG7To1jDRboYQAnPnzsWWLVuwd+/eBr9YhISEQK1WY/fu3eZjBoMBSUlJiIyMbNW9NRoNgN8TPGqcvWI0dOhQyGQyi20KampqkJ2djW7durW+Ie2cvZ8lIQTi4+MxY8YM/rLTAvaKU0VFBQBYzP2tf18/eoSa1hb/N/n7+8PT0xNff/015HI5oqKiWtWG9s5aMdLr9YiOjoarqyu2bdsGuVxucZ3hw4dDp9PhyJEj5mOHDx+GTqdr9e8hHYG94kStY8845ebmYvTo0RgyZAji4+Mb/D9FTWvL56m+J7u6utpKrbEC26+35tiefvppoVQqxb59+0R+fr75VVFRYS6zZMkSoVQqxZYtW0RKSoqYOnWqCAgIEHq93lwmPz9faDQa8cknn5hX2tVoNKKoqEgIIcTBgwfF+++/LzQajcjKyhJff/21CAwMFBMnTrR7mx2NvWIkhBDPP/+86NKli9i5c6dIT08Xs2bNEiqVShQXF9u1zY7InnESQog9e/YIACItLc1ubWwP7BWngoIC4evrKyZPnixOnDghMjIyxMsvvyxcXFzEiRMn7N5uR2PP52n58uXi2LFjIiMjQ6xYsUK4ubmJDz/80K7tdUTWiJFerxfh4eFiwIABIjMz0+I6RqPRfJ2YmBgxcOBAkZycLJKTk8WAAQPEhAkT7N5mR2TPOF24cEFoNBqxcOFC4enpKTQajdBoNKK0tNTu7XY09opTbm6u6NWrlxg7dqzIycmxKEPNs1ecDh8+LJYvXy40Go3Izs4We/fuFSNGjBA9e/YUVVVVbdL2xjDRbgaARl/x8fHmMiaTScTFxQm1Wi1kMpkYOXKkSElJsbhOXFzcDa9z7NgxER4eLpRKpZDL5SI0NFTExcWJ8vJyO7bWMdkrRkLUbRX10ksvCZVKJRQKhRg3bpw4ffq0nVrq2OwZJyGEmDp1qoiMjLRDy9oXe8bp6NGjIjo6Wvj4+AiFQiEiIiLEDz/8YKeWOjZ7xik2Nlb4+PgIV1dXMXDgQLF+/Xo7tdKxWSNG9duuNfY6f/68uVxRUZGYPn26UCgUQqFQiOnTpze79SHVsWec/vKXvzRaJjEx0X4NdlD2ilN8fHyTZah59orTqVOnxJgxY4SPj4+QyWSie/fu4qmnnhI5OTl2bvGNSYS4jWaMExERERERETk4TjogIiIiIiIisiIm2kRERERERERWxESbiIiIiIiIyIqYaBMRERERERFZERNtIiIiIiIiIitiok1ERERERERkRUy0iYiIiIiIiKyIiTYRERERERGRFTHRJiIiIiIiIrIiJtpEREREREREVsREm4iIiIiIiMiK/h/ifbvN4KSlCQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from statsmodels.tsa.arima.model import ARIMA\n", "\n", "train = df['Close'][:-200]\n", "test = df['Close'][-200:]\n", "\n", "model = ARIMA(train, order=(5,1,0))\n", "model_fit = model.fit()\n", "forecast = model_fit.forecast(steps=len(test))\n", "\n", "plt.figure(figsize=(12,6))\n", "plt.plot(train.index, train, label='Train')\n", "plt.plot(test.index, test, label='Test')\n", "plt.plot(test.index, forecast, label='ARIMA Forecast')\n", "plt.legend()\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 564 }, "id": "4-SnQaMTJUfH", "outputId": "7c33dfe8-2248-49aa-cb06-86e9a9a563f7" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+0AAAIhCAYAAAA7GltoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADMBElEQVR4nOzdd3hTZRsG8DvN6p5AB5Q9yhIUGQIyBNlLUFREQXAiKAoO/BRBEQQFUZAPVLAKKqCAAn7KHiKICILsWXZLGd0j83x/pDnNyWrSJiRt79919SJn5kkp1ec87/u8MkEQBBARERERERGR3wnwdQBEREREREREZB+TdiIiIiIiIiI/xaSdiIiIiIiIyE8xaSciIiIiIiLyU0zaiYiIiIiIiPwUk3YiIiIiIiIiP8WknYiIiIiIiMhPMWknIiIiIiIi8lNM2omIiIiIiIj8FJN2IiIq0aeffgqZTIZmzZrd1vft0qULunTp4tF7btiwAT169EBCQgLUajUSEhLQpUsXfPDBB5Lzpk+fjp9++smj723t/PnzkMlk+Oijj0p1vUwmk3xFRESgS5cu+OWXX1y6fvv27ZDJZNi+fXup3r+sdDod4uLiIJPJ8OOPP9o9Z8qUKZLPqFQqUbNmTTz99NNIS0uzOb927dro16+fZJ/52pEjR9p9j3fffVc85/z583bPGTx4MGQyGcaOHevWZ7T+OzJ/ValSxa37lEdXr17FlClTcPDgQV+HQkRUrjFpJyKiEi1ZsgQAcPToUezdu9fH0ZTewoUL0atXL4SHh2P+/PnYsGEDZs6cicaNG9skjbcjafeEBx98EHv27MEff/yBzz77DGlpaejfv79Liftdd92FPXv24K677roNkdpav349rl27BgBYvHix03N/++037NmzB7/++iseeeQRLFmyBN26dYNOp3PpvcLCwvDDDz8gJydHsl8QBCQnJyM8PNzhtenp6Vi/fj0A4Ntvv0VhYaFL72lm/juy/NqwYYNb9yiPrl69iqlTpzJpJyIqI4WvAyAiIv/2999/49ChQ+jbty9++eUXLF68GG3btvV1WKUyY8YMdOrUySZBf/zxx2E0Gn0UVdnExsaiXbt2AID27dvjnnvuQf369TF37lz07dvX7jU6nQ4ymQzh4eHitb6wePFiqFQqdO7cGRs3bsTly5dRo0YNu+e2atVKrE53794dN27cwFdffYVdu3aha9euJb7XwIEDsWrVKixfvhxPP/20uH/r1q1ISUnB008/jS+++MLutd988w10Op34b2D16tUYNmyYy5/T8u/IkwwGA/R6PdRqtcfvTURE/oOVdiIicspcAf3ggw/Qvn17LF++HPn5+ZJzzMO8Z82ahffffx81a9ZEYGAg7r77bmzZskVyrnm48z///IPBgwcjPDwcERERGD58OK5fv15iPFqtFtOmTUNSUhLUajWqVq2KJ5980qVrb968ifj4eLvHAgKK/5Mok8mQl5eHr7/+WhzObDlM/8iRIxg4cCCioqIQGBiIli1b4uuvv7a5Z2ZmJiZMmIC6detCrVajWrVq6NOnD06cOOEwRp1OhxEjRiA0NFSs7rqjXr16qFq1Ki5cuACgeAj80qVLMWHCBFSvXh1qtRpnzpxxODx+79696N+/P2JiYhAYGIh69eph/PjxknNOnz6NYcOGoVq1alCr1WjcuDE+++wzl+O8evUqfvvtN/Tv3x+vvvoqjEYjkpOTXb7+7rvvBgCxUl+SiIgIPPDAA+KoEbMlS5agQ4cOaNiwocNrlyxZgtjYWHz99dcICgqyuUdZXbx4EcOHD5d8L2fPni15kGT5b2zatGmoU6cO1Go1tm3bBsD0cG3AgAGIjo5GYGAg7rzzTqxcudLmva5cuYJnnnkGiYmJUKlUSEhIwIMPPih+HwsLCzFhwgS0bNkSERERiI6Oxj333IOff/7Z5l4//PAD2rZti4iICAQHB6Nu3boYNWoUANPPXevWrQEATz75pPjvaMqUKR793hERVQZM2omIyKGCggJ8//33aN26NZo1a4ZRo0YhJycHP/zwg93z58+fj99++w1z587FsmXLEBAQgN69e2PPnj025z7wwAOoX78+fvzxR0yZMgU//fQTevbs6XS4s9FoxMCBA/HBBx9g2LBh+OWXX/DBBx9g06ZN6NKlCwoKCpx+nnvuuQerVq3ClClTcOjQIRgMBrvn7dmzB0FBQejTp484nHnBggUAgJMnT6J9+/Y4evQoPv30U6xevRpNmjTByJEjMWvWLPEeOTk56NixIxYtWoQnn3wS69atw8KFC9GwYUOkpqbafd/MzEz07NkTGzduxI4dO2zmZrsiIyMDN2/eRNWqVSX7J02ahIsXL2LhwoVYt24dqlWrZvf6DRs24N5778XFixcxZ84c/Prrr3jrrbckyfGxY8fQunVrHDlyBLNnz8b69evRt29fvPjii5g6dapLcSYnJ8NgMGDUqFHo3r07atWqhSVLlkAQBJeuT0lJAQCnyba10aNH488//8Tx48cBmL7fq1evxujRox1es3v3bhw/fhxPPPEEYmJiMGTIELE67ypBEKDX6yVf5s95/fp1tG/fHhs3bsR7772HtWvXonv37pg4caLd+fOffvoptm7dio8++gi//vorkpKSsG3bNnTo0AGZmZlYuHAhfv75Z7Rs2RIPP/yw5EHIlStX0Lp1a6xZswavvPIKfv31V8ydOxcRERHIyMgAAGg0Gty6dQsTJ07ETz/9hO+//x4dO3bE4MGD8c0334j32rNnDx5++GHUrVsXy5cvxy+//ILJkydDr9cDME29+OqrrwAAb731lvjv6KmnnnL5+0ZEREUEIiIiB7755hsBgLBw4UJBEAQhJydHCA0NFe69917JeSkpKQIAISEhQSgoKBD3Z2dnC9HR0UL37t3Ffe+8844AQHj55Zcl9/j2228FAMKyZcvEfZ07dxY6d+4sbn///fcCAGHVqlWSa/ft2ycAEBYsWOD085w5c0Zo1qyZAEAAIAQFBQndunUT5s+fL2i1Wsm5ISEhwogRI2zu8cgjjwhqtVq4ePGiZH/v3r2F4OBgITMzUxAEQXj33XcFAMKmTZscxmP+vn344YdCSkqK0KRJE6FJkybC+fPnnX4OMwDCmDFjBJ1OJ2i1WuH48eNC7969BQDCZ599JgiCIGzbtk0AIHTq1MnmevOxbdu2ifvq1asn1KtXT/L3aK1nz55CjRo1hKysLMn+sWPHCoGBgcKtW7ecxm00GoX69esL1atXF/R6vSAIxT8XW7ZskZxr3p+WlibodDohIyNDWLlypRASEiI8+uijNveuVauW0LdvX5vv0wsvvCAYjUahTp06wsSJEwVBEITPPvtMCA0NFXJycoQPP/xQACCkpKRIrh01apQAQDh+/Ljke/b22287/YyW723v64svvhAEQRDeeOMNAYCwd+9eyXXPP/+8IJPJhJMnTwqCUPyzUq9ePZuf1aSkJOHOO+8UdDqdZH+/fv2E+Ph4wWAwiJ9FqVQKx44dcyl2QRAEvV4v6HQ6YfTo0cKdd94p7v/oo48EAOLPuz3mf5dfffWVy+9HRES2WGknIiKHFi9ejKCgIDzyyCMAgNDQUDz00EP4/fffcfr0aZvzBw8ejMDAQHE7LCwM/fv3x86dO22q2o899phke+jQoVAoFOJwX3vWr1+PyMhI9O/fX1K1bNmyJeLi4krsgl6vXj0cOnQIO3bswNSpU9G9e3fs27cPY8eOxT333ONSg7GtW7eiW7duSExMlOwfOXIk8vPzxVEFv/76Kxo2bIju3buXeM8DBw6gXbt2iI2NxR9//IFatWqVeI3ZggULoFQqoVKp0LhxY+zevRvvvvsuxowZIzlvyJAhJd7r1KlTOHv2LEaPHi35e7RUWFiILVu24IEHHkBwcLDk76FPnz4oLCzEn3/+6fR9duzYgTNnzmDEiBGQy+UAiodQOxp6HhcXB6VSiaioKAwdOhStWrWyOyXBGXMH+aVLl0Kv12Px4sUYOnQoQkND7Z6fm5uLlStXon379khKSgIAdO7cGfXq1UNycrLLfRCGDh2Kffv2Sb4GDRoEwPTz1KRJE7Rp00ZyzciRIyEIArZu3SrZP2DAACiVSnH7zJkzOHHihPjvyfrvIzU1FSdPngRg+pns2rUrGjdu7DTeH374AR06dEBoaCgUCgWUSiUWL14sjlAAIA59Hzp0KFauXIkrV6649L0gIiL3MWknIiK7zpw5g507d6Jv374QBAGZmZnIzMzEgw8+CAB2k6u4uDi7+7RaLXJzc52eq1AoEBMTg5s3bzqM6dq1a8jMzIRKpYJSqZR8paWl4caNGyV+roCAAHTq1AmTJ0/G2rVrcfXqVTz88MPYv3+/S3OVHc2LT0hIEI8DpmHPjpqqWdu0aROuXbuGp556CpGRkS5dY2ZOCP/++2+cPHkSN2/exNtvv21znqO5/JbMfQGcxX3z5k3o9XrMmzfP5u+gT58+AFDi34O5T8IDDzwg/lxFRESgY8eOWLVqFTIzM22u2bx5M/bt24cNGzZgyJAh2LlzJ8aNG1fiZ7Jm7n8wffp0HDhwwOnQ+BUrViA3NxdDhw4V48zKysLQoUNx6dIlbNq0yaX3rFq1Ku6++27Jl7mpnqs/T2bW55qnLUycONHm78P84Mb89+HKz+Tq1asxdOhQVK9eHcuWLcOePXuwb98+jBo1SvJQq1OnTvjpp5+g1+vxxBNPoEaNGmjWrBm+//57l74nRETkOnaPJyIiu8zzi3/88Ue7a2h//fXXmDZtmlgpBWB33ey0tDSoVCqbamZaWhqqV68ubuv1ety8eRMxMTEOY6pSpQpiYmLw22+/2T0eFhZW4ueyFhISgkmTJmHFihU4cuRIiefHxMTYnZN+9epVMUbAlKhdvnzZpRheffVVnD17Fk888YSYBLnKnBCWRCaTuXQvAE7jjoqKglwux+OPP44XXnjB7jl16tRxeH1WVhZWrVoFoLhaa+27776zGSnQokUL8Xt7//33o2fPnvj8888xevRoh/exJzExEd27d8fUqVPRqFEjtG/f3uG55ocL48ePt2nEZz7es2dPl9/bHld/nsys/x7NxydNmoTBgwfbfY9GjRoBcO1nctmyZahTpw5WrFgheS+NRmNz7sCBAzFw4EBoNBr8+eefmDFjBoYNG4batWvjnnvucfo+RETkOibtRERkw2Aw4Ouvv0a9evXw5Zdf2hxfv349Zs+ejV9//VXSLG316tX48MMPxaHVOTk5WLduHe69915Jcg+Y1rtu1aqVuL1y5Uro9XpJl3Zr/fr1w/Lly2EwGEq17FxqaqrdqqZ52K+5ugkAarXabmO7bt26Yc2aNbh69ark/G+++QbBwcHi0l69e/fG5MmTsXXrVtx3331O4woICMCiRYsQGhqKkSNHIi8vD88//7zbn6+sGjZsiHr16mHJkiV45ZVX7C4lFhwcjK5du+Kff/7BHXfcAZVK5dZ7fPfddygoKMB7772Hjh072hx/6KGHsGTJEpuk3ZJMJsNnn32GJk2a4K233nJ7zfMJEyYgKCgIDz30kMNzjh8/jj179mDIkCF2G8JNmzYNP//8c4kPmkrSrVs3zJgxAwcOHMBdd90l7v/mm28gk8lKXM6uUaNGaNCgAQ4dOoTp06c7Pbd3795YunQpTp48KSby1mQyGVQqlSRhT0tLs9s93kytVqNz586IjIzEhg0b8M8//+Cee+4Rf35KahBJRETOMWknIiIbv/76K65evYqZM2faTaKbNWuG+fPnY/HixZKkXS6X4/7778crr7wCo9GImTNnIjs7225H8dWrV0OhUOD+++/H0aNH8fbbb6NFixYYOnSow7geeeQRfPvtt+jTpw9eeukltGnTBkqlEpcvX8a2bdswcOBAPPDAAw6vb9q0Kbp164bevXujXr16KCwsxN69ezF79mzExsZKhko3b94c27dvx7p16xAfH4+wsDA0atQI77zzDtavX4+uXbti8uTJiI6OxrfffotffvkFs2bNQkREBABTdXbFihUYOHAg3njjDbRp0wYFBQViV3h7ydjs2bMRFhaGMWPGIDc3F6+++qrDz+Itn332Gfr374927drh5ZdfRs2aNXHx4kVs2LAB3377LQDgk08+QceOHXHvvffi+eefR+3atZGTk4MzZ85g3bp1NvOwLS1evBhRUVGYOHGi3XnzTzzxBObMmYNDhw6hRYsWDu/ToEEDPPPMM1iwYAF27dpl9wGAIz169ECPHj2cnmOusr/22ms2880B0wOpLVu2YNmyZXjppZdcfm9rL7/8Mr755hv07dsX7777LmrVqoVffvkFCxYswPPPP+9Sd/xFixahd+/e6NmzJ0aOHInq1avj1q1bOH78OA4cOCCu9vDuu+/i119/RadOnfDmm2+iefPmyMzMxG+//YZXXnkFSUlJ6NevH1avXo0xY8bgwQcfxKVLl/Dee+8hPj5e0sdi8uTJuHz5Mrp164YaNWogMzMTn3zyCZRKJTp37gzA1EMiKCgI3377LRo3bozQ0FAkJCRIHnYREZELfNwIj4iI/NCgQYMElUolpKenOzznkUceERQKhZCWliZ2tp45c6YwdepUoUaNGoJKpRLuvPNOYcOGDZLrzN3A9+/fL/Tv318IDQ0VwsLChEcffVS4du2a5Fzr7vGCIAg6nU746KOPhBYtWgiBgYFCaGiokJSUJDz77LPC6dOnnX6uRYsWCYMHDxbq1q0rBAcHCyqVSqhXr57w3HPPCZcuXZKce/DgQaFDhw5CcHCwAEASx+HDh4X+/fsLERERgkqlElq0aGG3Q3ZGRobw0ksvCTVr1hSUSqVQrVo1oW/fvsKJEycEQZB2j7dk7mQ+efJkp58HRV3RnTF3O//hhx8cHrPsHi8IgrBnzx6hd+/eQkREhKBWq4V69erZdPtPSUkRRo0aJVSvXl1QKpVC1apVhfbt2wvTpk1zGMuhQ4cEAML48eMdnnPixAkBgDBu3DhBEIp/Xq5fv25z7rVr14TQ0FCha9eu4j5n3eOdsewer9VqhWrVqgktW7Z0eL5erxdq1KghNG/e3Ol9XXnvCxcuCMOGDRNiYmIEpVIpNGrUSPjwww/Fru+C4PhnxezQoUPC0KFDhWrVqglKpVKIi4sT7rvvPnHlB7NLly4Jo0aNEuLi4gSlUikkJCQIQ4cOlfzb++CDD4TatWsLarVaaNy4sfDFF1+Ifw9m69evF3r37i1Ur15dUKlUQrVq1YQ+ffoIv//+u+T9vv/+eyEpKUlQKpUCAOGdd95x+r0gIiJbMkFwcUFUIiIiB86fP486dergww8/xMSJE52eO2XKFEydOhXXr1+3ma9LRERERFLsHk9ERERERETkp5i0ExEREREREfkpDo8nIiIiIiIi8lOstBMRERERERH5KSbtRERERERERH6KSTsRERERERGRn1L4OgB/YDQacfXqVYSFhUEmk/k6HCIiIiIiIqrgBEFATk4OEhISEBDguJ7OpB3A1atXkZiY6OswiIiIiIiIqJK5dOkSatSo4fA4k3YAYWFhAEzfrPDwcB9HQ0RERERERBVddnY2EhMTxXzUESbtgDgkPjw8nEk7ERERERER3TYlTdFmIzoiIiIiIiIiP8WknYiIiIiIiMhPMWknIiIiIiIi8lOc0+4iQRCg1+thMBh8HQpVcHK5HAqFgssPEhERERERk3ZXaLVapKamIj8/39ehUCURHByM+Ph4qFQqX4dCREREREQ+xKS9BEajESkpKZDL5UhISIBKpWIFlLxGEARotVpcv34dKSkpaNCgAQICOIuFiIiIiKiyYtJeAq1WC6PRiMTERAQHB/s6HKoEgoKCoFQqceHCBWi1WgQGBvo6JCIiIiIi8hGW8FzEaifdTvx5IyIiIiIigEk7ERERERERkd9i0k5ERERERETkp3yatO/cuRP9+/dHQkICZDIZfvrpJ8nx3NxcjB07FjVq1EBQUBAaN26M//73v5JzNBoNxo0bhypVqiAkJAQDBgzA5cuXb+OnqDy6dOmC8ePH+zoMIiIiIiKiSsOnSXteXh5atGiB+fPn2z3+8ssv47fffsOyZctw/PhxvPzyyxg3bhx+/vln8Zzx48djzZo1WL58OXbt2oXc3Fz069evUq+nLpPJnH6NHDmyVPddvXo13nvvPc8GS0RERERERA75tHt879690bt3b4fH9+zZgxEjRqBLly4AgGeeeQaLFi3C33//jYEDByIrKwuLFy/G0qVL0b17dwDAsmXLkJiYiM2bN6Nnz56342P4ndTUVPH1ihUrMHnyZJw8eVLcFxQUJDlfp9NBqVSWeN/o6GjPBUlEREREREQl8us57R07dsTatWtx5coVCIKAbdu24dSpU2Iyvn//fuh0OvTo0UO8JiEhAc2aNcPu3bsd3lej0SA7O1vy5SpBEJCv1fvkSxAEl2KMi4sTvyIiIiCTycTtwsJCREZGYuXKlejSpQsCAwOxbNky3Lx5E48++ihq1KiB4OBgNG/eHN9//73kvtbD42vXro3p06dj1KhRCAsLQ82aNfH555+7/L0kIiIiIiIi5/x6nfZPP/0UTz/9NGrUqAGFQoGAgAB8+eWX6NixIwAgLS0NKpUKUVFRkutiY2ORlpbm8L4zZszA1KlTSxVTgc6AJpM3lOrasjr2bk8EqzzzV/b6669j9uzZ+Oqrr6BWq1FYWIhWrVrh9ddfR3h4OH755Rc8/vjjqFu3Ltq2bevwPrNnz8Z7772HN998Ez/++COef/55dOrUCUlJSR6Jk4iIiIiIqDLz60r7p59+ij///BNr167F/v37MXv2bIwZMwabN292ep0gCJDJZA6PT5o0CVlZWeLXpUuXPB263xs/fjwGDx6MOnXqICEhAdWrV8fEiRPRsmVL1K1bF+PGjUPPnj3xww8/OL1Pnz59MGbMGNSvXx+vv/46qlSpgu3bt9+eD0FERERERFTB+W2lvaCgAG+++SbWrFmDvn37AgDuuOMOHDx4EB999BG6d++OuLg4aLVaZGRkSKrt6enpaN++vcN7q9VqqNXqUsUVpJTj2Lu+mSsfpJR77F533323ZNtgMOCDDz7AihUrcOXKFWg0Gmg0GoSEhDi9zx133CG+Ng/DT09P91icRERERET+JC2rEPlaPepWDfV1KFRJ+G3SrtPpoNPpEBAgHQwgl8thNBoBAK1atYJSqcSmTZswdOhQAKYmbEeOHMGsWbO8EpdMJvPYEHVfsk7GZ8+ejY8//hhz585F8+bNERISgvHjx0Or1Tq9j3UDO5lMJv79EBERERFVNO1mbAEA7H+rO2JCS1cIJHKHT7PP3NxcnDlzRtxOSUnBwYMHER0djZo1a6Jz58549dVXERQUhFq1amHHjh345ptvMGfOHABAREQERo8ejQkTJiAmJgbR0dGYOHEimjdvLnaTJ9f8/vvvGDhwIIYPHw4AMBqNOH36NBo3buzjyIiIiIiI/INlY+gz6blM2um28GnS/vfff6Nr167i9iuvvAIAGDFiBJKTk7F8+XJMmjQJjz32GG7duoVatWrh/fffx3PPPSde8/HHH0OhUGDo0KEoKChAt27dkJycDLncc0PJK4P69etj1apV2L17N6KiojBnzhykpaUxaSciIiIiKqI3FiftOoNrKzsRlZVPk/YuXbo4XcYsLi4OX331ldN7BAYGYt68eZg3b56nw6tU3n77baSkpKBnz54IDg7GM888g0GDBiErK8vXoRERERER+QWtvngaqM7AKaF0e8gEVxf/rsCys7MRERGBrKwshIeHS44VFhYiJSUFderUQWBgoI8ipMqGP3dERERE/uWVFQdx/mYeDlzMBAAserwVejaN821QVK45y0Mtlf+OakRERERERF6kNxix+p8rkn0aPSvtdHswaSciIiIiIrKw4WgaNh27hg71YzCwRXVo7QyFz9fofRAZVUYBJZ9CRERERERUeTy7dD9+3H8ZL684hLd+PiKZy25mL5H3hEu38nHf7O1Yuue8V+5P5Q+TdiIiIiIiIge+23vRftLupeHxczefxrnreXj756OYu/kUMvK0XnkfKj+YtBMRERERETlhb/66t5Z8E1B837mbT+P1Vf965X2o/GDSTkREREREVMTe4lr2hsJ7a8m38EClZHv32ZteeR8qP5i0ExERERERFdEb7STtdivt3knag1VyyTZX6CYm7UREREREREX0doa9385GdDKZdNvOMwSqZJi0ExERERERFbGXjJv3hajkqBUTDADQ6b2TTVtX+i3nuFPlxKSdiIiIiIioiL1h73+l3AIA1IgKxsCW1R2eZykrX4dec3fik82n3Xp/jU56X1baiUl7BSSTyZx+jRw5stT3rl27NubOneuxWImIiIiI/Im9ZPzDDScBAEEqOVRymcPzzFKzCrBo51mcSMvBx5tPufX+Gr1Bss057aTwdQDkeampqeLrFStWYPLkyTh58qS4LygoyBdhERERERH5PWfD3l/q1gCnruUAMC0Dt+FoGlrVikKVULV4zpErWeg3b1ep37+QlXaywkq7uwQB0Ob55svFp2xxcXHiV0REBGQymWTfzp070apVKwQGBqJu3bqYOnUq9Hq9eP2UKVNQs2ZNqNVqJCQk4MUXXwQAdOnSBRcuXMDLL78sVu2JiIiIiCoSRw3mBrZMQNekalDKTSnUmn+u4Nml+zFm2QHJeUv3XCjT+1/P0Ui2jf5Yac+8CKx5Drh51teRVAqstLtLlw9MT/DNe795FVCFlOkWGzZswPDhw/Hpp5/i3nvvxdmzZ/HMM88AAN555x38+OOP+Pjjj7F8+XI0bdoUaWlpOHToEABg9erVaNGiBZ555hk8/fTTZf44RERERET+ZvlfF+3uD1GbUielQlr3/Ov8Lcn2v1eySv3eBy9lYteZG5J9/pizY/0rwJlNwL8rgXdulXw+lQmT9krm/fffxxtvvIERI0YAAOrWrYv33nsPr732Gt555x1cvHgRcXFx6N69O5RKJWrWrIk2bdoAAKKjoyGXyxEWFoa4uDhffgwiIiIiIq/4cleK3f1BStP66Wq588HKx1OzS/3eP+6/VOprb6ubZ0x/Cgbn55FHMGl3lzLYVPH21XuX0f79+7Fv3z68//774j6DwYDCwkLk5+fjoYcewty5c1G3bl306tULffr0Qf/+/aFQ8EeFiIiIiCq+Hk1isfHYNZv9YtKu9N4M41PXcgEAtWKCceFmPgAgMljptfcrNX2hryOoVJiJuUsmK/MQdV8yGo2YOnUqBg8ebHMsMDAQiYmJOHnyJDZt2oTNmzdjzJgx+PDDD7Fjxw4olX74C4OIiIiIyIOqR9lv2hxYlKybk3d36A1GKEqo0AOmZeIA4L2BzXA6PRfvrT+GULWfpWy6QiAnteTzyGP87CeAvO2uu+7CyZMnUb9+fYfnBAUFYcCAARgwYABeeOEFJCUl4fDhw7jrrrugUqlgMHAYDBERERFVTOal3NrXi8HuszfF/YFFyXqQyv2kXeti0m5ughekkqN9vRgAtt3kfS7jvHRbEEyFTfIado+vZCZPnoxvvvkGU6ZMwdGjR3H8+HGsWLECb731FgAgOTkZixcvxpEjR3Du3DksXboUQUFBqFWrFgDTOu07d+7ElStXcOPGDWdvRURERERU7piXfLOuqJuTdXuV9l5zd6JQ57iw9fCiP3HgYkaJ763VmxJ0lTwA6qKGdxon9/WJq9Ju+Rwq731M2iuZnj17Yv369di0aRNat26Ndu3aYc6cOWJSHhkZiS+++AIdOnTAHXfcgS1btmDdunWIiTE96Xv33Xdx/vx51KtXD1WrVvXlRyEiIiIi8jhzpT3QOmkv2rbeDwAn0nJw9rppPrq9ovPhK1kYvGB3ie+t0ZsSdJUiQHyfHI3e2SW330/PS7e1+b6JoxLh8PgKbuTIkRg5cqRkX8+ePdGzZ0+75w8aNAiDBg1yeL927dqJS8AREREREVU0WgdJe6CTpB0wDWM3GIUyLdGmKaq0qy2SdgA4fS0HDWLDSn9jTxEEQBYACBZD9o+sAto+47uYKgFW2omIiIiIiIqYK+3hQdL6ZlAJc9oLdQZxeHtpmZN2lSJAMgx/3SEfrV5lzaiXJuwAcHytb2KpRJi0ExERERERFdEZTKXy6pHSLvLmyndCRCAeuLM67m1QBe8NbIqQoiS+QGsQq/QA0Lx6hFvvKwhC8Zx2RYDk4UB0iMr9D+INlvPXe800/WnQ+SaWSoRJOxERERERURFzpT06RCUu8wYUL/kmk8nw8cMtsXR0Wzx+T200r2FKzgt0BvFaAFj1fHsEu9Fp3vywAADUCtN1j7ROBADkaf2kGZ1eW/w6sqbpT4PGN7FUIkzaiYiIiIiIipgTb6U8ABFBSnG/o2Hx5mHsBRbD45VyGVSKAMRHBErOFZxMeDc3oQMgdo4PKVqjfeXfl7Bq/2V3P4rnmSvtchWgLBqJcPUfYPtM38VUCTBpJyIiIiIiKmKueCvlAfjv8FbifntLvQHFyXyhzoCfDl4BYFqyDQBUCuk1lsPnrVnOhzdfH1qUtF+4mY8JPxzCjVwfV7XFpF0NKNTF+7dP9008lQSTdiIiIiIioiLmSrtKIUPV0OLE1FHXePP+Aq0Bv5+6AaB4OLu5Ym7mrFFdTqFpabdglRwBAaZ14+pWDZGcU+DrYfKX9pr+1OaYEne6LZi0ExERERERFSke4h6AyODi4fHm6rc1y+HxAkxV+llD7jBdY5W0a5wk7TfzTPPFLZvO9b8jQXKOvTXgbyvLNdoVftIcrxLgOu1ERERERERFLOe0hwUq8WrPRtDqjYhy0MHdMmk3FuXkoYGmNMu60u4sac+wk7QHBMgQpJSjQGeqsOsNZVgE3tMUgSWfQx7BpJ2IiIiIiKhI8Zx2U1n7ha71nZ4vzmnXGmAsajQXUFQSt07anQ1vz8g3Je2RwdKHAwZjcaKuczIn/rao0Qa4/JfptZyV9tuFw+OJiIiIiIiK6C0q7a4ItKi0G8Sk3XSsbZ0YyblZBY7XNC8sqqaHWHWpNwiWSbuPK+0xRQ8wur4lbURHXsWkvYLbvXs35HI5evXqZXPs/PnzkMlk4ldERATatWuHdevWSc5LTk5GZGSkZFsmk6Fx48Y291y5ciVkMhlq165tc6ygoABRUVGIjo5GQUFBibFPmTJFEp/5a/PmzSV/cD+1fft2yGQyZGZm+joUIiIiIrJDa9E93hXFw+ONMBfF5UVZ+9Od6uLQ5B5oEh8OAMgq0Nq9B1A8dN66Ou9XlXbzmuzq0OIl38ycLGdHZcOkvYJbsmQJxo0bh127duHixYt2z9m8eTNSU1Oxd+9etGnTBkOGDMGRI0ec3jckJATp6enYs2ePzfvVrFnT7jWrVq1Cs2bN0KRJE6xevdql+Js2bYrU1FTJV6dOnVy61ppW6/iXJBERERERIJ3T7grz8PgCrQFGo3R4PABEBCsRE2oaSr5oxznxHGvFSbv9LvUA8PLKg/i5aFk5n9AXJe1yFRAYIe0gL/j4gUIFxqTdTYIgIF+X75Mvwc2nV3l5eVi5ciWef/559OvXD8nJyXbPi4mJQVxcHJKSkvD+++9Dp9Nh27ZtTu+tUCgwbNgwLFmyRNx3+fJlbN++HcOGDbN7zeLFizF8+HAMHz4cixcvdukzKBQKxMXFSb5UKtMvvcOHD+O+++5DUFAQYmJi8MwzzyA3N1e8duTIkRg0aBBmzJiBhIQENGzYEABw5coVPPzww4iKikJMTAwGDhyI8+fPS953yZIlaNq0KdRqNeLj4zF27Fjx2Jw5c9C8eXOEhIQgMTERY8aMkbzvhQsX0L9/f0RFRSEkJARNmzbF//73P5w/fx5du3YFAERFRUEmk2HkyJEufR+IiIiI6PYQl3xzs9JeqLOY0x4gbfNeNcyU3O5NuYU/U27avY+maHi8Wun4fc9dz8NLyw86HWbvVYai9zXPZx/1q+0x8jg2onNTgb4Abb9r65P33jtsL4KVwS6fv2LFCjRq1AiNGjXC8OHDMW7cOLz99tuQOVgrQqfT4YsvvgAAKJVKu+dYGj16NDp16oRPPvkEwcHBSE5ORq9evRAbG2tz7tmzZ7Fnzx6sXr0agiBg/PjxOHfuHOrWrevy57GUn5+PXr16oV27dti3bx/S09Px1FNPYezYsZKHE1u2bEF4eDg2bdpkeuCSn4+uXbvi3nvvxc6dO6FQKDBt2jT06tUL//77L1QqFf773//ilVdewQcffIDevXsjKysLf/zxh3jPgIAAfPrpp6hduzZSUlIwZswYvPbaa1iwYAEA4IUXXoBWq8XOnTsREhKCY8eOITQ0FImJiVi1ahWGDBmCkydPIjw8HEFBQdYfjYiIiIh8SKy0K1xbX00yp90ondNu9uJ9DbD6gKlCfjNXi58PXkH1yCDcXTtaPKfQwfB4e85ez8VdNaNcis9jjMbi4fHm+exVLabLGvW3N55KhEl7BWaubANAr169kJubiy1btqB79+6S89q3b4+AgAAUFBTAaDSidu3aGDp0aIn3b9myJerVq4cff/wRjz/+OJKTkzFnzhycO3fO5twlS5agd+/eiIqKEuNZsmQJpk2b5vQ9Dh8+jNDQUHG7SZMm+Ouvv/Dtt9+ioKAA33zzDUJCQgAA8+fPR//+/TFz5kzxwUFISAi+/PJLsTq/ZMkSBAQE4MsvvxQfXnz11VeIjIzE9u3b0aNHD0ybNg0TJkzASy+9JL5v69atxdfjx48XX9epUwfvvfcenn/+eTFpv3jxIoYMGYLmzZsDgOTBRHS06RdztWrVJH0CiIiIiMj3BEEQm70pAkoxPL6o0i63KpLVrhKCLo2qYvvJ6ziemo0F288CAE6810tM+s2VdvO2Mxdv5uOumlHQG4zQ6I0IUXs5rTv6k2mNdl2+aVuulP4JMGn3IibtbgpSBGHvsL0+e29XnTx5En/99Zc4d1yhUODhhx/GkiVLbJL2FStWICkpCadOncL48eOxcOFCMbksyahRo/DVV1+hZs2ayM3NRZ8+fTB//nzJOQaDAV9//TU++eQTcd/w4cPx8ssvY+rUqZDLHf9iatSoEdauXStuq9Wmp3rHjx9HixYtxIQdADp06ACj0YiTJ0+KSXvz5s3FhB0A9u/fjzNnziAsLEzyPoWFhTh79izS09Nx9epVdOvWzWFM27Ztw/Tp03Hs2DFkZ2dDr9ejsLAQeXl5CAkJwYsvvojnn38eGzduRPfu3TFkyBDccccdzr6NREREROQHLLuzuzo8PrCoMl6oN4hz2e2NbDUPo0/LLhT3nbqWgztqRAJw3IjOnhyNKUHu9cnvOJOei0OTeyAiuOSRsqW2bXpxwg4Uz2UPsEgnmbR7DZN2N8lkMreGqPvK4sWLodfrUb16dXGfIAhQKpXIyMgQK94AkJiYiAYNGqBBgwYIDQ3FkCFDcOzYMVSrVq3E93nsscfw2muvYcqUKXjiiSegUNj+SG3YsEGcR27JYDBg48aN6N27t8P7q1Qq1K9vuzamIAgOh/lb7rdM6gHAaDSiVatW+Pbbb22uq1q1KgJKeKJ64cIF9OnTB8899xzee+89REdHY9euXRg9ejR0OtM8nqeeego9e/bEL7/8go0bN2LGjBmYPXs2xo0b5/TeRERERORbemNxMzVXh8dbrtNurpLLrcfHo7iCnm0xH91y3XZHjehqRAXhcoZ05SVd0bln0k19lfacu4lezeJcirdUqjUGbpws3jbPaZfJAJkcEAxM2r2IjegqIL1ej2+++QazZ8/GwYMHxa9Dhw6hVq1adhNWs86dO6NZs2Z4//33XXqv6OhoDBgwADt27MCoUaPsnrN48WI88sgjklgOHjyIxx57zOWGdNaaNGmCgwcPIi8vT9z3xx9/ICAgQGw4Z89dd92F06dPo1q1aqhfv77kKyIiAmFhYahduza2bNli9/q///4ber0es2fPRrt27dCwYUNcvXrV5rzExEQ899xzWL16NSZMmCD2CjBX/Q0Gg801REREROQ7vx1Jw2s//ituu7/km8XweDuXmpP2zcfTxX3meexAcQJv3Yju26ds+2lZL/1m5xmBZ6lCpdtqi1Gr5mo7G9F5DZP2Cmj9+vXIyMjA6NGj0axZM8nXgw8+WGKiPGHCBCxatAhXrri2nERycjJu3LiBpKQkm2PXr1/HunXrMGLECJtYRowYgbVr1+L69etuf8bHHnsMgYGBGDFiBI4cOYJt27Zh3LhxePzxx+02wrO8rkqVKhg4cCB+//13pKSkYMeOHXjppZdw+fJlAKb14WfPno1PP/0Up0+fxoEDBzBv3jwAQL169aDX6zFv3jycO3cOS5cuxcKFCyXvMX78eGzYsAEpKSk4cOAAtm7dKq5pX6tWLchkMqxfvx7Xr1+XdJ0nIiIiIt95btl+rP83VdxWuJgJSxrRFSXtzobHWyrUFRdyMvJNyxNHBqsk59SKCcHC4XdJ9lkn7Y5GoHqMuYoeHAN0eROo3qr4mDlpZ6Xda5i0V0CLFy9G9+7dERERYXNsyJAhOHjwIA4cOODw+n79+qF27douV9vNS67ZY24UZ2+OeNeuXREWFoalS5e69D6WgoODsWHDBty6dQutW7fGgw8+iG7dutnMp7d33c6dO1GzZk0MHjwYjRs3xqhRo1BQUIDw8HAAwIgRIzB37lwsWLAATZs2Rb9+/XD69GkApuZ7c+bMwcyZM9GsWTN8++23mDFjhuQ9DAYDXnjhBTRu3Bi9evVCo0aNxCZ11atXx9SpU/HGG28gNjZWspQcEREREfkHtSLA5URYHB6vM8JgsN+IDgAC7SzlZi9pjwlR2ZzXq1k8Tk7rhYSIQACA1iBdCtrbhXYYi6ronV4FurwOyC2mxJpfGzmS1FtkgruLf3vQzp078eGHH2L//v1ITU3FmjVrMGjQIMk5x48fx+uvv44dO3bAaDSiadOmWLlyJWrWrAkA0Gg0mDhxIr7//nsUFBSgW7duWLBgAWrUqOFyHNnZ2YiIiEBWVpaYuJkVFhYiJSUFderUQWBgYJk/M5Er+HNHREREdHvVfuMX8XVEkBKH3unh0nV5Gj2avrNBvC6rQId1YzuieQ1pAe3TLacxZ9Mpyb6ZQ5rj4dY1ceRKFvrN2wUA+N+L96JJgjQnMXtv/TEs3pWC57vUw6s9GqHum/8DACwZeTfuS3I82rTMVj4BHPsZ6PMR0OZp6bFZdYH8m0BSP+CRomm4x9YCBRlAqxHei6kCcJaHWvJppT0vLw8tWrRwWB09e/YsOnbsiKSkJGzfvh2HDh3C22+/LUlixo8fjzVr1mD58uXYtWsXcnNz0a9fP84ZJiIiIiKiUnGlg7tZsEoOc2E9p9BUkbbX21hl556FOtMw97WHinsk1Yh2vGKUeZ79mgNX0G3ODnG/zNu1dkPR0PcAO33MQ4qaV+cUTy3AyseBdS8CGRe8G1cl4dPu8b1793baOfw///kP+vTpg1mzZon7LNe8zsrKwuLFi7F06VJxGbNly5YhMTERmzdvRs+ePb0XPBERERERVUjWzeCckclkCFUpkKPRw1g0hjnAzvB4e43tPtp4EsPb1UK+1pQUD727BsIDHS/dppKb7mu5bJwpBpfDLR3z8Hi5ndj6fAh83Q/QFPVqshzIXZgJoJaXg6v4/HZOu9FoxC+//IKGDRuiZ8+eqFatGtq2bYuffvpJPGf//v3Q6XTo0aN46EpCQgKaNWuG3bt3O7y3RqNBdna25IuIiIiIiAiwXXatJKGB0lqovSXf7FXacwr16PLRNmiKKu61YkJszrHkqKO9VxvRHVkFnN5oeh1gJ2lXF3WW1+SY/pR0kff6bPtKwW+T9vT0dOTm5uKDDz5Ar169sHHjRjzwwAMYPHgwduwwDQVJS0uDSqWSrDkOALGxsUhLS3N47xkzZiAiIkL8SkxM9OpnISIiIiKi8sNe0zhnQtTSpN1e43m1RcL9Vt/G4utLtwrENdoD7XSYt6R0MGzfa6mxQQ/8aLGsc4Cd+NRFc7G1RZV2yy7yMr9NN8sVv/0uGo2mH9yBAwfi5ZdfRsuWLfHGG2+gX79+NktsWRMEwenTpkmTJiErK0v8unTpUonx+LBfH1VC/HkjIiIi8h1354iH2iTtdobHK4r3dWlUTXLM3EW+pLn0rq4d7zEGjXTb3vB4lUWlXRCKh9IDTNo9xG+/i1WqVIFCoUCTJk0k+xs3boyLFy8CAOLi4qDVapGRkSE5Jz093ela3Wq1GuHh4ZIvR5RK0w9mfn5+aT8KkdvMP2/mnz8iIiIi8o5tJ9Jx97RNkn1avdHB2fZ1byxNwu0Oj5cXV6mDVdKKdUFR0l5Spd3eEHsA4vrwHicZ6g77jejMw+MhANq84qZ1wG2YbF85+LQRnTMqlQqtW7fGyZMnJftPnTqFWrVMzQxatWoFpVKJTZs2YejQoQCA1NRUHDlyRNK8rizkcjkiIyORnp4OwLTOt1fnjFClJggC8vPzkZ6ejsjISMjl7s2nIiIiIiL3vLnmMG7kaiX7GsSGOjjbvhe61sdn286Kybe9SrvlrhCVNA3LKTQluiVV2tvViba732C4XUm7nYKSMthUUReMxUPkzTh61CN8mrTn5ubizJkz4nZKSgoOHjyI6Oho1KxZE6+++ioefvhhdOrUCV27dsVvv/2GdevWYfv27QCAiIgIjB49GhMmTEBMTAyio6MxceJENG/eXOwm7wlxcXEAICbuRN4WGRkp/twRERERkXcYjQJSs6Sd2KcNaoa+zePduo9MJkO1cDUu3DSNlgywU2nXGYqr90FWlXbzUnElVdobxIbhzT5JmP6/E5L9Xqu0G62Sduvh8oDpaYQqDNBkmTrIK4uX54bAZbg9wadJ+99//42uXbuK26+88goAYMSIEUhOTsYDDzyAhQsXYsaMGXjxxRfRqFEjrFq1Ch07dhSv+fjjj6FQKDB06FAUFBSgW7duSE5O9miFUiaTIT4+HtWqVYNOpyv5AqIyUCqVrLATERER3QY7Tl232fdI60QoSjF33HKpNnuN6PQW1XDrYe7ZLlbaAUBuZxF4o9FblXbpCASxQ7w1dagpadfmSJvVGZm0e4JPk/YuXbqU2HBr1KhRGDVqlMPjgYGBmDdvHubNm+fp8GzI5XImU0REREREFYAgCHgyeZ/Nfnvz0V0RZrHsm9zO8Hi90fE8+es5pgp2RFDJ/YyUctt7e29Ou166rSuwf55lMzqVxdQCVto9wm8b0REREREREXmLef65JZU8oNT9qyyTdnv3aBAbVuI94iMCSzxHYafSbrgdlfbImkCzIfbPE9dqz5Uu+ebkQQW5zm8b0REREREREXlLgdY2aXdleLojllVye9X6u2pGYeHwVqgVE2z3+gAZEBOqLvF9FHbubfT2nPaweOClfx13g1cXPZDQ5kqb17HS7hGstBMRERERUaWTby9pV5Y+PerWuHjJaUe1+l7N4tA43v5y08EqhUtD8xX2hsd7q6BtTsDlSufLt4nD47Olzes4p90jmLQTEREREVGlU2hneLxaUfr+VV0bmdZqjwxWIjTQ/QHN9uaq22OvSZ73GtEVJeD2lnqzZK60Z12WzoMXODzeEzg8noiIiIiIKh1zpV2lCIBWb0ouyzI8XqUIwKHJPWAUBChd6D4fIAMsc23rjvKO2Bse771GdEVz2uUq5+cVZJj+3PUxUP/+4v0cHu8RrLQTEREREVGlY25EZzkX3d7Qc3dEBCsRFVJCglskWCWtn7qS6AMOknZvVdrNQ93lJdR6z+8qfn14pcX1TNo9gUk7ERERERFVOuZGdJZd3wNK2Tm+NAKV0qH4KheTdnvJ/Vs/HRGXjfMofVGlvaTh8dWaFL8++Vvx66zLwP5kx0vFkUuYtBMRERERUaWjKRoSH6b2TdI+umMdybarw+MdNav7+/ytMsdkIyPF9GdYvPPzBi0ofq3JLn697kVg3UvAtumej60SYdJORERERESVjrao5XqQqrji7Ur3dk95plNdSXXd5eHxDobw67wxRP7mGdOfsU2dnxdTH5AVfR91+bbHT23wbFyVDJN2IiIiIiLye59tO4N1h6567H66okq7yqJjfI2oII/dvyTyABk6NqgibrvaPb5e1VDx9Qtd64mvzZ/Ho/RFQ+5VIc7Pk8mKO8iXVm468Od/gUv7ynafCojd44mIiIiIyK/9ezkTH244CQDo3yLBI/c0V9pV8gAsf6Yd9p67hSGtqnvk3q6yrLS7Ojw+NjwQXzxxN27mavBIm5r493IWfj99A3qjF5J2y3XaSxJRAyjMtH/MlWkHm6cCB5eZXk/OAAJYXzZj0k5ERERERH4tp7B47e9CncGmiVtp6MxJu0KGdnVj0K5uTJnv6S7LRN3V4fEAcH+TWPF1SFEXeq3Bg8Pjc68DK58ALu42bZfUiA4AHkoG5t9dhvdMK36tywfUoY7PrWT4+IKIiIiIiPyaZaH2Zp7WI/c0r83uatd2b7BM2ksbh3mOu97gwUr7zg+LE3bAtUp7lQZle0+5uvi1vXnxlRiTdiIiIiIi8mvm5dkA4Fauh5L2oiTXnQq3p0mSdheHx1szx+/J+f7Q5Ei3XUnay8xipIA27za8X/nBpJ2IiIiIiPxankXSfiPPM+uR6/SmJFFZymTZE6qFFVeXLacAuGPXmRsAgAMXMz0RkokyULotV7l23cPLHBxwYU67sfjvmJV2KSbtRERERETktwRBwA9/XxK3b3qs0m5KEn05PP6pe+uKr3WlHN5+PcczDzEklMHS7QAXW6E17g9MybJzwIX59oJF0q5l0m6JSTsREREREfmtXWdu4PfTN8TtW56qtBc1bivtsHRPCFUXJ8NeWGW99ASrBwjuDo/v/4l0W5Pr3nvqODzeEpN2IiIiIiLyW/9ellZuswp0HrmvPzSik/CnrN1mTruLw+PNEu6UbuffLPkaIyvtjvjJTygREREREZGU3mDEt39esNrnmexWozcliWofVtr9ltaqMu7q8Hgz6+H1+gLA2TryeTeAlB3F25zTLsGfUCIiIiIi8kv/3X4WV7MKAQCx4aambVoPLW2WpzEl7UGqsq/5XuFYD2d3d3i8ddIOOB/y/uOT0m12j5dg0k5ERERERH7pu78uiq+rRwYBcL9h26Vb+eg1dydW7b8s2Z9f1JE+RO1mFdlLhFKOj48K9sJybNaVdneHqwdG2O6bUQO4uNf++Sk7pduWlfaCDGDv57bnVCJM2omIiIiIyC+FBRYn1InRpuqtu8Pjp647ihNpOZjwwyHJ/nytaYm14HJeaV84vJXT40ZjKR4GWFfarZP4kqhC7O9f/7Jr11tW2nd8CPz6KvB1f2BRp0pZhWfSTkREREREfskyQW9QLRSA+8PjczXF659n5euQVjTc3lxpD1b5SaW9lFP1G8SGia+tE/StJ66hxdSN+O1Imns31RY1oqvaGIiqAzTs5d71Mgfrsjvab/P+Fon55b+KX6ceAq7sdy+WCoBJOxERERER+Y3swuLu8K1qRYmvzcm1u5V2eUBxotji3Y1oN2MLvvojxe8q7aVtrye3SIQNVpn/qOS/kaPR47llbia65qR5yJfAi/8A6lD3A5PZSTXV4a5dazk8PvWQ1bEC92Mp55i0ExERERGRX/j54BXcMWUjlu45DwBQK03pykvdGkBZ1OXd3TntAXaqu1PXHUNGvunhgL8k7aUll1sk7aUZCm/t5lkg77rptTLI9eq4tX5zgdjm0n1hca5dq9cABh3w2yTAoJUeq4Sd5Zm0ExERERGRX3hp+UEAwNs/HwUA6PSmJFSlCICyqGLuiaQdAK7naAAA1cIDSxOqxzzWtiYA4JX7G5bqeoXFSAJ9WZN2XQGwoF3xtrvrs1tqNQJ4fhfw3B9AaKxpn6vz0Y064Pc5wJ8L7MRYWPqYyikm7URERERE5Besq97m+esqeQCUcnOl3b3ENMBJoVgmA6qFqd0L0sOmDWqGQ5N7oEP9KqW63vKhhLnSnlWgQ59Pfnf/ZrnXpJVthQe+N3HNgJ7TTa9drZIb9MCts/aPVcJKu390XSAiIiIiokovWKUQG8St/PsSrmSa5i8r5TIoioaBF+oMbt1T7iRrr1c1VHwY4CsymQwRZVi2zbLSPmLJX+hYvwra1o3GsdRs929WmCXdLkul3VJAUdopuDhKwqgHDBr7xzinnYiIiIiIyDf0xuKk7rUf/8VfKbcAACqFHKqi5Hpvyi0s3pVS4r3OXc/F0EV7sPl4umS/ZTX/h2fv8UTYPhVgkbQfvJSJ+dvO2J1CsPvsjZJvVpAp3fZEpR0oTtqNeufnmRl1jpPzU7+ZloEzuvfwpjxj0k5ERERERF637/wt/Hs5U9wWrDqdn0nPQWa+DvYo5TJJRfy99cdKrLg/vvgvMem3FB5YXNWOCvFQJdnHFFajCexNIRj2xV5o9CUkuoWZ0m25j5J2g95x0n7+d2DbNGD7DM/EVg4waSciIiIiIq/KKdThoYV7MGD+H9DqjVh94DJavrsJe87eFM9ZtOOcw+tVigBEWg0hn7f1tNP3NA+tt2a9LFpFEGCVtDvqIn/pVglDyzW51jcuS1gW9yka3WAvabdXMTfqiueuN+gBNOpje87OD4G8m7b7KyAm7URERERE5FU5hcXJ2q9HUvHKykPIKtDhww0nxP3pOQ7mMAOIClbhrppRGNgyQdx3Jj3X4fl6O8PDn763Dn587h7PLIvmZ2wr7fbnjl/KKKGJm7eavIlJu50E3XoePWBa7s1cab9nLDB0KfDSv7bn3XL8oKciYSM6IiIiIiLyKq2+OIn84vfiRCsuoni5NWfD3dvXi0FAgAzPda6Hnw9eBSAd5m4tV1P8kGDh8FZomRgpvldCZCBu5WlR1cdd4z1JbrWsnd5Bh32NzkkjOF0BkHnBk2EVE4fH2/k73vCm7T6jvvgBgjIYkCuAqFq25+Ve81yMfoxJOxEREREReZXGImm/nFE8RDtYVZyOFOrtJ5SRwUooiuazJ8WFIUAGGIXi5eDsMVf2A5UB6NUsTnJsxgN34L1fjuHhuxPd/yB+KkcjHXZu2dDPlf3QFQDzWgHZVzwdmomzOe15dhrkGfWAvmjpOYWTvgOVJGnn8HgiIiIiIvIqywZols3mrmUXYux3B/DzwSso1NqvtL/eK0l8LZPJMG1QcwBAvtaAa9mFuHAzz+Yac9IeqratxjevEYGVz96DIa1qlO7DlAPaokq79Wp3jobN49ox24S92zueC8ictN88A8xvDfzxafExfaHt+QYdIBT9PMjktsfNKsma7ay0ExERERGRVxU6GJb9+2lTlXX9v6k2xx5pnYjRHeugfrVQyf4glanuuO1EOtrN2AJBAJaMvBv3JcWK5+QUmh4MhAdWznRHUzTVIFApF9e9B+x3lQdgSqYtdXwZuPcVzwVkntMOAbhxCtj0NtDhRdMug9b2fKOueE33AIukXRYgXetdX2iq1AdFe65pnh+quJ+MiIiIiIj8QolLjdkRHaJCg9gwyKzmawcpTUmc3ijA3Aj+6JVsyTnmOe2hlTVpL5pqYP5emTma6w6N9Pvn8TXQnVXL9XYaEBr0xTHILFLWAKuREym/Ax/WA9aOLXuMfoxJOxEREREReZXTBmgODL7L/vD1IJVtIp5htb67eXh8WCVP2gOtk3ZHc9qth6in2enUXhYBdv4etEVD2x1W2oseMFgm/Nb3Sdlh+vPgt2WP0Y9Vzp9iIiIiIiK6bTQOmszZs3ZsB4SqFahbNdTu8aS4MJt9mQXSxM/cmC1UXTnTHfPIhtpVgiXr1Wsd/T1YJ+33ve3ZgOwl7fpCQBXsZE57UayWIy3s3acSYKWdiIiIiIi8ytlyboCpYVqADGhePQLNq0c4TNgBIDY8EH2aSzvCZ9pU2k3bYU6WhavIzCMb6lQJwaaXO6FulRAApikFdlkPUa9xt2cDspdsmzvJ6+1V2g0Wjegsh8c7GWZfgVXORxVERERERHRb7Dt/CxN+OOT0nCUjWyM+Igix4WqbOez2RAVLlwHL1xYvJSYIAmb9dhIAK+2KgAA0iA1DmzrROHcjD3pH3eMtq92Pr/F8QPaSbfOw+OzLpj9HrAcKM4EVwx03oquklfbK+amJiIiIiOi2eHnFQafH9/2nO6qGqd26p/Vcbcvh96eu5Yqv61UNceu+FYW5W7+iaM03hdz0p8Pu8bqipL3Ta0C9+zwfkL1k26ADDv9YvB0WDwRHFx8Th8dbVtorZ/rq0+HxO3fuRP/+/ZGQkACZTIaffvrJ4bnPPvssZDIZ5s6dK9mv0Wgwbtw4VKlSBSEhIRgwYAAuX77s3cCJiIiIiKhEVzMLcDmjwGZ/TIgK3z7VFt+MauN2wg4AgUppGmO5pFxadnHVeFjbWm7fuyIwT0dQyE3fJ0XRcmglNqJTuP934RK7lXYdcPA76Tnm7vBGnYPu8U6SdnvD7CsInybteXl5aNGiBebPn+/0vJ9++gl79+5FQkKCzbHx48djzZo1WL58OXbt2oXc3Fz069cPBoOHlykgIiIiIiK3ZOQ7TqQ61K+CTg2rluq+MkiH0FsuKXcty5SAdm5YFfKAkofaV0S/HkkDUPxwQ1lSpd08p10R6J2A7CXbS3oCZ7cUb0fWBORF5xn0FpV2y+HxTua02+tCX0H4dHxB79690bt3b6fnXLlyBWPHjsWGDRvQt29fybGsrCwsXrwYS5cuRffu3QEAy5YtQ2JiIjZv3oyePXt6LXYiIiIiInLOcl3wl7o1wCdbTnvmvlYN1TQ6I9JzCjHjfyfEfdEhKuvLKh3zNAJlUcVd53BOe9FoCK9V2u2knQW3il8P/ca20g7zkm8uVtqNesfHyjm/nhRgNBrx+OOP49VXX0XTpk1tju/fvx86nQ49evQQ9yUkJKBZs2bYvXu3w6Rdo9FAoynukJidne354ImIiIiIKrk8iwZxlv3lXOg159SljHzJ9pXMAry5+gg2H78m7gtSVZ5O4yEqOfK0tiON1Yqi4fFFSbveUaU9P8P0Z1CUV+Irset7UNFcdnlR0m5ZNXe1EZ2x4o609usl32bOnAmFQoEXX3zR7vG0tDSoVCpERUl/uGJjY5GWlubwvjNmzEBERIT4lZiY6NG4iYiIiIg86fu/LuL7vy76Ogy35WuKE6nHJPPLy5a1D2tTEwDQoFrx0nCWCTsABCkrT9L+89gOGNm+ts1+sdJeNE1AMqfdaAA0RU378m+Y/gyp4p0A5SVU8JXBpj/tJeWurtNu1Dk+Vs75bdK+f/9+fPLJJ0hOTnZp2QdLgiA4vWbSpEnIysoSvy5dulTWcImIiIiIvOJEWjYmrT6MSasPIyu/fCUm5kp7+3oxpWo450iH+lWwfWIXfDnC8XrilSlpr18tDFMGNEWVUOmUAPOcdnOlXasvqrTrCoB5dwEzqgMb3wLyipL2YG8l7SVMVVAUHbebtLu4TnsFHh7vt0n777//jvT0dNSsWRMKhQIKhQIXLlzAhAkTULt2bQBAXFwctFotMjIyJNemp6cjNjbW4b3VajXCw8MlX0RERERE/uhMevESZpad0cuDvKJKe0jReunTBjWDWhGAeY/eWeZ7164S4jQxr0zD480CrAqXaoV5TrtVpf3WOSDjvOn12e2m9dEBLw6PD3BeJTdX4s3D4y1ZNqK77y3Tn/W62R5n0n77Pf744/j3339x8OBB8SshIQGvvvoqNmzYAABo1aoVlEolNm3aJF6XmpqKI0eOoH379r4KnYiIiIjIY7QWa5BfK2dJe35RpT2kKIEe3q4Wjk7tiXvqxXjk/s6q94LgYP52Baaw6pZf3D3eak67zuLnSJtbnPCqvLiuvbNqu1hpt5e0W6SsDe4HXj0LDF8F3DMW6DIJUBVNkajAc9p92oguNzcXZ86cEbdTUlJw8OBBREdHo2bNmoiJkf5jViqViIuLQ6NGjQAAERERGD16NCZMmICYmBhER0dj4sSJaN68udhNnoiIiIioPNNYJO3OllDzR7kaUzIYrC5OO8xDtT1BJpNhxTPt8PDnf9ocu5pVvh5weIL19zawqNKuEJd8K/pZMneLB4qr7IB3k3aZk793c6XdXjXeeki8ed59z/dNf+5dZPrTUL6mjrjDp0n733//ja5du4rbr7zyCgBgxIgRSE5OdukeH3/8MRQKBYYOHYqCggJ069YNycnJkMsr33AYIiIiIqp4LCvtDtfZ9lP5RR3NQ9XeSzva1o3BUx3r4MtdKZL9jWLDvPae/srcLd6sQdH3QBlQVGk32qm0FxRNNQ5Q2B+e7inORj6Yl5oLCDAl94JFwzxnyT5QnOhX4OHxPk3au3Tp4tawlfPnz9vsCwwMxLx58zBv3jwPRkZERERE5B+kSbuDdbb9VJ650u7l+eWW35etEzpj56nreKRN5VshSq0sTnD73REvTh9QKpxU2s2UXqyyl8Ry6HyAEjAUL89dYtJuftDApJ2IiIiIiHxBoy+eq1uekvabuRp8u9e0TF2Iyrtph9bi+1K3aijqVg11cnbFZR4ODwCN44ubbSuKKu3iz4/OztQBVbBXYwMsirVh8UBOavG2wqI3gdzNpN08fL4Cz2n320Z0RERERERUfofHJ+8+L76OCS1hya8yEpcyq+QsK+3mjvGWr8VGdHYr7V5O2i1HWKutVu+ynMtuPUS/pOW/xeHxFXdOO5N2IiIiIiI/pimnw+Nv5JqqpUFKOXo3i/fqe2nL0ffFm9QWlXZzdd3ytc7enHaz+BZejU0iqpZ02zIxT2zr3r0qwZx2Ju1ERERERH7M3MwNAHT68pOcFhTFPaFHQ6+vmf5853oAgAdb1fDq+/g7y0Z0kkp70X7x58depX3IYq/Ghir1TX8qAoHObxTvr9NZel6/j4u7ybsigHPaiYiIiIjIR3I1eiz984K4LVZKywHzw4ZApfdXdWqSEI7DU3p4tUt9eWCZtFsu/6YsWr9db3Qypz3Ay/XcgQuAQ98DjfoANVoBr5ww7Q+NlZ4XngB0fg3Y+p5r9xXntDNpJyIiIiKi2+zc9VzJdnkaHl+gMyXt3u4cbxYW6MXlysqJ/RczxNeW33dzAn/uep5ph71Ku7fF32H6Mgt3MmXC3nrtJZ1rqLhJO4fHExERERH5KY3VcPjyODw+6DZU2snk8XamueLhgQrcl1RN3C82ojMK2HTsmv1Kuz8JcONnphLMaWelnYiIiIjIT2mtknR9ORwe7+357FRsZPs66FC/CprEh0Nm0dytSUJxt/Yz6bm43xeVdne4U2k3r/FuuUxcBcNKOxERERGRn7Jcox0ArmYW4I1V/+Ifi2HQ/shgFJCWbarmhgWyTni7qBQBaJoQIUnYAVNX+Ufb1ARQNMVCX5TgtnwMiKkPDP7idofqnDtJuzrU9Kcm1/l55Rj/BRERERER+SnrSvvGY9cAAMv3XcILXevh1Z5JvgirRCfTcnArT4swtQLNq0f6OhwCoBLXajeaGsIBpmXeBi3wYVQOyNyoLZvXfF/3InB+FzD485LXdi9nWGknIiIiIvKhc9dzMfCzP7DxaJrNMes57ZY+23bWm2GVyclr2QCAxgnhUCmYcvgDhTwA9wUcQJ/jrxfvvH7CdwE541alPaz49eGVQPYVz8fjY/wXRERERETkQ/9ZcwSHLmXimaX7bY5pdM4bz+Vp/LP5VmqWaWh8YlSwjyMhM4VchiWqj5CUsa14Z9XGvgvImbA418+1TNoBwGiwf145xuHxREREREQ+lKd1nHhrSljiLeVGHppVj/B0SGWWVaADAEQGcxk2f6GS26nXthpx+wNxRYMewD1jTcP3SxIcLd2ugF3kWWknIiIiIvKhEJXjOppG57xq2G/eLsz433FPh1RmWflFSXsQk3Z/oQiwSv0ClIBC7ZtgSiKTAT3fB+4YWvK5LR6Vbuv8vDN+KTBpJyIiIiLyoRC1k6S9aE673SppkV8Op5Y5hvX/XsW3ey8gPacQl27ll/l+mfmstPsbpcKqOZu/JuzuCq0GyC0+i77iLf3G4fFERERERD5kuSSaIAiS5brM3eND1HJo84uHyj/UqgbOXM/FPxczyzSv/Ux6Lvp++rv4cOA/a44gWCXH1gldEBcRWOr7mofHh7PS7jeU1pV28/rmFUGAoniddn9fg74UWGknIiIiIvKhELVcfJ1jlYBrxKRdWmsTAMx79E4AQJ629I23us/ZYdOhPl9rwKbj10p1v+Op2eg0axv2nLsJAIgMrkCJYTmnkFtV2ita0m6mK/RdHF7CSjsRERERVUoHL2Xiv9vP4M0+jVErJsRncQRYVNYz8rQIDyyuTmv0poQ81Cppz8zXifu0eiN0BiOUTobQu+vizbxSXfff7Wdx0WJ4Pee0+w+1zID9ajUmVquCmnodwgJUwJaxvg7LM2JCAEPRQ4hji4CLP6FltZZ4qvlTvo3LQ5i0ExEREVGlNOizPwAAF27m47fxnXwWh86iQ/ytPK3kAYJ5eLx10j7ozgQEWzSwy9PoPVrV3nI8Hf/p28Tt68KDpHFGMGn3G2ohH5OrRuOGQo4biqLRHZd3+DYoT1ErIKa2mSeAzBNQVaCRBEzaiYiIiKhSO3s916fvr9UL4uvrOdImWvaGx0eHqNC3eTxkMhlU8gBoDUbkaQ2IdHNJ9C9/P+fw2LkbedDoDVAr5A7PsUdn8VmClHJUDasgzc4qgOvGG7ioND1EubugEP0DIiDr+h8fR+UhRj2w9T0g74Zpu+kgJDR62LcxeRCTdiIiIiKq1PRGoeSTvMiy0j7j1xPo1LAqApWmZFmstFs0q2tfL0ZsVmduUFeaZnTTfnG+VNycTacwqXdjt+6ZXWhqQNemdjSmDGjqtDM+3V4J4UkYcaEOmgbtQ++8fCChOtDgAV+H5Tk1uwMza5teC6FAfFufhuNJbERHRERERJWa4NucXZK0p9zIw4ajaeK2OKfdYii85VB5c1Jclg7y1sxT7BftOIejV7Ncvi6rQIcjRec/1q4mmiSEeywmKrta0cHoH5RvStgBIKSabwPytKAo4P53Ta812b6NxcOYtBMRERER+cjyvy7i1yNpkn0vLT+IQZ/9gYs38+0Oj5e8VpmTdvc6yAtOnlQEKYuHxFt3lnem60fbcemWabkty2Z65B9aJEaiUbiueEffj3wXjLeoix4UFbr+sKk8YNJOREREROQD52/k4Y3Vh8XtqODiRPfgpUxsOXFNHB4fb7FmuuVr83JxuW5W2q2T8TlDW+COGhHoe0c88i2WkLNZ29uJW3la8bV1QzryE5qc4teRNX0Xh7cEFiXtJ/8HpDuf/lGe8F8TEREREZEPXM4oEF+3qR2NulVDsHzfJXFfgc4gJteJ0cH4amRrXM0qwKCW1cVzzFX3fK17SXuB1druHepXweC7agAA9Ia/seGoaZ12rcG1Cr7W6iEAK+1+yjJpr4jUFlMy1o4Dntrsu1g8iJV2IiIiIiIfCFIV/6/4oDurw2K5dgDArN9O4mauqZu8WhmArknV8FjbWnaHx7tbac+zSPJHtq+N2PDi6v0nj9wpvj6Zlgu9oeQh8l/uknai51JvfqrVSNOf9bv7NAyvUVisVtC4v+/i8DAm7UREREREPmA5RL1v83icTLOtgp6/aWoaplbY/9/26FDTWtQ3c7V2jztirrRHBisxZUBTybFApRyN400VyzfXHMbor/8u8X6zfjspvo4MVnp0zXjyoM6vAcNXAw997etIvENukbSHJfguDg9j0k5ERERE5APmpL1JfDgigpUwOOli7yhprxpqSlI+2XIap6+5PvTZPG89RGV/tqxKXlz233Hqusv3BYCN4ztB5SBe8jG5EqjfDVCH+joS71BYPCyyrLqXc/zXRERERETkAxqdKWkPUpmayRmdrBevVsjt7q8SWpykLPvzgsvvbU7aze9tTevsCYITVcPUqGYx1J7otrKstCsqzs8hk3YiIiIiIh8wr8FurqJbz2m35KjS3u+O4iHAeVrXl30r0JnmtAc7SNpzNcVLg6nkJacMVcNMydKCx+5yOQYij7OsrrPSTkREREREpSUIAtKyCgEUJ+TTBjVzeL6j4eZRISq83a8JANsO7s6Y13W3XJPdUr7Fuu9agxEGJ6MAAEBX1KzOctk6ottObjk8npV2IiIiIqIKwVmF21s+3XIGM349AaB46PsdNSIdnu9oeDxQnNC7k7SbG9FZdqK3lG9VtS/p3oU686gBx3ESeZ2k0l5xmiEyaSciIiKiSk3ug6z9482nxNeuNG1zNDze8phGb8DZ67m4lVdyJ3nzuu6O5rQX6KRJe6HO8dB7QRBQWDQ/P9BB5Z7otrCstMsqTqpbcT4JEREREVEpBATc3qQ9p1An2bY3rzw+Qjq011lib07az17PQ7fZO3DXe5tKjME8/z3YQZLdqWFVyfad721Ck8m/YflfF20a5v1++ob4OlDJ9IJ8qALNY7fEf1VEREREVOkIQnHiqbjNSXvKjTzJtr01zcMDi+eGq+QBTivY5kZxF2/luxxDdoHpwUFEkP056FMHNMX47g0k+/K1Bryx+jDqvvk//Hs5EwCQmlWAJ5b8JZ4T7GAJOaLbwrJ7vJzD44mIiIiIyi29RbX4dg+P11ktp2aveVt4UHHyW7dqCOROHiyoS1Hdziohaa9TJQTjuzdElVD7lctHP/8TALBg21lx38vdGzqNk8jrAgKANs8CTR8Aqib5OhqP4aMwIiIiIqp0zN3Ogds/PF5vkDZ1i7STtDdNiECuxoDLt/Ix9O5Ep/dTyW2r8Fq90emQenPSHu4gaTerFqbGjVyNzX7z8Ppsi6H+TRPCnd6L6LboM8vXEXgck3YiIiIiqlQuZ+Rj4Pw/xO3bPTzeevm0xvHFya5KEQCt3ohezeIwZUBTl+5nLznP1+qhctI9+2auqVmdo0q7WUJkEI6lZts9tu7QVfx88Kq4HRdRcZbYIvInTNqJiIiIqFJ5d90x3LTosH67m8fripL26BAV1o/riITIIPHY7jfuw4WbeWhVK9rl+1UJtU3O87UGRAYD/17OxL+Xs/BY25qQFX1Qjd6AAxczAJRcHbd3b7PVBy6Lr5++tw6aVY9wOWYich2TdiIiIiKqVDYeuybZtip8e515eHxiVJAkYQeAKqFqh/PIHalbNRRN4sMlFXHzOusDikYURIeo0Kd5PAAgT2MQ5/TXqxrq9N5KueMh9ttOXgcAvDeoGR5vV8utmInIdWxER0RERESVhmXXeDPr4ereZk6YPdm0zXKIPQAUaKXrqu89d7P4WNGa6ypFQInz+QXYfm+sL4kL57B4Im9i0k5ERERElUauRm+zz2gnkfcmfVH3eIWTKra7rDvI52v1kgcUORaf25zQBzlZRs7Mqmce+t4Rj17N4iT7QuysM09EnuPTpH3nzp3o378/EhISIJPJ8NNPP4nHdDodXn/9dTRv3hwhISFISEjAE088gatXr0ruodFoMG7cOFSpUgUhISEYMGAALl++DCIiIiIia6fTc232GV2stF/NLMDPB6/YdH93VXahDr3m7sS0X44BAJRyz1XaVXLrpN0gdngHALWiOLEu1LmTtBd/1m0Tu+DDB+/AW32bSM5Ru3AfIio9nybteXl5aNGiBebPn29zLD8/HwcOHMDbb7+NAwcOYPXq1Th16hQGDBggOW/8+PFYs2YNli9fjl27diE3Nxf9+vWDwWCwuScRERERVW5T1h4VX9/boAoAwOBipf3+OTvw0vKD+HrPhVK991e7zuNEWg5SswoBAIoAz/2vuHUH+XytAZn5xc32LIe0m4fHB7lQIbd8PlGnSgiCVQokRAbh1LTe4v7SPsQgItf4tBFd79690bt3b7vHIiIisGnTJsm+efPmoU2bNrh48SJq1qyJrKwsLF68GEuXLkX37t0BAMuWLUNiYiI2b96Mnj17ev0zEBEREVH5YR6a/mibRIy7rwHaf7AVRhdzTnPlevvJdIzuWMft9z53Q1rl9+RSc9ZV+3ytXjKv/du9F6GUB2DKgKbi/kAXKuSOpg5YPiRoGBtWmpCJyEXlak57VlYWZDIZIiMjAQD79++HTqdDjx49xHMSEhLQrFkz7N692+F9NBoNsrOzJV9EREREVPHpizL0/nckiI3g3J3TritFZXnTsWuSNc0BQOHR4fHSBLxAZ0ChThpn8u7zyMzX4oklfwEAApUlpwLOmvQdnHw//njjPkSFOF4WjojKrtwk7YWFhXjjjTcwbNgwhIebumOmpaVBpVIhKipKcm5sbCzS0tIc3mvGjBmIiIgQvxITE70aOxERERH5B8vO7eb12V0dHm/mbrf5nEIdxny732a/JxvRKRXWlXaDOAzekuWDg4bVSq6QP3R3DQBAi8RIm2ORwSpUt1qyjog8r1wk7TqdDo888giMRiMWLFhQ4vmCIEAmc/zkctKkScjKyhK/Ll265MlwiYiIiMhPWXZulxf9/6Ig2F8KzhGdwb2k/ejVbLvX5BTadrIvLZtGdBo9rmUX2py3N8W09Ft0iArvP9CsxPve26AqNr/SGSueaeeZQInIbT6d0+4KnU6HoUOHIiUlBVu3bhWr7AAQFxcHrVaLjIwMSbU9PT0d7du3d3hPtVoNtVrt1biJiIiIyP+Ym6Yp5TLJOukGo+DycHV3h8fbq3gDwM5T1926jzPWjeiOpebg061nbM47m54HAOjZNM7lSn/9aqFlD5CISs2vK+3mhP306dPYvHkzYmJiJMdbtWoFpVIpaViXmpqKI0eOOE3aiYiIiKhykg6PL07S3Rnx7u7weK3efpLvyfXNrSvtm49fs3veyWs5AIDwQL+v3RFREZ/+a83NzcWZM8VPAFNSUnDw4EFER0cjISEBDz74IA4cOID169fDYDCI89Sjo6OhUqkQERGB0aNHY8KECYiJiUF0dDQmTpyI5s2bi93kiYiIiIjMzEm7Uh4gqbS704zOUeXcEU1R0n5P3Ri0rRuNtQevIjJYiVd7Jrl1H2fcHWqv9OB8eiLyLp8m7X///Te6du0qbr/yyisAgBEjRmDKlClYu3YtAKBly5aS67Zt24YuXboAAD7++GMoFAoMHToUBQUF6NatG5KTkyGXe+7JJRERERFVDOah7YoAmTinHQC+3n0ez3Sq67QvktmFm/luvaemKMlXKwMwvntDjO/e0K3rXdE4PrzkkyyUpgM+EfmGT5P2Ll26OG364UpDkMDAQMybNw/z5s3zZGhEREREVAEZHFTaZ/x6Al0aVUOjONfWHE/LKkRcRKDdY3kaPfam3ESH+lWgVsjFSrta4b3qdof6Mfjiibvx0z9X8Mvh1BLP1zgYsk9E/ofjYoiIiIio0jB3j5cHyKBSBOC1Xo3EY7kandNrEyyS9JQbeQ7Pe2P1YYxK/htzNp0CUDynXa3w3khQmUyG+5vEokVihEvns9JOVH4waSciIiKiSkNnLBoeX9QpfkyX+qhbNQRAcULviN6iAV1Wgf0E/3qOBusOmdZCX7TjHIDiqrZ1h3dveOKe2qgaVrxK0pT+TdC5YVVx2zy64IE7q3s9FiLyDLaNJCIiIqJKwWAUYJ59qQwoTqAVRYlsSV3hLY9n20na9QYj+nz6u81+jb5oTvttSNoDlXJMHdAUY749AADo0TQOI9rXhtZghFohR4HWgNSsAtStymXciMoLVtqJiIiIqFLQG4uHhMst1mQPKGo+Zyihn5Ll8RV/X5IcO3Y1G7M2nMT1HI24z/ww4HZW2i3fFzDN3ZfJZOLQ/CCVnAk7UTnDSjsRERERVQqWw98llfaiBF5fUqXd4vr9FzKQVaBDRJASADDtl2PYffam9P2MAo6nZqNAa6q0B3twXXZnAiw64Fuv305E5U+p/hXr9Xps3rwZixYtQk5ODgDg6tWryM3N9WhwRERERESeYpm0Kywq7eal34wlJO3WSb3lEHnrhN1s0Y6zyNea1lAPVt2eeplllEpFyUvYEZF/c/s3x4ULF9CrVy9cvHgRGo0G999/P8LCwjBr1iwUFhZi4cKF3oiTiIiIiKhMdBbD4y2HkJubs5VYabc6Xli0/joANKgWitPptgWsQKUcuRpT0h5ymyrtlpSstBOVe27/K37ppZdw9913IyMjA0FBQeL+Bx54AFu2bPFocEREREREnmIeph6klEMms03aS2pEZzknHgAOXsoUX2utllCrV9SRfvm+S8gpvL2VdkuWDyeIqHxyO2nftWsX3nrrLahUKsn+WrVq4cqVKx4LjIiIiIjIk/IdzC2/eCsfAMSO6/YYjQKsc/pXf/xXfG1ei91s7H31xdd7zpmGzgerb0+lXbBomGf5cIKIyie3H/cZjUYYDAab/ZcvX0ZYWJhHgiIiIiIi8jTz3PIgq6T9WrbG3ukAgKV/XsCJ1GzERwTaPX7qWg5qx4RAZ1Vp739HAl5ecQhAcUIf4oNKOxGVf27/5rj//vsxd+5cfP755wBMT+9yc3PxzjvvoE+fPh4PkIiIiIjIE8yVdleTZ0EQ8PZPRyT7ZDLAcmW4Hh/vRPfG1cRl3cwU8gC0SIzEIYsh9InRwaUL3E1c0o2oYnE7af/444/RtWtXNGnSBIWFhRg2bBhOnz6NKlWq4Pvvv/dGjEREREREZWZO2q0r7Y5kF+ht9s14oDneWH1Ysm/z8XSo7azBrrZoAtfvjnjUr3Z7kun61ULx1ZOtUS1MfVvej4i8y+2kPSEhAQcPHsTy5cuxf/9+GI1GjB49Go899pikMR0RERERkT9JzykE4Hy99K93n8fAlgmIDFYhNbvA5nhooAL1qobg7PU8yX7z8Pia0cEY29U0n73Aorv8pD6Nyxy/O7o2qnZb34+IvKdUE2uCgoLw5JNP4sknn/R0PEREREREHpev1WPnqesAgHpOho+/s/Yosgp0eLFbA9zK09ocD1UrsPLZe9Bq2mbJfnOTurVjOyAy2NSwObOg+PrqkSxuEVHpuN09fsaMGViyZInN/iVLlmDmzJkeCYqIiIiIyFMKdQZ0/nA7Nhy9BgDo2KCK0/PXHboKAHjn56M2x8IClYgJVeOxtjXtXquyGCafla8rbchERCK3k/ZFixYhKSnJZn/Tpk2xcOFCjwRFREREROQpqVmFuJ5T3CE+IcJ51ds85/10eq7NsUZxptWSHro70e61Sot57NmFtnPiiYjc5XbSnpaWhvj4eJv9VatWRWpqqkeCIiIiIiLylFyL5Ll9vRgkxZd+meJQtWl2acvESCwd3UZyTCYDFAFcF52IPMvtpD0xMRF//PGHzf4//vgDCQkJHgmKiIiIiKisBEHA1HVHMX/baQBAw9hQfPd0O0k13B5X027r+6jkAZDJiq8e0ML0/8aD76ruetBERFbcbkT31FNPYfz48dDpdLjvvvsAAFu2bMFrr72GCRMmeDxAIiIiIqLSOHQ5C1/9cV7cNlfJXRWqViBX43iIu1IuTe9VVkn89MHN0btZHLqwkzsRlYHbSftrr72GW7duYcyYMdBqTR0xAwMD8frrr2PSpEkeD5CIiIiIqDTyrRLusEClW9dr9AanxxUBVpV2q7XaQ9UK9G5uO62UiMgdbiftMpkMM2fOxNtvv43jx48jKCgIDRo0gFqt9kZ8RERERESlIreaX24UBLvn1a0SgnM3bNdd1xmk568f11GybTM8XuH2zFMiohKVap12AAgNDUXr1q09GQsRERERkcdYzi8HgGvZhXbPW/ZUW7T/YKu4bRAEfL7znLi9/63uiApWIcDqIYBVob3EufJERKXhUtI+ePBgJCcnIzw8HIMHD3Z67urVqz0SGBERERFRWegMRsl2iIM57QmRQWiZGImDlzIBAEeuZOPIlWzxeHSIyuYBAABYF+5ZaScib3ApaY+IiBB/UUVERHg1ICIiIiIiT9DqpUm7s67wk3onYfyKg0jNklbjZw5pbjdhB2yH27PSTkTe4FLS/tVXXwEwLZsxZcoUVK1aFcHBwV4NjIiIiIioLKwbydmf0W7Stm4MVj57D+6dtU2y31n1PFApd/lcIqLScus3iyAIaNCgAa5cueKteIiIiIiIPEJjVWkvSbid7vIqudzOmSb1qoZKttWstBORF7j1myUgIAANGjTAzZs3vRUPEREREZFHWCftDprHi0IDbQehllQ9H9a2pvhaqXA2AJ+IqHTcfhw4a9YsvPrqqzhy5Ig34iEiIiIi8gh3K+3yABmC3BzyrrToKB+mdm8deCIiV7i95Nvw4cORn5+PFi1aQKVSISgoSHL81q1bHguOiIiIiKi0LlitvV5CoR0AoFYGoEBXPBdeVcKQd7nFum8RQUzaicjz3E7aP/74Y4cdNImIiIiI/MU/RUu4md1bv0qJ1wQq5AB04nZJlXaFvPj/iyOCmbQTkee5nbQ/+uij0Ov1CAkJ8UY8REREREQecfZ6LgDg88dbIT1Hgwdb1SjxGrVSmqSrS0jaLSvxrLQTkTe4PKf9xo0b6Nu3L0JDQxEeHo727dvj3Llz3oyNiIiIiKhUtHojMvNNFfM2daIxvF0tmyXa7LFO0kuqtPduHoe6VUOgVgTg7lpRpQ+YiMgBlyvtkyZNwv79+zF16lQEBgZi4cKFePbZZ7Fp0yZvxkdERERE5LYCbfG89GCV64NL1QppYh+ocJ7oN02IwNYJXaAzGKHkkm9E5AUu/wbbsGEDlixZgj59+gAA+vTpg2bNmkGn00Gp5FAgIiIiIvIf+To9AEARICuxWm5JHiDt3VQlTOXSdUzYichbXP7tcvXqVdx5553idlJSElQqFa5eveqVwIiIiIiISiu/qNIepCp5SLwl6w7z7lTpiYi8weWkXRAEKBTSX1oKhQJGo3vrXxIREREReZt5eLz1uusl4RpJRORvXH50KAgCunXrJknc8/Pz0b9/f6hUxcOGDhw44NkIiYiIiIjcZF5rPdjNSnvf5vE4eCkTwSo5tr/axQuRERG5x+Wk/Z133rHZN3DgQI8GQ0RERETkCVPWHgUABLk5vP3pTnXxcJtEhKkVkMlYdyci3ytT0k5ERERE5I/My71VCXWtkZyl8EA2WSYi/8E2l0RERERU4RiMppZyr/dK8nEkRERlw6SdiIiIiCocg2BK2gM4xJ2Iyjkm7URERERU4RiLKu3W664TEZU3TNqJiIiIqMIxV9rl/L9dIirnfPprbOfOnejfvz8SEhIgk8nw008/SY4LgoApU6YgISEBQUFB6NKlC44ePSo5R6PRYNy4cahSpQpCQkIwYMAAXL58+TZ+CiIiIiLyN+Y57RweT0TlnXtrYAD49NNP7e6XyWQIDAxE/fr10alTJ8jlJa+JmZeXhxYtWuDJJ5/EkCFDbI7PmjULc+bMQXJyMho2bIhp06bh/vvvx8mTJxEWFgYAGD9+PNatW4fly5cjJiYGEyZMQL9+/bB//36XYiAiIiKiiqeo0M6knYjKPZkgmH+luaZOnTq4fv068vPzERUVBUEQkJmZieDgYISGhiI9PR1169bFtm3bkJiY6HogMhnWrFmDQYMGATBV2RMSEjB+/Hi8/vrrAExV9djYWMycORPPPvsssrKyULVqVSxduhQPP/wwAODq1atITEzE//73P/Ts2dPue2k0Gmg0GnE7OzsbiYmJyMrKQnh4uDvfDiIiIiLyQ43f/g0FOgN+f60rEqODfR0OEZGN7OxsRERElJiHuj08fvr06WjdujVOnz6Nmzdv4tatWzh16hTatm2LTz75BBcvXkRcXBxefvnlMn2AlJQUpKWloUePHuI+tVqNzp07Y/fu3QCA/fv3Q6fTSc5JSEhAs2bNxHPsmTFjBiIiIsQvdx4uEBEREZH/E7vHsxEdEZVzbiftb731Fj7++GPUq1dP3Fe/fn189NFHmDRpEmrUqIFZs2bhjz/+KFNgaWlpAIDY2FjJ/tjYWPFYWloaVCoVoqKiHJ5jz6RJk5CVlSV+Xbp0qUyxEhEREZF/EbvHc3g8EZVzbs9pT01NhV6vt9mv1+vFRDkhIQE5OTlljw6mYfOWBEGw2WetpHPUajXUarVH4iMiIiIi/1NcafdxIEREZeT2r7GuXbvi2WefxT///CPu++eff/D888/jvvvuAwAcPnwYderUKVNgcXFxAGBTMU9PTxer73FxcdBqtcjIyHB4DhERERFVLoIgiI3oWGknovLO7aR98eLFiI6ORqtWrcSK9d13343o6GgsXrwYABAaGorZs2eXKbA6deogLi4OmzZtEvdptVrs2LED7du3BwC0atUKSqVSck5qaiqOHDkinkNERERElYvRos0yu8cTUXnn9vB4cyJ94sQJnDp1CoIgICkpCY0aNRLP6dq1q0v3ys3NxZkzZ8TtlJQUHDx4ENHR0ahZsybGjx+P6dOno0GDBmjQoAGmT5+O4OBgDBs2DAAQERGB0aNHY8KECYiJiUF0dDQmTpyI5s2bo3v37u5+NCIiIiKqAAwWWTsb0RFReed20m6WlJSEpKSkMr3533//LUnwX3nlFQDAiBEjkJycjNdeew0FBQUYM2YMMjIy0LZtW2zcuFFcox0APv74YygUCgwdOhQFBQXo1q0bkpOTuUY7ERERUSVltFjRWM6knYjKObfXaTcYDEhOTsaWLVuQnp4Oo9EoOb5161aPBng7uLo+HhERERH5vzyNHk3f2QAAOP5uLwSpWMwhIv/jah7qdqX9pZdeQnJyMvr27YtmzZqV2MmdiIiIiOh2MgiWw+N9GAgRkQe4nbQvX74cK1euRJ8+fbwRDxERERFRmRgt5rSzezwRlXduP3tUqVSoX7++N2IhIiIiIiozy0Z0nNNOROWd20n7hAkT8Mknn8DNqfBERERERF710z9XsP7fq5Il3ziVk4jKO7eHx+/atQvbtm3Dr7/+iqZNm0KpVEqOr1692mPBERERERG5IjNfi/ErDgIAdrzaBQCr7ERUMbidtEdGRuKBBx7wRixERERERG7be+4mHv3iT3H7Rq4WAOezE1HF4HbS/tVXX3kjDiIiIiKiUnl88V+SIfHbTqQDYOd4IqoY+KuMiIiIiMo1rcEo2Z6/7QwAVtqJqGJwqdJ+1113YcuWLYiKisKdd97ptKHHgQMHPBYcEREREZG7okNUuJWnRQDntBNRBeBS0j5w4ECo1WoAwKBBg7wZDxERERGRy9KyCm32VQtTm5J2VtqJqAKQCVy7DdnZ2YiIiEBWVhbCw8N9HQ4RERERuSArX4eus7fjVp5Wsj8+IhCpWYWICw/En29281F0RETOuZqHuj2n/dKlS7h8+bK4/ddff2H8+PH4/PPPSxcpEREREVEpbDp+TZKwTxvUDABwLdtUfY8KUfkkLiIiT3I7aR82bBi2bdsGAEhLS0P37t3x119/4c0338S7777r8QCJiIiIiOw5mZYtvh7UMgFhgaaZn+ZO8lHBSl+ERUTkUW4n7UeOHEGbNm0AACtXrkTz5s2xe/dufPfdd0hOTvZ0fEREREREduVq9ACACfc3xNxH7oRSLv1fW7WCCyURUfnn9m8ynU4nNqXbvHkzBgwYAABISkpCamqqZ6MjIiIiInIgp9CUtIeoTRV2lVXSXukbNxFRheB20t60aVMsXLgQv//+OzZt2oRevXoBAK5evYqYmBiPB0hEREREZE9eUaU9tChpV1pV1rlOOxFVBG4n7TNnzsSiRYvQpUsXPProo2jRogUAYO3ateKweSIiIiIibzIaBWw7eR2A40o7c3YiqghcWqfdUpcuXXDjxg1kZ2cjKipK3P/MM88gODjYo8EREREREdlz8Va++DqgKDlXKaRZesPYsNsZEhGRV7idtAOAXC6HXq/Hrl27IJPJ0LBhQ9SuXdvDoRERERER2ZevNYivuzSqBgBQK+SSc8beV/+2xkRE5A1uD4/Py8vDqFGjEB8fj06dOuHee+9FQkICRo8ejfz8/JJvQERERERURgU603z2WjHBCFKZkvUGsaGoEmpqmNyneRyCVaWqTxER+RW3k/ZXXnkFO3bswLp165CZmYnMzEz8/PPP2LFjByZMmOCNGImIiIiIUKgz4EauBgCQpzFV2i0Tc7VCjnXjOmDh8Fb4YMgdPomRiMjT3H78uGrVKvz444/o0qWLuK9Pnz4ICgrC0KFD8d///teT8RERERERAQD6z9uF0+m52PV6V2QV6AAAISrpkPj4iCDERwT5IjwiIq9wO2nPz89HbGyszf5q1apxeDwRERERec3p9FwAQMeZ28R9QVZJOxFRReP28Ph77rkH77zzDgoLC8V9BQUFmDp1Ku655x6PBkdERERE5Ex8RKCvQyAi8iq3K+2ffPIJevXqhRo1aqBFixaQyWQ4ePAgAgMDsWHDBm/ESERERESVnEZvsNk3uV8TDGyZ4INoiIhuH7eT9mbNmuH06dNYtmwZTpw4AUEQ8Mgjj+Cxxx5DUBDnDxERERGR55kbz5nFhKgwqmMdH0VDRHT7lGodjKCgIDz99NOejoWIiIiIyK7cQr1kOyyQy7kRUeXg0m+7tWvXunzDAQMGlDoYIiIiIiJ7cjQ6yXYok3YiqiRc+m03aNAgl24mk8lgMNjONyIiIiIiKgvr4fHBSibtRFQ5uNQ93mg0uvTFhJ2IiIiIPCVXo8eu0zegNxiRa1VpV8hlPoqKiOj24iNKIiIiIvJLo5L34a+UWwhUBqBQZ5Qca1UrykdRERHdXi6v075161Y0adIE2dnZNseysrLQtGlT7Ny506PBEREREVHl9VfKLQCQJOwd6sfgt/H34pX7G/oqLCKi28rlpH3u3Ll4+umnER4ebnMsIiICzz77LD7++GOPBkdEREREZCkuPAhJceGQyTg8nogqB5eT9kOHDqFXr14Oj/fo0QP79+/3SFBERERERNba1I7GyPa1fR0GEdFt5fKc9mvXrkGpVDq+kUKB69eveyQoIiIiIiJr3z3dFgq5yzUnIqIKweXfetWrV8fhw4cdHv/3338RHx/vkaCIiIiIiCwFKgOYsBNRpeTyb74+ffpg8uTJKCwstDlWUFCAd955B/369fNocEREREREABCi4qJHRFQ5ufzb76233sLq1avRsGFDjB07Fo0aNYJMJsPx48fx2WefwWAw4D//+Y83YyUiIiKiSioi2PE0TSKiiszlpD02Nha7d+/G888/j0mTJkEQBACATCZDz549sWDBAsTGxnotUCIiIiKqPPQG6brs8RGBPoqEiMi33BpnVKtWLfzvf/9DRkYGzpw5A0EQ0KBBA0RFRXkrPiIiIiKqhPJ1Bsl2XHiQjyIhIvKtUk0OioqKQuvWrT0dCxERERERAKBAK03aH7+nlo8iISLyLbbgJCIiIiK/k6fRS7ZbJkb6JhAiIh/z66Rdr9fjrbfeQp06dRAUFIS6devi3XffhdFYPMdJEARMmTIFCQkJCAoKQpcuXXD06FEfRk1EREREZZVvUWlfPaa9DyMhIvItv07aZ86ciYULF2L+/Pk4fvw4Zs2ahQ8//BDz5s0Tz5k1axbmzJmD+fPnY9++fYiLi8P999+PnJwcH0ZORERERGXx2bYzAICmCeG4qyb7JxFR5eXXSfuePXswcOBA9O3bF7Vr18aDDz6IHj164O+//wZgqrLPnTsX//nPfzB48GA0a9YMX3/9NfLz8/Hdd9/5OHoiIiIiKo2MPC1+PZIGAGhdO9rH0RAR+ZZfJ+0dO3bEli1bcOrUKQDAoUOHsGvXLvTp0wcAkJKSgrS0NPTo0UO8Rq1Wo3Pnzti9e7fD+2o0GmRnZ0u+iIiIiMg/ZBboxNcvdmvgw0iIiHyvVN3jb5fXX38dWVlZSEpKglwuh8FgwPvvv49HH30UAJCWZnoCa70+fGxsLC5cuODwvjNmzMDUqVO9FzgRERFROXY9RwOVIgARQUqfvL+5CV1ceCCiQ1Q+iYGIyF/4daV9xYoVWLZsGb777jscOHAAX3/9NT766CN8/fXXkvNkMplkWxAEm32WJk2ahKysLPHr0qVLXomfiIiIqLzJ0+jR/oMtaD9jCwRB8EkMlzPyAQBBKrlP3p+IyJ/4daX91VdfxRtvvIFHHnkEANC8eXNcuHABM2bMwIgRIxAXFwfAVHGPj48Xr0tPT7epvltSq9VQq9XeDZ6IiIionDmTnov1/16FziBAZzCgx8c78c3oNoiPCLqtcTy37AAAIOVG3m19XyIif+TXlfb8/HwEBEhDlMvl4pJvderUQVxcHDZt2iQe12q12LFjB9q359IgRERERCXRGYx4Yslf+M+aw+g+Zwfmbj4tHjudnot7Zmy97fEQEVExv6609+/fH++//z5q1qyJpk2b4p9//sGcOXMwatQoAKZh8ePHj8f06dPRoEEDNGjQANOnT0dwcDCGDRvm4+iJiIiI/N/JtBzsPHXd6TnZhTqEB96e+e2Hr2SJr5smhN+W9yQi8md+nbTPmzcPb7/9NsaMGYP09HQkJCTg2WefxeTJk8VzXnvtNRQUFGDMmDHIyMhA27ZtsXHjRoSFhfkwciIiIqLyIadQX+I5F2/mo1n1CK/FcOBiBiatOoyBdybAYCieR5/8ZBuvvScRUXkhE3zVYcSPZGdnIyIiAllZWQgP5xNdIiIiqtg0egP2pWTg0OVM7Dx1HXtTbjk9//PHW6FH0zivxVP7jV9s9g2+qzrmDG3ptfckIvI1V/NQv660ExEREZFnGY0Cpqw9hu//uujwnMhgJcZ2rY9pvxwH4Fo13tOae7GyT0RUnjBpJyIiIqpEJvxwCGv+ueLw+IOtauCjh1oAAP44cwPbTl5HdqHO43GkZhXgya/2oadVBT8iSIlFj7dCm9rRHn9PIqLyiEk7ERERUSXiLGEHgBCLtdHjipZ6u56j8Xgc87eewYm0HJxIyxH3/f5aVyRGB3v8vYiIyjO/XvKNiIiIiLxn/biONvuCVMU1nfAg0+sF288iT+PZIfL27lclVO3R9yAiqgiYtBMRERFVEtb9hxvH2zY+sqy0d0uKFV9fvJXvsTj0BiN+OnhVsq9pQjiCLN6biIhMmLQTERERVRLJu89LtuUBMptzLBPnNnWiUT3SNES+UGfwWBxHrmbb7GvNOexERHYxaSciIiKqJD7Zclp8vW6s7dB4ANAbpdV4cxJfqDN6LI7MfK3NvvBAtloiIrKHSTsRERFRJVCgNSAz39QF/q83u6F5DdOSamO71pec17p2lGQ7UGn638VCvecq7dlWS8jFhqvRu3m8x+5PRFSR8JEmERERUSVwq6i6rZTLUDWsuOHbxJ6NML57AwgALt3KR92qoZLrAhVFlXatB5P2AtPDg55NY7Ho8bs9dl8iooqISTsRERFRJXAr15S0R4eoIJNJ57Ir5KZqunXCDgCByqKkXW/A3nM3YRAEtK9XpUyxZBUl7eGByjLdh4ioMuDweCIiIqJKwFxpjwpWuXWdOWnPLtDj4c//xLAv9iKnUFemWK5mFgAAqoVziTciopIwaSciIiKq4P4+fws//XMFABAT6m7SbvrfxQyL5nHmSnlpnb+ZBwCoHRNSpvsQEVUGHB5PREREVIEJgoAHF+4Rt3M17s1NN1faVx24LO7TGQRHp7vkcoap0l4zOrhM9yEiqgxYaSciIiKqwHI10k7t52/kuXW9udJ+6VaBuC9fq3d0eomMRgGpmYUAgISiNeCJiMgxJu1EREREFZj1UPZvRrVx6/qgokq7pfwydJK/kaeB1mCETAbERQSW+j5ERJUFk3YiIiKiCsy8NjsArHq+PVokRrp1faCdpD1PU7pK+4WbeRj+5V4AQGxYIJRy/q8oEVFJ+JuSiIiIqAL7/q+LAID61ULRqlaU29erFbb/u1jaSvvzyw7g1LVcAEBCJKvsRESuYNJOREREVIGdu26aw16nSuk6tadlF9rsu5GrKdW9jqVmi685n52IyDVM2omIiIgqqE82n8aeczcBAK/3alSqe9irqk9ddwyC4H4HeaVcJr6uzqSdiMglTNqJiIiIKqACrQEfbz4FAIgJUaFuldBS3cdotE3ODUYBx1NzSrz238uZOG5RXa8aqhZf169WuniIiCobJu1EREREFdCtfK34+ofn7kFAgMzJ2Y6N69bA7v6bec6HyKdlFWLA/D/Q+5Pfse7QVQDF3eL7No/HwJbVSxUPEVFlw6SdiIiIqAK6lWtK2mPD1ahbtfRV7XpVQ8W12i09vvgvp9ddySxe133c9/8AAHIKTV3nh7WtCZWdBndERGSLvy2JiIiIKqDp/zsOAIgKVpX5XmqF7bJvJbEu7L/w3QGcTjd1jg8LVJQ5JiKiyoJJOxEREVEFdPRqFgCgc8OqZb5XadZTL9QZJdu//Jsqvg4LVJY5JiKiyoJJOxEREVEFciItG4MX/IHsoqHoY7rWL/M9VXL358Nr9I7Xcg9npZ2IyGVM2omIiIgqkDHfHsCBi5kAAJUiwCMJstLB/POV+y45XPpNozfa3Q+w0k5E5A4m7UREREQVhMEo4Nz1PHG7Z9M4yGSl6xpvydHw+NdW/YtjFku6WSrU2a+014oJZhM6IiI3cGwSERERUQVxJcPUsV0mA45M6YkQtWf+V8/ZnPasAp3d/fYq7VXD1NgwvpNHYiIiqiz4mJOIiIiognh55UEApo7xnkrYAedz2o0ORsHbS9pb1IhAoNL9TvRERJUZk3YiIiKiCiK1aG30ro2qefS+MaFqh8cMDua0F2pNw+Mtl3cb372hR+MiIqoMmLQTERERlXOXbuXji53ncDWrEADwWq9GHr3/tEHNMOH+hvjwwTtsjhkclNpv5WsBANUjg8R9seGBHo2LiKgy4Jx2IiIionJu3Pf/4OClTABAtTA1qjqpjJdGQmQQxnVrAAB49cd/JccMDobHpxQ1xKsSqgaQA0BadSciItfwNycRERFROWI0CjAIAjR6Iz7fcRYJkUFiwg4AfZrHIyCg7B3jXWUw2g6PX/rnBfx2NA2AqVv8rjOm/ZzPTkTkPibtREREROVEVr4O7WZsQWy4GipFAE5dy7U5p27VkNsak9HOnPa1B6+Ir5++ty6CVXLJMHkiInIdk3YiIiKickBvMKLFuxsBAOdv5ts9p0ZUEAbdWd2rcbzWqxFm/XayOC47lfazRUPj//fivahdJQT/6dvEqzEREVVkbERHREREVA4s2H7W6XGVIgC/v9YV4YFKr8Yxpkt9ybbRKmnPLtThVp6pCV10iMqrsRARVQZM2omIiIj8nNEoYM6mU85PEgCZ7PbNZTezntM+5eej4uvIYO8+QCAiqgyYtBMRERH5uU+2nBZf31EjAvKiRnMd6seI+wN89H911uu0mxvQAWw8R0TkCUzaiYiIiPzYlcwCMWmvFqbG2rEdsWH8vZg15A7MfqileF6zhAifxGc0Clj/71XcP2cHTl3LQYsakT6Jg4ioomLSTkREROTHvvz9nPh6zQsdAAD1q4VhaOtExEUE4rNhd6F59Qh8+FALn8SnNwoY+90/OJ2eiwkrD+GORNPDg9a1o3wSDxFRRcPu8URERER+6sDFDHz1x3kAwKCWCXaXTet7Rzz63hF/myMrZrnk2+ErWYiLCAQA3F072lchERFVKKy0ExEREfmpkUv+El8Pb1fLh5E4diNHI9nedOwaAEAZcPub4hERVUR+n7RfuXIFw4cPR0xMDIKDg9GyZUvs379fPC4IAqZMmYKEhAQEBQWhS5cuOHr0qJM7EhEREfk/vcGI7EI9AGDeo3f6beX6061n7O5Xyv3+fzOJiMoFv/5tmpGRgQ4dOkCpVOLXX3/FsWPHMHv2bERGRornzJo1C3PmzMH8+fOxb98+xMXF4f7770dOTo7vAiciIiIqo6wCnfi6d7M4H0ZSOgom7UREHuHXc9pnzpyJxMREfPXVV+K+2rVri68FQcDcuXPxn//8B4MHDwYAfP3114iNjcV3332HZ5999naHTEREROQRGfmmpD0sUFEuE2ClnMPjiYg8wa//C7B27VrcfffdeOihh1CtWjXceeed+OKLL8TjKSkpSEtLQ48ePcR9arUanTt3xu7dux3eV6PRIDs7W/JFRERE5C80egO6z9kBAIgMVvo4mtLh8HgiIs/w69+m586dw3//+180aNAAGzZswHPPPYcXX3wR33zzDQAgLS0NABAbGyu5LjY2Vjxmz4wZMxARESF+JSYmeu9DEBEREblpya7z4usQlf8NjFz+TLsSz2HSTkTkGX7929RoNOKuu+7C9OnTceedd+LZZ5/F008/jf/+97+S82Qy6fArQRBs9lmaNGkSsrKyxK9Lly55JX4iIiIidxmNAmb+dsLXYTjVrm5MiecoODyeiMgj/Dppj4+PR5MmTST7GjdujIsXLwIA4uJMTVmsq+rp6ek21XdLarUa4eHhki8iIiIif3DxVr5k23Id9PKEc9qJiDzDr5P2Dh064OTJk5J9p06dQq1apnVK69Spg7i4OGzatEk8rtVqsWPHDrRv3/62xkpERETkCb8cTpVs14oJ8VEkzjVNkBY9WtSIkGxzeDwRkWf49W/Tl19+GX/++SemT5+OM2fO4LvvvsPnn3+OF154AYBpWPz48eMxffp0rFmzBkeOHMHIkSMRHByMYcOG+Th6IiIiIvd9uMFUsKhfLRT3JVXDhB4NfRyRfV+OuFuybd3hPimOIxmJiDzB/zqbWGjdujXWrFmDSZMm4d1330WdOnUwd+5cPPbYY+I5r732GgoKCjBmzBhkZGSgbdu22LhxI8LCwnwYOREREZH7rmQWiK9f75WE+5s4nu7na/ERQXi8XS0s/fMCAEARIMOG8Z1w9nou7m1QBWGB5bPrPRGRv/HrpB0A+vXrh379+jk8LpPJMGXKFEyZMuX2BUVERETkBRdvFs9n71C/5GZvvqZSFFfXlfIANIoLQ6M4Fk6IiDzJ75N2IiIioopu1m8nsDflFvZfyABgStiD/XCpN2uWSTu7xRMReYf//9eAiIiIqALL0+ixYPtZyb7WtaN9FI171JZJe4Bft0oiIiq3+NuViIiIyIdu5Wkl232bx+Olbg18FI17LCvtKgUr7URE3sBKOxEREZEPZebrAAChagUm92+CAS0SIJOVjwRYrZCLr1lpJyLyDibtRERERD6UkW+qtNeICsLQuxN9HI17LCvt6TmFPoyEiKji4iNRIiKiCkYQBLyy8iAmrT7s61DIBalZpmXeqoapfRyJ+9rXK+5wf+xqtg8jISKquFhpJyIiqmDO38zH6gNXAACv92qEyGCVjyMiewRBwIvLD2LdoasAgHpVQ30ckfssY84u1PswEiKiiouVdiIionImPbsQX+w8h2vZ9ocjn03PFV9fzeSQZX919Gq2mLADQJ0qIT6MhoiI/BWTdiIionJk2Z8X0Gb6Frz/v+N4b/0xZOZrcTItR3LOvgu3xNdvrjmMI1eybneYZOGvlFuYtPowrmYWIKOoU3x2oQ795u2SnFceh8cDwLxH74QiQIZPHmnp61CIiCokDo8nIiIqR349kiq+Xv9vKo6nZuPs9Tz88mJHNE2IwF8pt7BoxznxnIOXMtFv3i6c/6CvL8IlAB9tPIm/Um7h+78uQiYDvn+6HYxGQXJO98bV0L1xrI8iLJv+LRLQo2mspJM8ERF5DpN2IiKicuRkWq5k++z1PADAA5/txqn3e+OjjSd9ERY58VdK8cgHQQAe+fxPm3O+HNH6dobkcUzYiYi8h8PjiYiIyombuRrcyNUAAJRy6TreWoMRF2/miwnisLY1JcdbvbcJm49dQ5cPt2HOxpM4djUb760/Jg7XJiIiIv/ESjsREVE5ceqaqcpeMzoYCZGB+PPcLcnxoYv2iK9f6tYAHepVwQvfHQAA3MzT4qlv/gYAfLr1DD7degYAoNEbMG1Q89sRPjnwas9Gvg6BiIj8GCvtRERE5cTJNNM62A1jw/Bom5o2x9MsusnHhKiQFB9W4j1TbuR5LkCyoTcYEVA0KOLJDrURpCweRv5qz0b44om78Vznej6KjoiIygNW2omIiPzY3+dv4bNtZ9ChfhX8czETANCsejgGtqyOl5YftHvNuPvqQyEPQIiq5P/Mx4YFejBasvbvlSwYBSBYJcfbfZvg9V5JuJGrQdUwNeeBExGRS1hpJyIi8mPztp7BtpPXMe2X4/jlsKlzfIf6VQAAHz/cAnfVjMSglgni+WpFAEZ1qAMACFKVnBSGBym9EHXFdiY9F9tPptvs33X6Bt7+6QiuZBYAAH4/fR2DF+wGADSJD0dAgAyBSjlqRAUzYSciIpex0k5EROTHzAmgWbUwNVrUiAQAPHBnDTxwZw0IgoD/9G2CU9dyEB8RiKgQFQAgVF3yf+YVAbISzylPMvO1CAtUQu7Fz9V9zg4AwNqxHXBH0d8FAAxfvBcAkKfRY87DLfHHmZvisRe61vdaPEREVLExaSciIvJTgiDgcka+uN23eTze6tcYKoV0oJxMJkPVMDWqhqkl++UBMiTFheFEWg4WDm+FmFAVVu2/jOX7LonnaA1G736I2+iNVf9i+b5LuKNGBH5+oQNkMs8n7gaL9dUPXc7CHTUicTItBwcvZYj7b+Rpse1kOjYcTQMA/KdPY3RNqubxWIiIqHJg0k5EROSnbuZpUagzQiYDTrzXq1RDqlc8ew/OXc9Fy8RIyGQytK4djexCHf532JRQanQVI2m/eDNffBjx7+Us3MjV2jzEKAu9wYhpvxxH8u7z4j5BEHAzV4Oec3dKzt156v/t3XlcVFX/B/DPsA37ICg7Crgr4J6K5r6QmpblL9M0Sys1SysfW7S0Mk17NM0Ws0WtJzVNS1vccckNN1AUQUVR9n3fhmHO74+BgXEGBWGGAT7v14tX3HPv3HuOhwm+c875nlQcv56qPvZoZlVn9SAioqaHa9qJiIiM1PkY1ZZuLnaWD70GWmZljm4tm2mMOr/7WEf197+ej8WUH0KQU1RSu8rWk0J5KYIjkxFyO12j/E563WbFPxqVqhGwA0B6nhwx6QW6X1CJuwODdiIiengcaSciIjIiSqXA/N8uYdfFeHXZwHYt6vQZXo7W+PgJP7z/xxUAwL830rDh2C3Mb4D7hX97PBprDt3QKq+8/V1tFJWUYu3hG/jmaLTWuZTc4mrdw13GDP1ERPTwGLQTEREZkRk/nUdwpGZm8teG1n0SM5t7Msun5NZNkGtIpUqBPZcSdJ7LyJc/9H3f+DUMp6LT0NHNHoBqlL2ch4MVXujnjaV/X8PWs3fvOwW/Xxsn+Da3hbM9g3YiInp4DNqJiIiMRH6xQitgX/qEHzybWdf5s4bckxht+/k4LAjqgOa2dbcOXJ+KSkox7suTuJWqexp8yK0MTO3rXeP73knPx++hqlkOyTmpWudfH9oGPs1t1cdfHNYe5S/3v+m99ZIMj4iImhYG7UREREai8ujwV5O6o7evo96CaAdrC7RuYYPoSkHvmVvpGBPgfp9XGY+TN9MQlZwLADCRAJWSugMA/rmS+FD33Xsl6b7n27vao4unDBamJlqZ9/8zsj0ik3KRmS/H8vH+DNiJiKhOMGgnIiIyEuVBu5vMEqMD3PT+vMwCzeRzBfJSvT+ztr46chOf7Y9ST+8f2dkF307pCe93/ta4Tgggu7AEMivzB97zz0sJ2HMpAYevJWsF/wBw4u3BSMwugqmJBF29HAAAowPc1CPyANCtpQOm9/eBpfnDJQwkIiKqCrPHExERGYmMAlXQ7mBtYZDnPd3DU+O40MiDdiEEPtsfBQDIL6tr+dKBH57vCTtLM6x/rgc8yrK1B0cmP/CeN5Jz8drWUByM0AzYpwV6w6e5DbbM6A3PZtbo5e2I7i2bqc9bVcoJsP65Htg1K5ABOxER6QWDdiIiIiORV6QAANhbGmYi3LxhbbF2YleM6OQCAMiXKwzy3Ie1s1JGfUCVTO8xP1cAwNCOLri8eASC/FzR3tUOAPDGr5egKL3/PvRnbmdolUkkwAv9vHFk/iAEtmmu83WVP+Do18aJU+GJiEhvOD2eiIjISBSWqAJBKwvDjNhaW5hhXFcPXLiTqXq+kY20H4xIhoO1OXp5OyKvWIEP91wFADjbSbHlpT7wcrTS2L++PHCe8aiPOqFfvrwUMivtMYqMfDkW/HYZp6LTtM7tnfsoWjnZ3LduSdkV2fbtLB88BZ+IiOhhMWgnIiIyEuVBs7WBgvZy1haqPweMaU17QlYhXvrpPADg9vJR2BpyF7nFqpkA217uA98WtlW+tq+vE0xNJChVChSVlOpc1/7bhVgculYxfX5Gfx/cySjA2C7u6OBq/8D61WZLOSIioprg9HgiIqI6IlcocSQypcYj1nGZBRjx+TGsOqBar23otdHlSd1+OHEbfZcfRmxGgUGfr0taXrH6+/R8Oc7cSgcALBzV8b4BO6Aacbcq+zeMy9TdlsjEXI3jAe1a4LupPfF4l+plz583rC0AYGIvr2pdT0RE9LAYtBMREdWRd3eF44VN5zBt41lcis2q1mtKlQJbQu7ienIecsrWtBt6pL18DTgAJGYXIUTHOm9Dqzzqv+C3yzhcNt3dz0NWrdfnlY3KP/XNaRSVaH6IEpGQg11lmd9bOVnjvVEd8Ghb3WvXq/KYvxtOvD0Yy570r9HriIiIaorT44mIiOpAobwUOy/GAQBCbmdg3Fcn8d8JXbQytAOqqdU/nriN9ceiodCxx5iVgUfa27nYaRznFZVUcaXhZBdW1KF8fbq5qQSd3B88df1e/VcEI+S9YTA1Ua1531XWTwCwa1YgnGylD1XH8sz1RERE+sSRdiIiompSKgV2XYzTmHIthICiVImRa45rXT9/xyXIFZrZy4UQGPjZEXx55KbOgB0ALMwM++vZ0VZzi7nyUer6IoTAKz9f0Cp/6VHfau27fq+0PDnCYjPVx6llU++nBXo/dMBORERkKBxpJyIiqqYDEUl4c/sl9fFT3T3Vo+vl3hzeDlIzEyzfGwkAGLr6KI7OHwxTEwkUpUr8diEOuUWaQfEzPb0wrps7Jn0XAhMJMKSDs/4bU4mdVPPPgdx6DtrXHr6hVebb3AYLgjo89D2f+uY0Yj4dDQBIzVUF7V29HB76fkRERIbCoJ2IiKiazt7O1Di+N2AHgNeHqhKUJeUUYePJGMRmFOLQtWQM6eCM8V+fQnh8tvpabydrHP3PYPVxxEcjUVyiRDMbC6376tO9e4yX7xcvVyjxd3gCAls3h4u9pUHqIoTAplMx6uMFQe3x7/U0rHw6oEb3eWWAL346fUe9jV5liWXbtTnbcZSdiIiMH6fHExERVYMQQuee3gCwaHRHWFuY4sluHuqyxY93Vn//ys8X0HbhXo2AfUIPT/w8vbfGfawtzAwesJc79c4Qdeb08unxG45H441fL+Hp9acMVo+7GQXIKlCtZ7+waBhmD2qDrS/3gZdjzdaPvzuqIy4tHqFVXqwoxZ30fABAa+f7Z6EnIiIyBhxpJyIiqoZP90YiMikXUjMT7JjZFwcjkmFpboqne3jCxd4Szz7SUivr+9tBHbBiX6TO+302oYshql1t7g5W6N/GCX9eSlCPtP8dngQAiM0oNFg9LtxRzWbo4imr9XpzCzMTrJ3YFXO3hQEA8osViM0sgFIAdpZmHGknIqIGgUE7ERE1GdGpeWjpaA1z05pNNMvMl+Pb47cAAKP93RDg6YAATweNa2yk2r9SZw1qjZ7ezTBh/WmN8o/Hdda61hjYSlVJ3nKLFfh0bySuJeYYvA6/l23F1q9NzbZgq8q4rh74YPdVZBeWYNL3IQhs7QQAaONsq7UsgIiIyBgxaCcioibh59MxeH/3Vbwy0BfvPtaxRq9NK8s2DgALR9fstT1aNkMXTxnkpQJ75vSr8QcGhmRnqfqzILdIgfXHog3+fKVS4GLZSHv5VP26MKBdC/x5KQGXYrNwKTYLAODhYFVn9yciItIn4/3LgYiI6B6Z+XJEp+ZV69rswhJ8/+8tJOcUISopF+/vvgoA+PbYLShKlfd9rVIpNK4p3zO8paN1jadsm5hIsHtOf+yd+6hRB+wAYFsWtNfHCHtaXjFup+cjX65KHOfbwqbO7r18vD+m9/fRKGtmXT+5A4iIiGqKI+1ERNQgFJWUYvjnx5GWV4xB7Vvg+6k9YXafIPh/Z+7gs/1RWPr3NTzft5XGuTYL9yL4rYHwbaGdiEwIgSe+Pon0PDn+eLUfWthJ1UH7w+wR3pA43ieQvRyXpbUkoC7cSM7F+G9OaWyDZ2NhCqmZ6X1eVTO2UjO8P6YTjl1Pxc0U1Yc+JpwZT0REDYRxf+RPRERNxt30Auy5lAAhhNa5kFvp6PD+PvU09aNRqfh0r+4Eb4Aq8F4XXLHX9+bTd7Su2XUxXnc9MgpwOS4b8VmFOBiRrHr+7QwAgIN14w7aWzlZo1kVbfz3hu7M+dW1OyweMzafw61KMyXOx2Rg+OfHtfatd9DTKPiyJ/3V32eWZagnIiIydg0qaF++fDkkEgnmzZunLhNCYMmSJXB3d4eVlRUGDRqEq1ev1l8liYgIABCTlo8hq47i1V8u4mZKHhSlSqw7fAMLfw/H/qtJWtc/vf4UXt8aCp93/8HKfZEoKilFQlYhluy5imc2nNG6/lR0epXPDo5MQVGJ9hT4FU/5Y0bZNOkvj9zUOp9VIMek70LUx+llHxJEl43O+nvIHtDqhk0ikWD+yPYaZW8MawcAiMusXQb5udvCcOhaCtYF30RRSSmuxGfj6XsS9JVrrqes7o/4OOKDMZ3gaGOBlwf46uUZREREda3BTI8/d+4cNmzYgICAAI3ylStXYvXq1di0aRPatWuHpUuXYvjw4YiKioKdnV091ZaIiL48chO3UvNxKzUfp6LT8M5jHbDq4HUAwPbzsTj2n8Fwd7CCUinwS8gdpORWJHv7+mg0OrrZ4/StdGwJuasu93K0wisDWmPRH1dwKy0PSqWASaV5zidupOH7E7c0RoXNTCRQCoF2LnYI8nODv0chvj9xGwDw7q5wPPuIF9wdrPBl8E1sOhWj0YbUsqA9p0g1KtvYg3ZAtW6/3PwR7WBftiQgIjEH7/0ejhf7eaONc81+v5ZUyg/we2i8OkN8uef6tMSYAHd8ujcSpUqB+SPa1aIF9/difx+80M+bmeOJiKjBaBBBe15eHiZPnozvvvsOS5cuVZcLIbBmzRosXLgQ48ePBwBs3rwZLi4u2LJlC1555ZX6qjIRUZN24GoSfrsQpz7OLCjBqgPX1cclpQL9VgQj8uMgvPnrJfwdnqh1j3/CE7H3SsWI/JPdPLD6/7qgVCmw6I8rKCpRYuu5u5jcu2K9+ueHrqv3+QaA90Z1wMsDWmvcV2ZlDjtLM+QWKbD17F1sPXsXbZxt1WudAcDURIJSpUB6nhwAkFOomr5tZ9m4p8cDQGDr5lg0uiOKFUrMeNQH+6+qlgiUZ14Pj8vGn6/1r9E9k7KLqjw3LdAbS8aqtsD749V+D1/xGmDATkREDUmDmB7/6quvYvTo0Rg2bJhG+e3bt5GUlIQRI0aoy6RSKQYOHIhTp05Veb/i4mLk5ORofBERUd1ZXTaibmdphqDOrgCgHkn3clRttSUE8MgnhzUC9tPvDsHMgaogu3LAHvlxED5/piskEgnMTE3gJrMEACz8/YrGGunUSqP1gGqrL108m1lrHFcO2AHgkyf8AFSMsJf/196qQXzWXSumJhLMeNQXrw5uA6mZqdYa9/D47BrfMz6rYmp9+Uj+t1N6IOyD4eqAnYiIiHQz+qB927ZtuHjxIpYvX651LilJ9Qedi4uLRrmLi4v6nC7Lly+HTCZTf3l5edVtpYmImrDknCJEJuUCAP47oQuk5pq/aipPMS/Pyg4AW1/qAzeZFbp4ak5Bf3Vwa1iam95T1kb9/ZWEig9elWVJ7BaN7ojvp/ZEB1d7nXXs6Fb19O6gzq5oXratW3ZhCYQQ6nraN4GR9nt18XJAG2fNLPu7w3Qn8dMlPa8YE8tyEvRr44TjCwYj5tPRGNnZVW8J54iIiBoTow7aY2NjMXfuXPzvf/+DpaVlldfdO81NCHHfqW/vvvsusrOz1V+xsbF1VmcioqZu0ncVSeP6+Dph1qCK6emLRnfEsif9EeApQ2d3e5iVrUcf1tEZfVs7AQCC/FzVScIszU3wmJ+b1jOe69MKYwJU5a9vDUVkUg6EqJjOPqyjC4Z1ctF6XbnWOrZ6KzemixtkZaPLl+OykVlQgoKyvcNdZVX/Lmqs7C3NcejNgdj+Sl912dxtYSiQK+7zqgrbzlX8ju3eslmd14+IiKixM+p5fhcuXEBKSgp69OihListLcXx48fx5ZdfIioqCoBqxN3NreKPupSUFK3R98qkUimkUv1kpiUiauqiU/PV39tbmkFmZY8rH46EpZmJel/1PXNUa6JTcotgJzWHlUXFSLpEIsF7ozri9aFtYWYi0RplL/do2+b467Jqav2l2Cw42ligsKQUJhLAzeH+wbWHg5VW2cjOLnh/TCd4NrPGjeTciuesCAYAuNpbVlmXpqCLl+YMiLRcOVo6PfjPiNtpqp+H0f5u6kz0REREVH1GPdI+dOhQhIeHIywsTP3Vs2dPTJ48GWFhYfD19YWrqysOHjyofo1cLsexY8cQGBhYjzUnImqYQu9m4uczdxCdmvfgi3WonCX8PyPbq2c92UrN1AF7Zc52lhoBe2W2UrP7Bsn/19MLUjPVPROyihBVNiXfs5k1pGb3D647ulVMm585sDX+XTAYayd2U691b93CFn18HQEA+WWj7C2drLVv1IRIzUxxYVFFbpnyzPoPUlj279fLu5lGpn8iIiKqHqMeabezs4Ofn59GmY2NDZycnNTl8+bNw7Jly9C2bVu0bdsWy5Ytg7W1NSZNmlQfVSYiarC+//cWlv59DQDgLrPEyXeG1DjL9rrDNwAAVuammDWw9QOurh2JRIKJvbyw+fQdrC17LgD0bPXgKdjtXe3wx6v9UCBXoI+Pk1YwaWIiwaYXHkGH9/epy1o5Nu2gHQCcbKXo6uWAsNgspFUzaC+fRm8tNeo/OYiIiIyWUY+0V8eCBQswb948zJ49Gz179kR8fDwOHDjAPdqJiKqgVArkFSvw4Z9XMWPzeRTIFcgvVmDl/ij1NQnZRfB59x+sOhAFUZbcrSqlSoHkHNWWXn+WTVd3sZcaZFS1fA/xynxb2FTrtV29HBDYunmV9bQ0N8U3k7sDUG0TNzpAe219U9TcVpU8rjxov3AnA39dToCi0iyLcjFp+TgSlQoAsK5iRgURERHdn0Q86K+xJiAnJwcymQzZ2dmwt9edaZiIqLH48M+r2HgyRn3sJrNEYtk+2q2crNHL21Fjj3UA+GZydzzmrztoffmn8zh4LRkbpvTEm9vDkFukwO+zA9HNAEnHfgm5g4W/X9EoW/qEH57r06qKV1BtvbPzMradi4W7zBIJlfZfX/9cdwT5uUEIgZX7o3DhTibO3s5Qn/9xWk8M6VB1vhkiIqKmprpxaIMfaScioupLyyvWCNgBqAN2ABjbxR1zh7bVet2sXy4iqdJ15TLz5TgQkQwhgJ/P3EFukWoqtE/z6o1219aT3Ty0yppxGzG9Kt8OL+Gen4e0ssz9x66n4puj0RoBO4AmncSPiIioNhi0ExEZkdyiEhQrSvVy7zO30tFz6aEqzy99wg+vD20LDwcr9NCxLvxUdJr6eyEEQu9motvHFYlAj19PVX9vqP3MrS2010mXT98m/ajq3zciMQdTfgjBi5vO6TxvoSMRIRERET0Ys8IQERmJgxHJmPm/C7C2MMX653qgX5vmAFSj2cv+uYbjN1IxLdAHLz3qozMT+4NM3HBGq6yvrxOScorweICbxpTy32b2RbFCidTcYqw5dAM7L8YhMikXRyJTcCstHx//FVHlc7p4ygyaJfzryd0x+5eL6uOe3o4Ge3ZT1NxOc8tUL0crxGYUYkvI3SpfM6O/D/doJyIiekgM2omIjIAQAm/vvIxSpUBukQKTvw+BpbkJ7C3NkZJbkaV7xb5IeDazwuNd3Kt974SsQly8m6lVviCoPWYPaqPzNRKJan90L0drdGvpgJ0X47Dh+C1sOH5L69r/jGyPQnkpUnOLkZZXjM8mdKl23erCKH83bJjSAz+fuYNVE7rAlNuK6VX59PhyDlYWiEWh1nUfjeuMD3ZfxUfjOmNqX28D1Y6IiKjxYdBORGQEdpyPQ0a+XKOsqESJohLtbbVi0vKrfd+8YgX6rQhG5ZSjO2f1hZ+H7IF7mZfr7K47Mcr0/j54f0ynatdFn0Z0dsWIzq71XY0moa2zrcaxg7XupRBT+3ozWCciIqoDDNqJiIzA3+GJOsudbCxQWFIKRxsLKJUCCdlFyCiQ67z2XmsOXceaQze0ypvbSqsdsANAgKcDrMxNUViiWmv/55z+sLU0Q0vuW94kOdlK8cpAX3x7TDXrovLMBjMTCd4Y3g4BnrL6qh4REVGjw6CdiKielSoFjpUlcVs1oQve2nEJAHBu4TC0sJNCqRSQSIDv/72NT/65ho0nY/DuYx1hYaZ7XbtcocT8HZew51KCzvMyHXub34+piQRH5g/C8M+PoYunA/w87CGRcAp6U9bF00H9faG8InHiSwN88epg3UsuiIiI6OEwaCciqkdKpcDzP55VH3dyt8dnTwdAIpGgRVnCr/Kkbq2cKka2D0QkYUyAO0TZvPfKQfTBiGSNgP3Jbh74PTQeANC6hU2Ng3YAcJVZInzJyBq/jhqnIR2c8XzfVmjlZIODEcnq8reDOtRjrYiIiBonBu1ERPXop9MxOHFTtZWalbkp2rvYoaOb7jXkQzu6qL+fsyUUc7aEqo+7t3TAjpmBMJEAm0/HAAD8POyx+9X+MDWRYOkTfvj5zB0MbNeCo+RUa5bmpvhwnB8AYHcVMzqIiIiobjBoJyLSk+jUPCRlF2HnxTi89KivRjBeVFKKH07c1sjGvmNm3/tulWZqIsH4bh7YVTZqXtnFu1lo/d4/GmWLH++sXm9sIzXDzIGta9skIi0BHjJcis2q72oQERE1WgzaiYj0YG94ImZV2jt818V4jOvqjqVP+EEAmLctDMGRKerzn473h5/Hg5N3LRrTSWfQfq/Xh7ZFL+5XTgbwn6D2aGZtXqNtCImIiKj6JEJU3gioacrJyYFMJkN2djbs7XVPSyUiepC8YgUOX0vG3G1hMDORQKGs3v9eWzlZY/+8AbA0r15G95/P3MH7f1wBAPw4rScORiRj54V4yEuVAIAB7Vpg07Re9x21JyIiIqL6Vd04lCPtREQPoVhRiinfn0VGgRy9vB3Ro1UzzC/L+g5AHbCvndgVIzq54r3fw9XJ4Mp1a+mATS88AhsLU5iZ6s4Er8szPb2QXSCHuakJBrRtgSEdXLB8fACUSoGo5Fx0cLXjunUiIiKiRoJBOxHRQ9gdloCzMRkAgJspedh69q7WNf3bNMeQDs6wsjDF6v/rApmVOSIScnA2JgMz+vtg0ZhOD/VsCzMTzBnSVqvcxERSZRI7IiIiImqYGLQTEVWTEAI7LsRh7aEbiM8q1DpvKzXDE93c4dPcFs/1aQmpWcV0d4lEgiVjOxuyukRERETUCDBoJyKqhhM30vDcDyFa5d9O6YEhHZyhFEIjSCciIiIiqgsM2omIHqBUKbDm0HWNsoWjOqJ/2+acjk5EREREesWgnYjoPtLzihG09l+k5hYDAPbPG4D2rnb1XCsiIiIiaiqqn66YiKgJWvZPpDpgH9S+BQN2IiIiIjIojrQ3EblFJUjNLYZvC1u9PudUdBpyChUY0K45rC3440UNV4FcgTlbQhEcmQIA+PgJPzzT06uea0VERERETQ1H2puIN34Nw5BVx3AoIrlW9/knPBFtF/6DgzrucygiGZO+C8HM/11Apw/249j1VAghanT/9Lxi9F1+GG9uD6tVPYlqa+fFeHXA7u8hw5Q+rWBhxv9lEhEREZFh8S/QJkBRqsSha6rgY8ZP55FXrHio+yTnFGH2LxdRUirw0k/n1eVKpcAfofGYUakMAJ7/8Sz8lxxAbEYBCuWl1XrGjJ/OIzG7CLsuxqunJBPVh+TsIvX3G6b2qMeaEBEREVFTxvnLjVxesQJ+i/drlPkt3o8FQe0xe1AbAMDWs3fhbCfF0I4u973Xe7vCNY6D1hzH2K7u+OtSIiISc6p8/qMrjwAAhnZwhqW5KYoVSphIgM+e7gKZtbn62qsJ2Qi9m6U+js8qRAs7abXbSlSXcopKAACvD2kDN5lVPdeGiIiIiJoqBu2NWHBkMmb/clHnuZX7onD2dgZm9PfFu2XBeCsna6z+vy4QAkjNLcasXy6ihZ0UqbnFaGZtjsyCEo17RCblInJflEbZjpl9UVRSClupGe5mFGDutjD1ucNlU43LHfjoAKzMTTGkgzNeGuCL9UejNc6ncaSd6oFSKRAam4XdYQkAAHsr8we8goiIiIhIfySipouOG6GcnBzIZDJkZ2fD3r5x7LksVyjR/eOD6qnwL/bzwWP+rjgYkYwNx2+przM3laCktG5+BPbOfVRrz+qsAjnmbgvDseupNb6fhakJji0YxFFOMgghBFLzirE1JBafV9qTfeVTAfi/XkxAR0RERER1q7pxKEfaG6lriTnqgP2PV/uhq5cDAKCXtyM6u9urR8BrGrCvndgVXwbfxI2UPHVZKydrjO/miQ46tsJysLbA5hcfKXuWEnfS85FVUILIpFws+uOKzmf8Z2R7fLY/CvJSJfouD8bZ94bC2d6yRvV8GNGpeVhz6AZG+7tiSAcXJh1rIrafj8X6Y9G4lZqvdc7cVIJO7o3jgzwiIiIiapgYtDdSoXczAaj2lS4P2MuN6+qBklKB+Tsuqcv+nNMfj395QuO632b2RUc3e+QVK7BibySa20nxeIA7+vo64fStdMiszJFdWIJxXT2qVSdzUxO0cVYF9j1aNYPUzAQ9vR0xccNpJOeopsJ/MKYTXuzvg/isQmwJuQsAeGTZYRx6cwBat7CFRCJ5qH+PBzlzKx0vbDyHwpJS/HkpAR4OVvj79f5wsLZATlEJrM1NYWbKIN6QSpUCV+KzoVAq0d7VHptPxcCzmVW1f97ulVtUgpspeWhuK8XNlDwMat8Cb+24hF0X47WudbGX4reZgZBZm8PektPjiYiIiKj+MGhvhA5fS8aKsrXm3bya6bxmcPsWkJqZoFihxF+v9YefhwwrnvLHjvNxmNDTE8/0aqm+1kZqhtXPdFUfO9tbPnTgVE4ikWBC2Z7Xluam6vJpgd4AgE+e8IONhSm++/c2AGDVgeuISs5FB1c7fD257jJ5X4rNwheHb2itt4/PKsS/N9JwMyUPaw/fAAA809MLBSWlCLmVDkcbC3w3tSe8HK3rrC5NkRBC5wcxSqXAyDXHcbPSjI5yo/zdYF6DD1Byi0qwLvgmfjhxG6XKqmeWPN+3FXr7OuExP1e9fThERERERFRTDNobkd8uxGFveKJGANqtpYPOa51spQj9YDhMTSSQmqmC5md6tdQI1g3lkyf88dwPIZgzuA1MTFTBkkQiwcLRnSCRSLDh+C3svZIEALiVmo+DEcmwtzRDb1+nKu9ZVTB4r4//isD5O5nqY9/mNvD3lGF3WAKuJuTgxxO31ed+PR+r/j4ltxhv7biE7a/0rXF7SeW747ew9vANDGjXHCM7u+LxAHd1/286FaMzYAeAqKRc+HnIqvWM0LuZePLrU/e9pr2LHfa81k/9PiAiIiIiMiZMRIfGkYguq0COrh8d1Cjr4GqHPXP6N4i12Zn5cjhYm2sF2teTczHi8+M6X3Nk/iD4NLfRKt948jaW743Ei/18MKKzC3yb28DB2kLnPfosO4ykHNV+3JbmJrj4/nD8eOI2/nvgus7r73XozYFo42xbrWtJU8f396GwpFSr3MbCFPlyVflofzesndgV+68m49UtFTsh/DitJ4Z00NyiUK5QQkCgpFTAVmqG1Nxi9PrkkPr8zIGtEeTnCicbC1xNyEHo3UzYW5njxX4+sLJgwE5EREREhsVEdE1MTHqBxvGu2YHwc5c1iIAdAJrZ6A6qW95n+vnflxMw41Ff3M0oQFtn1Xr3X0Lu4MM/IwAA649FY/0x1TZyk3q3xLIn/TVeH5tRoA7YAdVSAmsLM0zq3QrfHI1WB47+HjL8+Vp/yBVKtFu0V+Meaw/fwLpnu9W8wXqQXVACeyuzBjO129xUgsIS7fLyf3c7SzO881gHmJmaYHSAG1o6VuRdeHHTeSx5vBPkpUq82M8HsZmFGP3Fvygoe21QZ1cMbN9Cfc+xXdzxzmMd1MdejtYI8nPVY+uIiIiIiOoGg/ZGQKkUCL6WrD7++/X+6OxevenDxs7S3BQdXO0QmZSrde7Y9VRsCbmLhGxV4P3jtJ5Y+LvujPS/X4zHR2M7IzazEH9eSkBJqRIhtzPU5yUS4NneqqUBjjYW6OLlgFPR6QAqPjiwMDPB0fmDEJ2ah/1Xk7D9fBz+vJSAYR2da73G/2EIIfDzmTuIzSiAi70llv59DZN7t8Qn93w4UR8K5AqEx2VDQPXv5+6guW1fUUkpcopUuxssfcIP3/97S+ODp1mDWmPByPYaH0D4e8rw28y+eHr9aQDAkrIPZ45EpuL0rXSN+++7moR9V1VLKt4Y1g5zh7Wt8zYSERERERkCp8ej4U2P//NSAi7ezcSYADd0b9kMz288h+Nl+6D39nHEr41snXVsRgGSc4oQn1WIczEZGNnZFVN+OHvf17w8wFdjP3oA8HK0QmxGoda1rw5ujdmD2sBGWvEZ1pfBN9RT5C99MAIya80M4nGZBRjy32OQlyoBADc+eaxGydFq60ZyLoZXsWxg+yt98YiPo8HqUtnBiGR8cfgGwuOzNcrfGNYOrw9tg6sJOTgYkQx5qRLfHI2GrdQM4UtGQCKRQAiBYoVSIzGhLlN/PKv+eb/Xs494wdHGAl8diVaX6eo/IiIiIqL6Vt04lEE7GlbQnphdiL7Lg9XHf73WH2PWVWzV5tvcBsHzB9VDzQznfgFruZhPR6u/937n7yqv83CwwsE3B8DaQnPSiRACMekFcLaTagTzlR2/noqpP6o+PHiuT0uUKoGrCdmYO7QthnZ00fmauvLMt6c1ZgpU1tfXCVtf7qPX5+uyJeQu3vs9vEavae9ih/1vDKjRa/KKFZi7NVQr4//htwaidQtbCCGw/2oyDkQk4fEAdwzu4Fyj+xMRERERGQLXtDdCj64M1hopHn9PZux8ucKQVaoXDxo1vTej+5gAN/x1OVF97OFghV7ezdDS0Rov9vfRCtgBVfZ6XUnuKhvQroU6adr/ztxVl0/ffB63lo1SZ0KvC6m5xTh+PRU7L8bBRmqmFbCbmkjQ0tEat9PycfpWOtYcuo5Zg1obLCP6zgtxGgH78E4uGN7JBWO7uGPkmuO4c0/OhXLtXe1q/CxbqRl+mNYLBXIFHl93AtGp+QBUH1gBqr4L8nPlmnUiIiIiahQYtDcguqZ2l0/PLrf48c6Gqk69kVnpDtpfH9IGE3p6ae2d/vE4P4zyd8Owji4oVQqYmkjqLEHfE9088EvIXa3yUV/8iw1TeqKlU93s4/7urss4dC1FqzxqaRCEUK3JNzMxQdcPDyC3WIE1h27gSnwOvpvaQ++J6b46chOf7Y9SH4e+P1wjseCRtwZh+/lY/HDiNrq3bIbMAjkORKhyMPh5PPzMFmsLM/z12qNYsucqRgW4NZgEfERERERENdEwUosTACD4rYHq74M6a44ibnmpN0LeG4pR/m6GrpbBSc1MYVZpFPvT8f44+c4QvDmivVbADqgy04/yd4OFmQmsLEzrNKP+2C7uaG5rAXtLM43+iUzKxU+nYx76vkqlwNpDN/De7+EIi83SGbA/5ucKqZkpLM1NITUzhamJBOcWDcMof9XPxqFryVpry+taZr4cqw9WbI83c2BrrZ0ATEwkmPhISxx8cyBWPB2AAM+KJIn+Hg61er6VhSlWPB2Age1aPPhiIiIiIqIGiCPtDYhvC1tM7OWFi3cz8c5jHSA1N8HusAR4OVqhq5eDzmnejdWq/+uCudvCAADuDlbwuCc7uaH09nXC+UXD1cch7w3FjM3nER6fjRspeepyIQROR6dDIpGgb2unB9732PVUfH5IFQxvKRvJd5dZ4uQ7QyCRSFAgV8BKR8I2S3NTfD25B8Z9dRKXYrOQmF2EAE/dzzgSlYK76QUI8JShW8tmNWk2hBBIyC5CTFo+SpWqtBi/zeyLHq0efJ9nH2mJxOwiNLO2QO96SphHRERERNRQNJ0or5H49KkA9fdrJ3bD0if8YG1hBtM6XD/dEIz2d8O2s7GwMDNBb1/jCfxc7C3xweOdMGH9adxMUW0N52hjgUJ5qTpp3ftjOmF6f58q71FSqsTbOy9rlX/weGf1FPAHfUDjWLbuP6tArvP8mVvpeGHjOfXxwlEd8fmh63CytcD653rcd8vAy3FZeHHTOaTlVdy7i5cDenpXrx+cbKVGsS0dEREREVFDwKC9gbOzbJpbWZmZmtRLhvTqaNPCFgAQn1WIV36+AAAYWimD+cd/RWgF7UejUnD2dgbeHN4OcZmFSMktBqDaKi2zQI4X+/nUaH18M2vVFPXMghKd53eHJWgcf/LPNQBAQUYhRn9xAu881gEzB7bWuEYIgRM303Rut2fWxD40IiIiIiIyFAbtRHXs3jXdALS2J/N+52/4edjjq0nd4dnMGtPKRr2/Plqxv3jrFjaYO6xtreqQVhb8V5aSU4StZ1VT7heN7ojP9kehWKGZ0PDTvZH4dG8knn3ECwPbOeO3C3E4dC1Z45qne3jitwtxAABpHeYJICIiIiKiCgzaifTgER9HnK1iH/VyV+JzMPCzo+jlrXsdeBdPh4d+vnfZ9mffn7iNS3FZWDuxG8xMJfjzUiI+/isCAOBkY4Fpgd4Y2dkV+XIF2jnb4cLdTExYf1p9n61nY7H1bKzW/ZeP98ezj7TE0z088dGfEXh5gO9D15WIiIiIiKomEUKI+q5EVZYvX45du3YhMjISVlZWCAwMxIoVK9C+fXv1NUIIfPjhh9iwYQMyMzPRu3dvfPXVV+jcufpbn1V3U3ui6jp7OwNbQu5gQLsWcLKVYueFOCTnFGntr16V/03vjZ7ezWCpI9lcdZyPycDTlYJvXVZN6IKnemhnqTsUkYxvjkXjwp1MjXIPByu8P6YT9z8nIiIiIqoD1Y1DjTpoDwoKwsSJE9GrVy8oFAosXLgQ4eHhiIiIgI2NaiRxxYoV+OSTT7Bp0ya0a9cOS5cuxfHjxxEVFQU7O7tqPYdBOxlK3+WHkZhdpFXuLrPEu6M6wtlOCktzU3TxcqjVc5RKgYkbzuBsjO4PCXbOCnxgpvefTsfgg91XAQBfPNsNY7u416pORERERERUoVEE7fdKTU2Fs7Mzjh07hgEDBkAIAXd3d8ybNw9vv/02AKC4uBguLi5YsWIFXnnllWrdl0E7GcqFOxm4k16AJ7t5qDPBlyqFXrL/CyGQVVACeakSXx+5ic2n7wAAenk3w46ZgdW6x++hcYhIyMHbQR1gZsp160REREREdaW6cWiDWtOenZ0NAHB0VG0tdfv2bSQlJWHEiBHqa6RSKQYOHIhTp05VGbQXFxejuLgiQVdOTo4ea01UoUcrR/Ropbk1mr6265NIJOqEdO+P6QR5qUBOYQle7O9d7Xs82c0TT3bTS/WIiIiIiKgaGkzQLoTAm2++if79+8PPzw8AkJSUBABwcXHRuNbFxQV37typ8l7Lly/Hhx9+qL/KEhkZM1MTLB/PvdGJiIiIiBqaBjPfdc6cObh8+TK2bt2qda58mnE5IYRWWWXvvvsusrOz1V+xsdrZsYmIiIiIiIjqW4MYaX/ttdewZ88eHD9+HJ6eFdmuXV1VWayTkpLg5uamLk9JSdEafa9MKpVCKpXqr8JEREREREREdcCoR9qFEJgzZw527dqF4OBg+Pj4aJz38fGBq6srDh48qC6Ty+U4duwYAgOrl2iLiIiIiIiIyFgZ9Uj7q6++ii1btmD37t2ws7NTr2GXyWSwsrKCRCLBvHnzsGzZMrRt2xZt27bFsmXLYG1tjUmTJtVz7YmIiIiIiIhqx6iD9m+++QYAMGjQII3yjRs3Ytq0aQCABQsWoLCwELNnz0ZmZiZ69+6NAwcOVHuPdiIiIiIiIiJj1aD2adcX7tNOREREREREhlTdONSo17QTERERERERNWUM2omIiIiIiIiMFIN2IiIiIiIiIiPFoJ2IiIiIiIjISDFoJyIiIiIiIjJSDNqJiIiIiIiIjBSDdiIiIiIiIiIjxaCdiIiIiIiIyEgxaCciIiIiIiIyUgzaiYiIiIiIiIwUg3YiIiIiIiIiI8WgnYiIiIiIiMhImdV3BYyBEAIAkJOTU881ISIiIiIioqagPP4sj0erwqAdQG5uLgDAy8urnmtCRERERERETUlubi5kMlmV5yXiQWF9E6BUKpGQkAA7OztIJJL6rk6VcnJy4OXlhdjYWNjb29d3dagK7KeGgf1k/NhHDQP7qWFgPzUM7Cfjxz5qGBpKPwkhkJubC3d3d5iYVL1ynSPtAExMTODp6Vnf1ag2e3t7o/7hIxX2U8PAfjJ+7KOGgf3UMLCfGgb2k/FjHzUMDaGf7jfCXo6J6IiIiIiIiIiMFIN2IiIiIiIiIiPFoL0BkUqlWLx4MaRSaX1Xhe6D/dQwsJ+MH/uoYWA/NQzsp4aB/WT82EcNQ2PrJyaiIyIiIiIiIjJSHGknIiIiIiIiMlIM2omIiIiIiIiMFIN2IiIiIiIiIiPFoJ2IiIiIiIjISDFoN6Dly5ejV69esLOzg7OzM5544glERUVpXCOEwJIlS+Du7g4rKysMGjQIV69e1bhmw4YNGDRoEOzt7SGRSJCVlaX1LG9vb0gkEo2vd955R5/NazQM2U8A8Pfff6N3796wsrJC8+bNMX78eH01rVExVD8dPXpU671U/nXu3Dl9N7PBM+T76fr16xg3bhyaN28Oe3t79OvXD0eOHNFn8xoFQ/bRxYsXMXz4cDg4OMDJyQkvv/wy8vLy9Nm8RqMu+ikjIwOvvfYa2rdvD2tra7Rs2RKvv/46srOzNe6TmZmJKVOmQCaTQSaTYcqUKVX+DiNNhuynTz75BIGBgbC2toaDg4MhmtdoGKqfYmJiMH36dPj4+MDKygqtW7fG4sWLIZfLDdbWhsqQ76WxY8eiZcuWsLS0hJubG6ZMmYKEhASDtLO6GLQb0LFjx/Dqq6/izJkzOHjwIBQKBUaMGIH8/Hz1NStXrsTq1avx5Zdf4ty5c3B1dcXw4cORm5urvqagoABBQUF477337vu8jz76CImJieqvRYsW6a1tjYkh+2nnzp2YMmUKXnjhBVy6dAknT57EpEmT9Nq+xsJQ/RQYGKjxPkpMTMSMGTPg7e2Nnj176r2dDZ0h30+jR4+GQqFAcHAwLly4gK5du2LMmDFISkrSaxsbOkP1UUJCAoYNG4Y2bdogJCQE+/btw9WrVzFt2jR9N7FRqIt+SkhIQEJCAv773/8iPDwcmzZtwr59+zB9+nSNZ02aNAlhYWHYt28f9u3bh7CwMEyZMsWg7W2oDNlPcrkcEyZMwKxZswzaxsbAUP0UGRkJpVKJb7/9FlevXsXnn3+O9evXP/BveDLse2nw4MHYvn07oqKisHPnTkRHR+Ppp582aHsfSFC9SUlJEQDEsWPHhBBCKJVK4erqKj799FP1NUVFRUImk4n169drvf7IkSMCgMjMzNQ616pVK/H555/rq+pNir76qaSkRHh4eIjvv/9er/VvKvT5fqpMLpcLZ2dn8dFHH9Vp/ZsKffVTamqqACCOHz+uLsvJyREAxKFDh/TTmEZKX3307bffCmdnZ1FaWqouCw0NFQDEjRs39NOYRqy2/VRu+/btwsLCQpSUlAghhIiIiBAAxJkzZ9TXnD59WgAQkZGRempN46Wvfqps48aNQiaT1XndmxJD9FO5lStXCh8fn7qrfBNhyD7avXu3kEgkQi6X110Daokj7fWofGqGo6MjAOD27dtISkrCiBEj1NdIpVIMHDgQp06dqvH9V6xYAScnJ3Tt2hWffPIJp+I8JH3108WLFxEfHw8TExN069YNbm5ueOyxx7SmnFL16Pv9VG7Pnj1IS0vj6OBD0lc/OTk5oWPHjvjpp5+Qn58PhUKBb7/9Fi4uLujRo0fdNqKR01cfFRcXw8LCAiYmFX96WFlZAQBOnDhRF1VvUuqqn7Kzs2Fvbw8zMzMAwOnTpyGTydC7d2/1NX369IFMJqvV/zubKn31E9UtQ/ZTdna2+jlUfYbqo4yMDPzyyy8IDAyEubl5Hbagdhi01xMhBN588030798ffn5+AKCewuni4qJxrYuLS42nd86dOxfbtm3DkSNHMGfOHKxZswazZ8+um8o3Ifrsp1u3bgEAlixZgkWLFuGvv/5Cs2bNMHDgQGRkZNRRC5oGfb+fKvvhhx8wcuRIeHl5PXyFmyh99pNEIsHBgwcRGhoKOzs7WFpa4vPPP8e+ffu41rMG9NlHQ4YMQVJSEj777DPI5XJkZmaqp4gmJibWUQuahrrqp/T0dHz88cd45ZVX1GVJSUlwdnbWutbZ2ZlLTWpIn/1EdceQ/RQdHY1169Zh5syZdVT7psEQffT222/DxsYGTk5OuHv3Lnbv3l3HragdBu31ZM6cObh8+TK2bt2qdU4ikWgcCyG0yh7kjTfewMCBAxEQEIAZM2Zg/fr1+OGHH5Cenl6rejc1+uwnpVIJAFi4cCGeeuop9OjRAxs3boREIsGOHTtqV/EmRt/vp3JxcXHYv3+/1looqh599pMQArNnz4azszP+/fdfnD17FuPGjcOYMWMYENaAPvuoc+fO2Lx5M1atWgVra2u4urrC19cXLi4uMDU1rXXdm5K66KecnByMHj0anTp1wuLFi+97j/vdh6qm736iumGofkpISEBQUBAmTJiAGTNm1E3lmwhD9NF//vMfhIaG4sCBAzA1NcXUqVMhhKi7RtQSg/Z68Nprr2HPnj04cuQIPD091eWurq4AoPXpUEpKitanSDXVp08fAMDNmzdrdZ+mRN/95ObmBgDo1KmTukwqlcLX1xd3796tTdWbFEO+nzZu3AgnJyeMHTv24SvcROm7n4KDg/HXX39h27Zt6NevH7p3746vv/4aVlZW2Lx5c900opEzxHtp0qRJSEpKQnx8PNLT07FkyRKkpqbCx8en9g1oIuqin3JzcxEUFARbW1v8/vvvGlNAXV1dkZycrPXc1NTUWv8t0pTou5+obhiqnxISEjB48GD07dsXGzZs0ENLGi9D9VHz5s3Rrl07DB8+HNu2bcM///yDM2fO6KFFD4dBuwEJITBnzhzs2rULwcHBWn+k+Pj4wNXVFQcPHlSXyeVyHDt2DIGBgbV6dmhoKICKQJGqZqh+6tGjB6RSqcb2FSUlJYiJiUGrVq1q35BGztDvJyEENm7ciKlTp/IPpxowVD8VFBQAgMZ66fLj8lktpFt9/G5ycXGBra0tfv31V1haWmL48OG1akNTUFf9lJOTgxEjRsDCwgJ79uyBpaWlxn369u2L7OxsnD17Vl0WEhKC7OzsWv8t0hQYqp+odgzZT/Hx8Rg0aBC6d++OjRs3av2eIt3q871UPsJeXFxcR62pA/rPdUflZs2aJWQymTh69KhITExUfxUUFKiv+fTTT4VMJhO7du0S4eHh4tlnnxVubm4iJydHfU1iYqIIDQ0V3333nTpbcmhoqEhPTxdCCHHq1CmxevVqERoaKm7duiV+/fVX4e7uLsaOHWvwNjdEhuonIYSYO3eu8PDwEPv37xeRkZFi+vTpwtnZWWRkZBi0zQ2RIftJCCEOHTokAIiIiAiDtbExMFQ/paamCicnJzF+/HgRFhYmoqKixPz584W5ubkICwszeLsbEkO+l9atWycuXLggoqKixJdffimsrKzE2rVrDdrehqou+iknJ0f07t1b+Pv7i5s3b2rcR6FQqO8TFBQkAgICxOnTp8Xp06eFv7+/GDNmjMHb3BAZsp/u3LkjQkNDxYcffihsbW1FaGioCA0NFbm5uQZvd0NjqH6Kj48Xbdq0EUOGDBFxcXEa19D9GaqPQkJCxLp160RoaKiIiYkRwcHBon///qJ169aiqKioXtquC4N2AwKg82vjxo3qa5RKpVi8eLFwdXUVUqlUDBgwQISHh2vcZ/Hixfe9z4ULF0Tv3r2FTCYTlpaWon379mLx4sUiPz/fgK1tuAzVT0Kotg976623hLOzs7CzsxPDhg0TV65cMVBLGzZD9pMQQjz77LMiMDDQAC1rXAzZT+fOnRMjRowQjo6Ows7OTvTp00f8888/Bmppw2XIPpoyZYpwdHQUFhYWIiAgQPz0008GamXDVxf9VL4dn66v27dvq69LT08XkydPFnZ2dsLOzk5Mnjz5gdthkooh++n555/Xec2RI0cM1+AGylD9tHHjxiqvofszVB9dvnxZDB48WDg6OgqpVCq8vb3FzJkzRVxcnIFbfH8SIYxohT0RERERERERqXFRBREREREREZGRYtBOREREREREZKQYtBMREREREREZKQbtREREREREREaKQTsRERERERGRkWLQTkRERERERGSkGLQTERERERERGSkG7URERERERERGikE7ERERERERkZFi0E5ERESYNm0aJBIJJBIJzM3N4eLiguHDh+PHH3+EUqms9n02bdoEBwcH/VWUiIioiWHQTkRERACAoKAgJCYmIiYmBnv37sXgwYMxd+5cjBkzBgqFor6rR0RE1CQxaCciIiIAgFQqhaurKzw8PNC9e3e899572L17N/bu3YtNmzYBAFavXg1/f3/Y2NjAy8sLs2fPRl5eHgDg6NGjeOGFF5Cdna0etV+yZAkAQC6XY8GCBfDw8ICNjQ169+6No0eP1k9DiYiIGhAG7URERFSlIUOGoEuXLti1axcAwMTEBF988QWuXLmCzZs3Izg4GAsWLAAABAYGYs2aNbC3t0diYiISExMxf/58AMALL7yAkydPYtu2bbh8+TImTJiAoKAg3Lhxo97aRkRE1BBIhBCivitBRERE9WvatGnIysrCH3/8oXVu4sSJuHz5MiIiIrTO7dixA7NmzUJaWhoA1Zr2efPmISsrS31NdHQ02rZti7i4OLi7u6vLhw0bhkceeQTLli2r8/YQERE1Fmb1XQEiIiIybkIISCQSAMCRI0ewbNkyREREICcnBwqFAkVFRcjPz4eNjY3O11+8eBFCCLRr106jvLi4GE5OTnqvPxERUUPGoJ2IiIju69q1a/Dx8cGdO3cwatQozJw5Ex9//DEcHR1x4sQJTJ8+HSUlJVW+XqlUwtTUFBcuXICpqanGOVtbW31Xn4iIqEFj0E5ERERVCg4ORnh4ON544w2cP38eCoUCq1atgomJKi3O9u3bNa63sLBAaWmpRlm3bt1QWlqKlJQUPProowarOxERUWPAoJ2IiIgAqKarJyUlobS0FMnJydi3bx+WL1+OMWPGYOrUqQgPD4dCocC6devw+OOP4+TJk1i/fr3GPby9vZGXl4fDhw+jS5cusLa2Rrt27TB58mRMnToVq1atQrdu3ZCWlobg4GD4+/tj1KhR9dRiIiIi48fs8URERAQA2LdvH9zc3ODt7Y2goCAcOXIEX3zxBXbv3g1TU1N07doVq1evxooVK+Dn54dffvkFy5cv17hHYGAgZs6ciWeeeQYtWrTAypUrAQAbN27E1KlT8dZbb6F9+/YYO3YsQkJC4OXlVR9NJSIiajCYPZ6IiIiIiIjISHGknYiIiIiIiMhIMWgnIiIiIiIiMlIM2omIiIiIiIiMFIN2IiIiIiIiIiPFoJ2IiIiIiIjISDFoJyIiIiIiIjJSDNqJiIiIiIiIjBSDdiIiIiIiIiIjxaCdiIiIiIiIyEgxaCciIiIiIiIyUgzaiYiIiIiIiIzU/wPyYMu9VGgmtAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from statsmodels.tsa.arima.model import ARIMA\n", "\n", "df = pd.read_csv(\"AAPL_stock_data.csv\", parse_dates=['Date'], index_col='Date')\n", "\n", "df.columns = ['Close']\n", "\n", "df['Close'] = pd.to_numeric(df['Close'], errors='coerce')\n", "df = df.dropna(subset=['Close'])\n", "\n", "df = df.resample('D').ffill()\n", "\n", "train = df['Close'][:-200]\n", "test = df['Close'][-200:]\n", "\n", "model = ARIMA(train, order=(5,1,0))\n", "model_fit = model.fit()\n", "\n", "forecast = model_fit.forecast(steps=len(test))\n", "\n", "plt.figure(figsize=(12,6))\n", "plt.plot(train.index, train, label='Train')\n", "plt.plot(test.index, test, label='Test')\n", "plt.plot(test.index, forecast, label='ARIMA Forecast')\n", "plt.title(\"Apple Stock Price ARIMA Forecast\")\n", "plt.xlabel(\"Date\")\n", "plt.ylabel(\"Closing Price\")\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "6cmWlsw9JuLP", "outputId": "deaf96c5-a5ff-4985-d28e-6ff7e28b3d27" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: tensorflow in c:\\users\\hp\\anaconda3\\lib\\site-packages (2.20.0)\n", "Requirement already satisfied: absl-py>=1.0.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (2.3.1)\n", "Requirement already satisfied: astunparse>=1.6.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (1.6.3)\n", "Requirement already satisfied: flatbuffers>=24.3.25 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (25.9.23)\n", "Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (0.6.0)\n", "Requirement already satisfied: google_pasta>=0.1.1 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (0.2.0)\n", "Requirement already satisfied: libclang>=13.0.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (18.1.1)\n", "Requirement already satisfied: opt_einsum>=2.3.2 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (3.4.0)\n", "Requirement already satisfied: packaging in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (23.2)\n", "Requirement already satisfied: protobuf>=5.28.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (6.32.1)\n", "Requirement already satisfied: requests<3,>=2.21.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (2.32.2)\n", "Requirement already satisfied: setuptools in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (69.5.1)\n", "Requirement already satisfied: six>=1.12.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (1.16.0)\n", "Requirement already satisfied: termcolor>=1.1.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (3.1.0)\n", "Requirement already satisfied: typing_extensions>=3.6.6 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (4.15.0)\n", "Requirement already satisfied: wrapt>=1.11.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (1.14.1)\n", "Requirement already satisfied: grpcio<2.0,>=1.24.3 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (1.75.1)\n", "Requirement already satisfied: tensorboard~=2.20.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (2.20.0)\n", "Requirement already satisfied: keras>=3.10.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (3.11.3)\n", "Requirement already satisfied: numpy>=1.26.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (1.26.4)\n", "Requirement already satisfied: h5py>=3.11.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (3.11.0)\n", "Requirement already satisfied: ml_dtypes<1.0.0,>=0.5.1 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorflow) (0.5.3)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow) (2.0.4)\n", "Requirement already satisfied: idna<4,>=2.5 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow) (3.7)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow) (2.2.2)\n", "Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow) (2025.1.31)\n", "Requirement already satisfied: markdown>=2.6.8 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorboard~=2.20.0->tensorflow) (3.4.1)\n", "Requirement already satisfied: pillow in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorboard~=2.20.0->tensorflow) (10.3.0)\n", "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorboard~=2.20.0->tensorflow) (0.7.2)\n", "Requirement already satisfied: werkzeug>=1.0.1 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tensorboard~=2.20.0->tensorflow) (3.0.3)\n", "Requirement already satisfied: wheel<1.0,>=0.23.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from astunparse>=1.6.0->tensorflow) (0.43.0)\n", "Requirement already satisfied: rich in c:\\users\\hp\\anaconda3\\lib\\site-packages (from keras>=3.10.0->tensorflow) (13.3.5)\n", "Requirement already satisfied: namex in c:\\users\\hp\\anaconda3\\lib\\site-packages (from keras>=3.10.0->tensorflow) (0.1.0)\n", "Requirement already satisfied: optree in c:\\users\\hp\\anaconda3\\lib\\site-packages (from keras>=3.10.0->tensorflow) (0.17.0)\n", "Requirement already satisfied: MarkupSafe>=2.1.1 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from werkzeug>=1.0.1->tensorboard~=2.20.0->tensorflow) (2.1.3)\n", "Requirement already satisfied: markdown-it-py<3.0.0,>=2.2.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from rich->keras>=3.10.0->tensorflow) (2.2.0)\n", "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from rich->keras>=3.10.0->tensorflow) (2.15.1)\n", "Requirement already satisfied: mdurl~=0.1 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from markdown-it-py<3.0.0,>=2.2.0->rich->keras>=3.10.0->tensorflow) (0.1.0)\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ "pip install tensorflow" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "BxOrU-i6J0z4", "outputId": "b91c6e1b-3985-4369-9de0-6868ec873464" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Hp\\anaconda3\\Lib\\site-packages\\keras\\src\\layers\\rnn\\rnn.py:199: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", " super().__init__(**kwargs)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m65/65\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 82ms/step - loss: 0.0015 - val_loss: 0.0011\n", "Epoch 2/10\n", "\u001b[1m65/65\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 66ms/step - loss: 1.8116e-04 - val_loss: 0.0019\n", "Epoch 3/10\n", "\u001b[1m65/65\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 64ms/step - loss: 1.7415e-04 - val_loss: 8.5264e-04\n", "Epoch 4/10\n", "\u001b[1m65/65\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 65ms/step - loss: 1.6070e-04 - val_loss: 5.4485e-04\n", "Epoch 5/10\n", "\u001b[1m65/65\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 65ms/step - loss: 1.4658e-04 - val_loss: 7.1092e-04\n", "Epoch 6/10\n", "\u001b[1m65/65\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 61ms/step - loss: 1.4025e-04 - val_loss: 4.8825e-04\n", "Epoch 7/10\n", "\u001b[1m65/65\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 62ms/step - loss: 1.4351e-04 - val_loss: 7.8612e-04\n", "Epoch 8/10\n", "\u001b[1m65/65\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 63ms/step - loss: 1.4281e-04 - val_loss: 6.4968e-04\n", "Epoch 9/10\n", "\u001b[1m65/65\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 63ms/step - loss: 1.2673e-04 - val_loss: 8.1355e-04\n", "Epoch 10/10\n", "\u001b[1m65/65\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 64ms/step - loss: 1.2513e-04 - val_loss: 4.4610e-04\n", "\u001b[1m18/18\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 49ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 90ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 85ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 79ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 76ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 78ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 74ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 84ms/step\n", "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 89ms/step\n", "Next 10 day predictions:\n", "[126.52473 126.033485 125.57244 125.13565 124.71895 124.31937\n", " 123.93481 123.563545 123.20446 122.85652 ]\n" ] } ], "source": [ "import numpy as np\n", "from sklearn.preprocessing import MinMaxScaler\n", "import tensorflow as tf\n", "from tensorflow.keras import Sequential\n", "from tensorflow.keras.layers import LSTM, Dense\n", "\n", "scaler = MinMaxScaler()\n", "scaled = scaler.fit_transform(df[['Close']])\n", "\n", "def create_sequences(df, seq_len=60):\n", " X, y = [], []\n", " for i in range(len(df)-seq_len):\n", " X.append(df[i:i+seq_len])\n", " y.append(df[i+seq_len])\n", " return np.array(X), np.array(y)\n", "\n", "seq_len = 60\n", "X, y = create_sequences(scaled, seq_len)\n", "\n", "split = int(0.8 * len(X))\n", "X_train, X_test = X[:split], X[split:]\n", "y_train, y_test = y[:split], y[split:]\n", "\n", "model = Sequential([\n", " LSTM(50, return_sequences=True, input_shape=(seq_len,1)),\n", " LSTM(50),\n", " Dense(1)\n", "])\n", "model.compile(optimizer='adam', loss='mse')\n", "model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.1)\n", "\n", "pred = model.predict(X_test)\n", "pred = scaler.inverse_transform(pred)\n", "\n", "n_future = 10 \n", "future_preds = []\n", "\n", "last_seq = X_test[-1] \n", "current_seq = last_seq\n", "\n", "for _ in range(n_future):\n", " next_pred = model.predict(current_seq.reshape(1, seq_len, 1))[0]\n", " future_preds.append(next_pred)\n", " current_seq = np.vstack([current_seq[1:], next_pred])\n", "\n", "future_preds = scaler.inverse_transform(np.array(future_preds))\n", "\n", "print(\"Next\", n_future, \"day predictions:\")\n", "print(future_preds.flatten())\n" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT9frA8U92924pZZUNIksQBVFAVATEfUHBgXteB+p1i3rx53XPi3qvCO553VsUBAVEpiAgs8yWlpbuNs04vz9OzmnSpm2SppPn/Xr1lfTkjG9ykrR58jzP16AoioIQQgghhBBCCCGEEM3I2NIDEEIIIYQQQgghhBBHHglKCSGEEEIIIYQQQohmJ0EpIYQQQgghhBBCCNHsJCglhBBCCCGEEEIIIZqdBKWEEEIIIYQQQgghRLOToJQQQgghhBBCCCGEaHYSlBJCCCGEEEIIIYQQzU6CUkIIIYQQQgghhBCi2UlQSgghhBBCCCGEEEI0OwlKCSGECMqCBQswGAysWrWq3vX27t3L9ddfT58+fYiMjCQpKYmBAwdy1VVXsXfvXrKysjAYDAH9ZGVlsXjxYv33BQsW+D3mySefjMFgIDMzM+D788UXXzBlyhQ6dOiA1WolKSmJ8ePH8/bbb+NwOPT1DAYDDz74YMD7bU6ZmZk+j1dMTAzHHXccb7zxRkDba+eirse1ucycOTOg58PMmTPDcrx33nmHZ599NuD1x44d6zOOyMhIBg8ezLPPPovb7Q7LmOqjvQYWL16sL5s5c2ZQz3fN3Llz/Z7v1vJcaGmBPg7e70s1f84///ygjnngwAEefPBB1q1bF/rAm1Bd9zMlJaWlh9bkWvu5EUKItszc0gMQQgjR/uzbt49jjjmGhIQEbrvtNvr27UtRURGbNm3igw8+YOfOnRx//PEsX77cZ7vrr7+eoqIi3n77bZ/lHTt2JCsrC4DY2FjmzZtXKzCxa9cuFi9eTFxcXEBjVBSFyy+/nAULFjBp0iSefvppunTpQlFREYsWLeL666/n0KFD3HzzzSE/Ds3phBNO4MknnwTUx//JJ5/k0ksvpaysjOuuu67ebTt27Mjy5cvp2bNncwy1Tvfffz/XXnut/vuaNWu44YYb+L//+z/GjRunL09NTQ3L8d555x02btzILbfcEvA2PXr00J+fubm5vPzyy9x6661kZ2fz2GOPhWVcwbj//vtDeo7OnTuXlJSUWq+j1vJcaGtqPkcBkpOTg9rHgQMHeOihh8jMzGTIkCFhHF34nH/++dx2220+yywWSwuNpvm0hXMjhBBtlQSlhBBChN1///tfDh06xMqVK+nevbu+/Oyzz+aee+7B7XZjNBo5/vjjfbaLi4ujqqqq1nJv06ZN49VXX2Xbtm307t1bX/7aa6/RqVMnBg4cyKZNmxoc4xNPPMGCBQt46KGHeOCBB3xumzJlCv/4xz/Yvn17oHe5xSUkJPg8bqeccgrdunXj6aefrjMo5XK5cDqd2Gy2eh/z5tKzZ0+fYEhlZSUAvXv3bhXjA4iMjPQZy8SJE+nXrx8vvvgic+bM8fsBXVEUKisriYyMDPt4wh08ai3PhbamNT1Ha/J+nTdWhw4dmuR+hnOMQggh2hYp3xNCCBF2+fn5GI1G0tLS/N5uNIb+5+fUU0+lS5cuvPbaa/oyt9vN66+/zqWXXhrQvh0OB4899hj9+vXj/vvv97tOeno6o0ePrnc/Gzdu5KyzziIxMZGIiAiGDBnC66+/7rOO2+1mzpw59O3bl8jISBISEhg0aBDPPfecz3rbtm1j+vTppKWlYbPZ6N+/P//+978bvC91SUhIoG/fvuzevRuoLkd6/PHHmTNnDt27d8dms7Fo0aI6S5W2bNnChRdeSIcOHbDZbHTt2pVLLrkEu92ur5OTk8M111xD586dsVqtdO/enYceegin0xny2BuycOFCxo8fT1xcHFFRUZxwwgn8+OOPPuvk5eVx9dVX06VLF2w2G6mpqZxwwgksXLgQUEvxvvrqK3bv3u1TihQsi8XCsGHDKC8vJy8vD1DLnG688UZefvll+vfvj81m058XgZ7nLVu2cPrppxMVFUVKSgrXXnstJSUltdbzV77ndrt54YUXGDJkiP6cO/744/n8888Btdzzzz//5Oeff9bvt7aPup4Lv/zyC+PHjyc2NpaoqChGjRrFV1995bOOVtq7aNEirrvuOlJSUkhOTubcc8/lwIEDPuv+9NNPjB07luTkZCIjI+natSvnnXce5eXl9T7e77//PqeddhodO3YkMjKS/v37c9ddd1FWVlbrcYmJiWH79u1MmjSJmJgYunTpwm233ebz/AU1C2bq1KnExsYSHx/PtGnTyMnJqXccwcjMzPRbcjp27FjGjh0LqGWAxx57LACXXXaZfl60kmHvdWveT+/zX9/rHGDVqlWceeaZJCUlERERwdChQ/nggw/Cdl/37NnDRRdd5PP8fuqpp3zKW8M1xv379+uvcavVSkZGBueffz4HDx4E1KD2bbfdxpAhQ4iPjycpKYmRI0fy2Wef1drXhx9+yHHHHUd8fDxRUVH06NGDyy+/HGj43AghhGgcyZQSQggRdiNHjuTf//435557LrNmzWLkyJEBl9U1xGg0MnPmTObNm8ecOXMwmUx8//337Nu3j8suuyygUqZVq1ZRUFDAVVddFVIgAuCvv/5i1KhRpKWl8fzzz5OcnMxbb73FzJkzOXjwIP/4xz8AePzxx3nwwQe57777OOmkk3A4HGzZsoXCwkJ9X5s2bWLUqFF07dqVp556ivT0dL777jtuuukmDh06xOzZs4Men8PhYPfu3bVK3Z5//nn69OnDk08+SVxcnE+2mbf169czevRoUlJSePjhh+nduzfZ2dl8/vnnVFVVYbPZyMnJYcSIERiNRh544AF69uzJ8uXLmTNnDllZWcyfP1/f38yZM3n99dfZtWtXSD2QNG+99RaXXHIJZ511Fq+//joWi4VXXnmFCRMm8N133zF+/HgALr74YtasWcMjjzxCnz59KCwsZM2aNeTn5wNq+drVV1/Njh07+OSTT0IeD8COHTswm80kJibqyz799FOWLl3KAw88QHp6OmlpaQGf54MHDzJmzBgsFgtz586lQ4cOvP3229x4440BjWfmzJm89dZbXHHFFTz88MNYrVbWrFmjl8B+8sknnH/++cTHxzN37lyAejNUfv75Z0499VQGDRrEvHnzsNlszJ07lylTpvDuu+8ybdo0n/WvvPJKJk+ezDvvvMPevXu54447uOiii/jpp58ANSgxefJkTjzxRF577TUSEhLYv38/3377LVVVVURFRdU5lm3btjFp0iRuueUWoqOj2bJlC4899hgrV67U969xOByceeaZXHHFFdx2220sWbKEf/7zn8THx+vZkRUVFZxyyikcOHCARx99lD59+vDVV1/Vuk8NcbvdtQKxZnPg/2Yfc8wxzJ8/n8suu4z77ruPyZMnA9C5c+egxqHx9zpftGgRp59+Oscddxwvv/wy8fHxvPfee0ybNo3y8vKAerUpilLrfppMJgwGA3l5eYwaNYqqqir++c9/kpmZyZdffsntt9/Ojh079OdaOMa4f/9+jj32WBwOB/fccw+DBg0iPz+f7777jsOHD9OhQwfsdjsFBQXcfvvtdOrUiaqqKhYuXMi5557L/PnzueSSSwBYvnw506ZNY9q0aTz44INERESwe/du/fkU7nMjhBCiBkUIIYQIwvz58xVA+f333+tcx+12K9dcc41iNBoVQDEYDEr//v2VW2+9Vdm1a1ed240ZM0YZMGCA39sWLVqkAMqHH36o7Ny5UzEYDMqXX36pKIqi/O1vf1PGjh2rKIqiTJ48WenWrVu99+G9995TAOXll1+u/856AZTZs2frv19wwQWKzWZT9uzZ47PexIkTlaioKKWwsFBRFEU544wzlCFDhtS77wkTJiidO3dWioqKfJbfeOONSkREhFJQUFDv9t26dVMmTZqkOBwOxeFwKLt27VIuvfRSBVDuuOMORVEUZdeuXQqg9OzZU6mqqvLZXrtt/vz5+rKTTz5ZSUhIUHJzc+s87jXXXKPExMQou3fv9ln+5JNPKoDy559/6ssuv/xyxWQyKVlZWfXeF2/e51xRFKWsrExJSkpSpkyZ4rOey+VSBg8erIwYMUJfFhMTo9xyyy317j+Q54o37fmpPc4HDhxQ7rrrLgVQ/va3v+nrAUp8fHyt8xboeb7zzjsVg8GgrFu3zme9U089VQGURYsW6csuvfRSn/uwZMkSBVDuvffeeu/LgAEDlDFjxtRa7u+5cPzxxytpaWlKSUmJvszpdCpHH3200rlzZ8XtdiuKUv3ecP311/vs8/HHH1cAJTs7W1EURfnoo48UoNb9C5bb7VYcDofy888/K4Cyfv16/Tbt+f/BBx/4bDNp0iSlb9+++u8vvfSSAiifffaZz3pXXXVVrcfBH+056u9n27ZtiqKor89LL7201rZjxozxOQe///57ncesua73/fQ+//W9zvv166cMHTpUcTgcPsvPOOMMpWPHjorL5ar3vtZ1P//73/8qiqLor4XffvvNZ7vrrrtOMRgMyl9//RW2MV5++eWKxWJRNm3aVO+YvTmdTsXhcChXXHGFMnToUH259n6lvWf7U9+5EUII0ThSvieEECLsDAYDL7/8Mjt37mTu3LlcdtllOBwOnnnmGQYMGMDPP//cqP13796dsWPH8tprr5Gfn89nn32ml1o0l59++onx48fTpUsXn+UzZ86kvLxcb+I+YsQI1q9fz/XXX893331HcXGxz/qVlZX8+OOPnHPOOURFReF0OvWfSZMmUVlZyYoVKxocz9dff43FYsFisdC9e3c++OAD/v73vzNnzhyf9c4888wGGxOXl5fz888/M3Xq1Hqbin/55ZeMGzeOjIwMn3FPnDgRwOc8z5s3D6fTSbdu3Rq8L3VZtmwZBQUFXHrppT7Hc7vdnH766fz+++96GdeIESNYsGABc+bMYcWKFT4zKTbGn3/+qT/OGRkZPPXUU8yYMYP//ve/PuudfPLJPplTwZznRYsWMWDAAAYPHuyzz+nTpzc4vm+++QaAG264obF3FYCysjJ+++03zj//fGJiYvTlJpOJiy++mH379vHXX3/5bHPmmWf6/D5o0CAAvZR0yJAhWK1Wrr76al5//XV27twZ8Hh27tzJ9OnTSU9Px2QyYbFYGDNmDACbN2/2WddgMDBlypRaY9HGAepjHRsbW2vMgTzW3h577DF+//13n5+a7w3NqebrfPv27WzZsoUZM2YA1Hr+ZWdn1zqP/kydOrXW/Tz77LMB9T3xqKOOYsSIET7bzJw5E0VRamWyNWaM33zzDePGjaN///71jvfDDz/khBNOICYmBrPZjMViYd68eT7PFa00b+rUqXzwwQfs37+/wcdBCCFE+Ej5nhBCiCbTrVs3nybbH3zwARdeeCF33HEHK1eubNS+r7jiCi677DKefvppIiMjg5p+vWvXroA6Y1+o8vPz6dixY63lGRkZ+u0Ad999N9HR0bz11lu8/PLLmEwmTjrpJB577DGGDx9Ofn4+TqeTF154gRdeeMHvsQ4dOtTgeEaPHs0zzzyDwWAgKiqKnj17YrVaa63nb8w1HT58GJfL1WB5ysGDB/niiy/qDHIFMu5gaL1i6jvXBQUFREdH8/777zNnzhxeffVV7r//fmJiYjjnnHN4/PHHSU9PD3kMPXv25L333sNgMBAREUH37t39lpvVfJyDOc/5+fk+EwRoAhl3Xl4eJpOpUffR2+HDh1EUJaDnuqbmrHNaaWBFRQWgPoYLFy7k8ccf54YbbqCsrIwePXpw00031Vt+W1payoknnkhERARz5syhT58+REVFsXfvXs4991x9/5qoqCgiIiJqjUVroK+NvUOHDrWOFezj16NHD4YPHx7UNk2p5vnSXju33347t99+u99tAnm9pqam1nk/8/Pz/Zbm1vU8acwY8/LyGnx/+vjjj5k6dSp/+9vfuOOOO0hPT8dsNvPSSy/59CQ86aST+PTTT3n++ef1nnkDBgzg3nvv5cILL6z3GEIIIRpPglJCCCGazdSpU3n00UfZuHFjo/d17rnncsMNN/Cvf/2Lq666KqiZzYYPH05SUhKfffYZjz76aEh9pZKTk8nOzq61XGvonJKSAqh9ZWbNmsWsWbMoLCxk4cKF3HPPPUyYMIG9e/eSmJioZ53Uld3iL0BRU3x8fEAfigO5r0lJSZhMJvbt21fveikpKQwaNIhHHnnE7+3ah9Fw0R7TF154oc4ZwLQAQ0pKCs8++yzPPvsse/bs4fPPP+euu+4iNzeXb7/9NuQxREREhPQ4B3Oek5OT/TbaDqT5dmpqKi6Xi5ycnIACkA1JTEzEaDQG9FwPxoknnsiJJ56Iy+Vi1apVvPDCC9xyyy106NCBCy64wO82P/30EwcOHGDx4sV6dhTg058tWMnJyX4D5OFsdB4REVGruTqoAZZAH7uIiAiKior87sOfms8/7Th333035557rt9t+vbtG9BY6hLoe2I4xpiamtrg+9Nbb71F9+7def/9932O5e9cnHXWWZx11lnY7XZWrFjBo48+yvTp08nMzGTkyJH1HkcIIUTjSPmeEEKIsPP3wQTUTIe9e/eGJVgRGRnJAw88wJQpU3yysQJhsVi488472bJlC//85z/9rpObm8uvv/5a5z7Gjx+vf0j29sYbbxAVFeU3aJKQkMD555/PDTfcQEFBAVlZWURFRTFu3DjWrl3LoEGDGD58eK2fmpknTS0yMpIxY8bw4Ycf1ps9ccYZZ7Bx40Z69uzpd9zhDkqdcMIJJCQksGnTJr/HGz58uN/ssK5du3LjjTdy6qmnsmbNGn25zWarlV3TVII5z+PGjePPP/9k/fr1Pvt45513GjyOVjr50ksv1bteoPc9Ojqa4447jo8//thnfbfbzVtvvUXnzp3p06dPg/upi8lk4rjjjtNnIPQ+PzVpgYWaTdlfeeWVkI8/btw4SkpK9JkJNYE81oHKzMzkjz/+8Fm2devWWuVyNTPKau5j69atPgGV/Px8li1bFtAY+vbtS+/evVm/fn2dr53Y2Nhg75qP8ePHs2nTplrn8I033sBgMDBu3LiwjXHixIksWrSo3pJDg8GA1Wr1CUjl5OT4nX1PY7PZGDNmDI899hgAa9eu1ZeD/3MjhBCicSRTSgghREh++uknfTYvb5MmTeKRRx7h119/Zdq0afq09Lt27eLFF18kPz+fJ554Iixj0DKQQnHHHXewefNmZs+ezcqVK5k+fTpdunShqKiIJUuW8J///IeHHnqIE044we/2s2fP1nsqPfDAAyQlJfH222/z1Vdf8fjjjxMfHw/AlClTOProoxk+fDipqans3r2bZ599lm7duukz3z333HOMHj2aE088keuuu47MzExKSkrYvn07X3zxRa1eLM3h6aefZvTo0Rx33HHcdddd9OrVi4MHD/L555/zyiuvEBsby8MPP8wPP/zAqFGjuOmmm+jbty+VlZVkZWXx9ddf8/LLL+slNldccQWvv/46O3bsCLmvVExMDC+88AKXXnopBQUFnH/++aSlpZGXl8f69evJy8vjpZdeoqioiHHjxjF9+nT69etHbGwsv//+O99++61PBsbAgQP5+OOPeemllxg2bBhGo7FJS7ACPc+33HILr732GpMnT2bOnDn67Htbtmxp8BgnnngiF198MXPmzOHgwYOcccYZ2Gw21q5dS1RUFH//+9/1+/7ee+/x/vvv06NHDyIiIhg4cKDffT766KOceuqpjBs3jttvvx2r1crcuXPZuHEj7777btCZhi+//DI//fQTkydPpmvXrlRWVurlVKecckqd240aNYrExESuvfZaZs+ejcVi4e23364VvAvGJZdcwjPPPMMll1zCI488Qu/evfn666/57rvvQt5nTRdffDEXXXQR119/Peeddx67d+/m8ccfr9WvrWfPnkRGRvL222/Tv39/YmJiyMjIICMjg4svvphXXnmFiy66iKuuuor8/Hwef/zxoGY1feWVV5g4cSITJkxg5syZdOrUiYKCAjZv3syaNWv48MMPG3U/b731Vt544w0mT57Mww8/TLdu3fjqq6+YO3cu1113XUDBy0DH+PDDD/PNN99w0kkncc899zBw4EAKCwv59ttvmTVrFv369eOMM87g448/5vrrr+f8889n7969/POf/6Rjx45s27ZNP+YDDzzAvn37GD9+PJ07d6awsJDnnnvOp19ZfedGCCFEI7V0p3UhhBBtizbDVl0/u3btUlasWKHccMMNyuDBg5WkpCTFZDIpqampyumnn658/fXXde470Nn36hPsjGqfffaZMnnyZCU1NVUxm81KYmKiMm7cOOXll19W7Ha7vh41Zt9TFEXZsGGDMmXKFCU+Pl6xWq3K4MGDa83O9NRTTymjRo1SUlJSFKvVqnTt2lW54ooras1Ct2vXLuXyyy9XOnXqpFgsFiU1NVUZNWqUMmfOnAbvQ7du3ZTJkyfXu44249UTTzxR5201x75p0yblb3/7m5KcnKyPfebMmUplZaW+Tl5ennLTTTcp3bt3VywWi5KUlKQMGzZMuffee5XS0lJ9PW02tPpmX6yprnP+888/K5MnT1aSkpIUi8WidOrUSZk8ebK+XmVlpXLttdcqgwYNUuLi4pTIyEilb9++yuzZs5WysjJ9PwUFBcr555+vJCQkKAaDQWno36L6np/eAOWGG27we1ug53nTpk3KqaeeqkRERChJSUnKFVdcoXz22WcNzr6nKOpshM8884xy9NFHK1arVYmPj1dGjhypfPHFF/o6WVlZymmnnabExsYqgL6Pup4LS5cuVU4++WQlOjpaiYyMVI4//nif/SlK3TNzaudRG/fy5cuVc845R+nWrZtis9mU5ORkZcyYMcrnn3/ewCOrKMuWLVNGjhypREVFKampqcqVV16prFmzptaYL730UiU6OrrW9rNnz651nvft26ecd955SkxMjBIbG6ucd955yrJly4Kafa++9yW32608/vjjSo8ePZSIiAhl+PDhyk8//eR3Rr13331X6devn2KxWGq957z++utK//79lYiICOWoo45S3n///Tpn3/P3OlcURVm/fr0ydepUJS0tTbFYLEp6erpy8sknBzQTaX3Pa83u3buV6dOnK8nJyYrFYlH69u2rPPHEEz4z+4VrjHv37lUuv/xyJT09XbFYLEpGRoYydepU5eDBg/o6//rXv5TMzEzFZrMp/fv3V/773//Weg58+eWXysSJE5VOnTopVqtVSUtLUyZNmqQsXbrU53j1nRshhBChMyiKojRH8EsIIYQQQgghhBBCCI30lBJCCCGEEEIIIYQQzU6CUkIIIYQQQgghhBCi2UlQSgghhBBCCCGEEEI0OwlKCSGEEEIIIYQQQohmJ0EpIYQQQgghhBBCCNHsJCglhBBCCCGEEEIIIZqduaUH0Bq43W4OHDhAbGwsBoOhpYcjhBBCCCGEEEII0WYpikJJSQkZGRkYjXXnQ0lQCjhw4ABdunRp6WEIIYQQQgghhBBCtBt79+6lc+fOdd4uQSkgNjYWUB+suLi4Fh5N++d2u8nLyyM1NbXeiKloHeR8tR1yrtoGOU+tl5ybtkHOU9sh56ptkfPVNsh5ahvkPEFxcTFdunTR4y11kaAU6CV7cXFxEpRqBm63m8rKSuLi4o7YF2hbIuer7ZBz1TbIeWq95Ny0DXKe2g45V22LnK+2Qc5T2yDnqVpDLZKO7EdHCCGEEEIIIYQQQrQICUoJIYQQQgghhBBCiGYnQSkhhBBCCCGEEEII0exatKfUkiVLeOKJJ1i9ejXZ2dl88sknnH322frtpaWl3HXXXXz66afk5+eTmZnJTTfdxHXXXaevY7fbuf3223n33XepqKhg/PjxzJ07t97u7kIIIYQQQgghRHvkcrlwOBwtPYwjmtvtxuFwUFlZ2W57SlksFkwmU6P306JBqbKyMgYPHsxll13GeeedV+v2W2+9lUWLFvHWW2+RmZnJ999/z/XXX09GRgZnnXUWALfccgtffPEF7733HsnJydx2222cccYZrF69OiwPkBBCCCGEEEII0dopikJOTg6FhYUtPZQjnqIouN1uSkpKGmz03ZYlJCSQnp7eqPvYokGpiRMnMnHixDpvX758OZdeeiljx44F4Oqrr+aVV15h1apVnHXWWRQVFTFv3jzefPNNTjnlFADeeustunTpwsKFC5kwYUJz3A0hhBBCCCGEEKJFaQGptLQ0oqKi2nUwpLVTFAWn04nZbG6X50FRFMrLy8nNzQWgY8eOIe+rRYNSDRk9ejSff/45l19+ORkZGSxevJitW7fy3HPPAbB69WocDgennXaavk1GRgZHH300y5Ytk6CUEEIIIYQQQoh2z+Vy6QGp5OTklh7OEa+9B6UAIiMjAcjNzSUtLS3kSrVWHZR6/vnnueqqq+jcuTNmsxmj0cirr77K6NGjATUSbLVaSUxM9NmuQ4cO5OTk1Llfu92O3W7Xfy8uLgbUuk+3290E90R4c7vdejqjaP3kfLUdcq7aBjlPrZecm7ZBzlPbIeeqbZHz1TbUdZ7sdjuKohAZGYmiKC00OuFNOw/t+Xxozze73U5ERITPbYG+l7T6oNSKFSv4/PPP6datG0uWLOH666+nY8eOermeP4qi1BuNfPTRR3nooYdqLc/Ly6OysjIsYxd1c7vdFBUVoShKu2361p7I+Wo75Fy1DXKeWi85N22DnKe2Q85V2yLnq22o6zw5HA7cbjculwun09mCIxSgxiRcLhdAu82UAjVDz+12k5+fj8Vi8bmtpKQkoH202qBURUUF99xzD5988gmTJ08GYNCgQaxbt44nn3ySU045hfT0dKqqqjh8+LBPtlRubi6jRo2qc9933303s2bN0n8vLi6mS5cupKamEhcX13R3SgDqG6nBYCA1NVX+4LUBcr7aDjlXbYOcp9ZLzk3bIOep7ZBz1bbI+Wob6jpPlZWVlJSUYDabMZtb7cf8I07NQE17o1W0JScn18qUqvl7nftoioGFg8PhwOFw1HpDNJlMehrYsGHDsFgs/PDDD0ydOhWA7OxsNm7cyOOPP17nvm02GzabrdZyo9Eob8DNxGAwyOPdhsj5ajvkXLUNcp5aLzk3bYOcp7ZDzlXbIuerbfB3noxGIwaDQf8R4WEwGPjkk084++yz61wnPz+f/v37s3LlSjIzMwHf6q2mPh/HHnssd999N+eee26THscf7fnm730j0PeRFn23KS0tZd26daxbtw6AXbt2sW7dOvbs2UNcXBxjxozhjjvuYPHixezatYsFCxbwxhtvcM455wAQHx/PFVdcwW233caPP/7I2rVrueiiixg4cGC95X1CCCGEEEIIIYRoHZYtW4bJZOL0008PetvMzEyeffbZ8A8qQI8++ihTpkwhMzOTBx98UA/SWK3WWsFCg8FAVlZWSMdZsGABCQkJtZbff//93HXXXW22H1yLBqVWrVrF0KFDGTp0KACzZs1i6NChPPDAAwC89957HHvsscyYMYOjjjqKf/3rXzzyyCNce+21+j6eeeYZzj77bKZOncoJJ5xAVFQUX3zxRcid34UQQgghhBBCCNF8XnvtNf7+97/zyy+/sGfPnpYeTsAqKiqYN28eV155JQC333472dnZHDhwgD179tC5c2cefvhhsrOz9Z8uXbqEdQyTJ0+mqKiI7777Lqz7bS4tGpQaO3YsiqLU+lmwYAEA6enpzJ8/n/3791NRUcGWLVuYNWuWT/pbREQEL7zwAvn5+ZSXl/PFF1+E/SQLIYQQQgghhBAi/MrKyvjggw+47rrrOOOMM/R4gLfPP/+c4cOHExERQUpKil6qNnbsWHbv3s2tt97qU7r44IMPMmTIEJ99PPvss3p5HcDvv//OqaeeSkpKCvHx8YwZM4Y1a9YENfZvvvkGs9nMyJEjAYiJiSE9PV3/MZlMxMbG6r9HRkZy3XXXkZaWRlxcHCeffDLr16/X97d+/XrGjRtHbGwscXFxDBs2jFWrVrF48WIuu+wyioqK9Pv54IMPAmqLo0mTJvHuu+8GNfbWQoqFhRBCCCGEEEKIdkRRFMqrnC3yoyhKUGN9//336du3L3379uWiiy5i/vz5Pvv46quvOPfcc5k8eTJr167lxx9/ZPjw4QB8/PHHtbKRAlVSUsKll17K0qVLWbFiBb1792bSpEkBzxoHsGTJEn0sDVEUhcmTJ5OTk8PXX3/N6tWrOeaYYxg/fjwFBQUAzJgxg86dO/P777+zevVq7rrrLiwWC6NGjeLZZ58lLi5Ov5+33367vu8RI0awdOnSgMfdmrTaRudCCCGEEEIIIYQIXoXDxVEPtEw516aHJxBlDTzUMG/ePC666CIATj/9dEpLS/nxxx/1PtGPPPIIF1xwAQ899JC+zeDBgwFISkryyUYKxsknn+zz+yuvvEJiYiI///wzZ5xxRkD7yMrKIiMjI6B1Fy1axIYNG8jNzdUnXnvyySf59NNP+eijj7j66qvZs2cPd9xxB/369QOgd+/e+vbx8fEYDAa/97NTp07s2bMHt9vd5iYqaFujFUIIIYQQQgghRLvw119/sXLlSi644AIAzGYz06ZN47XXXtPXWbduHePHjw/7sXNzc7n22mvp06cP8fHxxMfHU1paGlRPq4qKCiIiIgJad/Xq1ZSWlpKcnExMTIz+s2vXLnbs2AGofbavvPJKTjnlFP71r3/pyxsSGRmJ2+3GbrcHPPbWQjKlhBBCCCGEEEKIdiTSYmLTwxNa7NiBmjdvHk6nk06dOunLFEXBYrFw+PBhEhMTiYyMDHoMRqOxVhmhw+Hw+X3mzJnk5eXx7LPP0q1bN2w2GyNHjqSqqirg46SkpHD48OGA1nW73XTs2JHFixfXuk2bVe/BBx9k+vTpfPXVV3zzzTfMnj2b9957j3POOafefRcUFBAVFRXSY9XSJCglhBBCCCGEEEK0IwaDIagSupbgdDp54403eOqppzjttNN8bjvvvPN4++23ufHGGxk0aBA//vgjl112md/9WK1WXC6Xz7LU1FRycnJQFEVvfr5u3TqfdZYuXcrcuXOZNGkSAHv37uXQoUNB3YehQ4fy1ltvBbTuMcccQ05ODmaz2afhek19+vShT58+3HrrrVx44YXMnz+fc845x+/91GzcuJFjjjkmqLG3FlK+J4QQQrSQ/FI7936ygT/2Fbb0UIQQQgghmtWXX37J4cOHueKKKzj66KN9fs4//3zmzZsHwOzZs3n33XeZPXs2mzdvZsOGDTz++OP6fjIzM1myZAn79+/Xg0pjx44lLy+Pxx9/nB07dvDvf/+bb775xuf4vXr14s0332Tz5s389ttvzJgxI+hMowkTJvDnn38GlC11yimnMHLkSM4++2y+++47srKyWLZsGffddx+rVq2ioqKCG2+8kcWLF7N7925+/fVXfv/9d/r376/fT63f1qFDhygvL9f3vXTp0lqBvbZCglJCCCFEC/l6QzZv/7aHlxYH1i9ACCGEEKK9mDdvHqeccgrx8fG1bjvvvPNYt24da9asYezYsXz44Yd8/vnnDBkyhJNPPpnffvtNX/fhhx8mKyuLnj17kpqaCkD//v2ZO3cu//73vxk8eDArV670ma0O4LXXXuPw4cMMHTqUiy++mJtuuom0tLSg7sPAgQMZPnw4H3zwQYPrGgwGvv76a0466SQuv/xy+vTpwwUXXEBWVhYdOnTAZDKRn5/PJZdcQp8+fZg6dSoTJ07UG7yPGjWKa6+9lmnTppGamqoH5vbv38+yZcvqzCRr7QxKsPM1tkPFxcXEx8dTVFREXFxcSw+n3XO73eTm5pKWltbmZgY4Esn5ajvkXLUN3udp7uIdPPn9VoZ2TeCT609o6aEd8eQ11DbIeWo75Fy1LXK+2oa6zlNlZSW7du2ie/fuATfeFuHx9ddfc/vtt7Nx40b9nCiKgtPpxGw26+WDTeWOO+6gqKiI//znP016HH/qe94FGmdp3UWmQgghRDtWalf7AuQWt72ZUoQQQgghBEyaNIlt27axf/9+unTp0uzHT0tLq5UF1pZIUEoIIYRoIWV2JwB5pXafRpxCCCGEEKLtuPnmm1vs2HfccUeLHTscJC9TCCGEaCFaUKrK6aa4wtnCoxFCCCGEEKJ5SVBKCCGEaCFlVdWBqLzSyhYciRBCCCGEEM1PglJCCCFECynz9JQC6SslhBBCCCGOPBKUEkIIIVpIqd07U0qCUkIIIYQQ4sgiQSkhhBCihZR5BaUkU0oIIYQQQhxpJCglhBBCtJDyquryPcmUEkIIIYQQRxoJSgkhhBAtpNQnU0oanQshhBBCiCOLBKWEEEKIFqAoik/5nmRKCSGEEEI0nQcffJAhQ4bov8+cOZOzzz672ceRlZWFwWBg3bp19a73119/kZ6eTklJSfMMzIvdbqdr166sXr26yY8lQSkhhBAiTPJL7Xywai+VDleD61Y53Tjdiv679JQSQgghxJFm5syZGAwGDAYDFouFHj16cPvtt1NWVtbkx37uuedYsGBBQOsGGkgKp3vvvZcbbriB2NhYn8eprp9Q1QzWAdhsNm6//XbuvPPORt6LhklQSgghhAiTF37azj8++oO3VuxucF3v0j2QTCkhhBBCHJlOP/10srOz2blzJ3PmzGHu3Lncfvvtftd1OBxhO258fDwJCQlh21847du3j88//5zLLrsMUANo2dnZ+g/A/Pnzay0LpxkzZrB06VI2b94c9n17k6CUEEIIESY5RWpfqN+zChpc17vJOUBhuQO7s+EMKyGEEEKI9sRms5Genk6XLl2YPn06M2bM4NNPPwWqs3hee+01evTogc1mQ1EUioqKuPrqq0lLSyMuLo6TTz6Z9evX++z3X//6Fx06dCA2NpYrrriCykrf/p01y/fcbjePPfYYvXr1wmaz0bVrVx555BEAunfvDsDQoUMxGAyMHTtW327+/Pn079+fiIgI+vXrx9y5c32Os3LlSoYOHUpERATDhw9n7dq1DT4mH3zwAYMHD6Zz586AGkBLT0/XfwASEhL0310uF9OmTSMxMZHk5GTOOusssrKy9P0tXryYESNGEB0dTUJCAieccAK7d+9mwYIFPPTQQ6xfv17PuNKyx5KTkxk1ahTvvvtug+NtDHOT7l0IIYQ4gmjZT+v3FgW8bnK0lZJKJ1UuN4dKq+iUENmkYxRCCCHEEUBRwFHeMse2REEjyskiIyN9MqK2b9/OBx98wP/+9z9MJhMAkydPJikpia+//pr4+HheeeUVxo8fz9atW0lKSuKDDz5g9uzZ/Pvf/+bEE0/kzTff5Pnnn6dHjx51Hvfuu+/mv//9L8888wyjR48mOzubLVu2AGpgacSIESxcuJABAwZgtVoB+O9//8vs2bN58cUXGTp0KGvXruWqq64iKiqKGTNmUFZWxhlnnMHJJ5/MW2+9xa5du7j55psbfAyWLFnC8OHDA3q8ysvLGTduHCeeeCJLlizBbDYzZ84cTj/9dP744w+MRiNnn302V111Fe+++y5VVVWsXLkSg8HAtGnT2LhxI99++y0LFy4E1ACYZsSIESxdujSgcYRKglJCCCFEmJR4Ak05xZXkFFWSHh9R57plnkypmAgzERYT+wsryC2ulKCUEEIIIRrPUQ7/l9Eyx77nAFijQ9p05cqVvPPOO4wfP15fVlVVxZtvvklqaioAP/30Exs2bCA3NxebzQbAk08+yaeffspHH33E1VdfzbPPPsvll1/OlVdeCcCcOXNYuHBhrWwpTUlJCc899xwvvvgil156KQA9e/Zk9OjRAPqxk5OT9UwlgH/+85889dRTnHvuuYCaUbVp0yb+85//MGPGDN5++21cLhevvfYaUVFRDBgwgH379nHdddfV+zhkZWUxbNiwgB6z9957D6PRyKuvvqr3lpo/fz4JCQksXryY4cOHU1RUxBlnnEHPnj0B6N+/v759TEwMZrPZ535pOnXq5JNx1RSkfE8IIYQIk9LK6m/11u09XO+62sx70VYzKbHqP1R5JdJXSgghhBBHli+//JKYmBgiIiIYOXIkJ510Ei+88IJ+e7du3fSgEMDq1aspLS0lOTmZmJgY/WfXrl3s2LEDgM2bNzNy5Eif49T83dvmzZux2+0+wbCG5OXlsXfvXq644gqfccyZM8dnHIMHDyYqKiqgcWgqKiqIiKj7y01vq1evZvv27cTGxupjSEpKorKykh07dpCUlMTMmTOZMGECU6ZM0ftTBSIyMpLy8qbNuJNMKSGEECJMvJuXr9tbxOlHd6xzXS0oFWMzExdpAeBQaVXTDlAIIYQQRwZLlJqx1FLHDsK4ceN46aWXsFgsZGRkYLFYfG6PjvbNunK73XTs2JHFixfX2leojcsjI4PPVHe73YBawnfcccf53GY0qvk/iqLU2i4QKSkpHD5c/xec3uMYNmwYb7/9dq3btGDe/Pnzuemmm/j22295//33ue+++/jhhx84/vjj6913QUGBT0CwKUhQSgghRLujKApvrdjNvsMV+rK0uAhmjsrEZAy9x0FDSiu9g1INZEp5yveibSZiI9Q/x2U1ZuQTQgghhAiJwRByCV1zi46OplevXgGvf8wxx5CTk4PZbCYzM9PvOv3792fFihVccskl+rIVK1bUuc/evXsTGRnJjz/+qJf8edN6SLlc1ZPSdOjQgU6dOrFz505mzJjhs76iKDidTo466ijeeustKioq9MBXfePQDB06lE2bNjW4HqiPx/vvv683fa9vn0OHDuXuu+9m5MiRvPPOOxx//PFYrVaf++Vt48aNDB06NKBxhErK94QQQrQ7a/YUcv9nf/LKkp36zz+/3MSv2w/p69idLn7dfihsM9653IoeaAJYu6eQsU8s4vYP1/tdXwtARdnMRFnVpp1lVRKUEkIIIYSozymnnMLIkSM5++yz+e6778jKymLZsmXcd999rFq1CoCbb76Z1157jddee42tW7cye/Zs/vzzzzr3GRERwZ133sk//vEP3njjDXbs2MGKFSuYN28eAGlpaURGRvLtt99y8OBBiorUSW0efPBBHn30UZ577jm2bt3Khg0bmD9/Pk8//TQA06dPx2g0csUVV7Bp0ya+/vprnnzyyQbv44QJE1i+fHmdwSJvM2bMICUlhbPOOoulS5eya9cufv75Z26++Wb27dvHrl27uPvuu1m+fDm7d+/m+++/Z+vWrXpfqczMTHbt2sW6des4dOgQdnt1O4mlS5dy2mmnNTiGxpCglBBCiHYnv1T9Y5oWa+Pqk3rQNUlNI8/16tn0+rIsZrz6G68vywrLMb0DShEWI3anm6z8cj5avY8Sr15T+vpa+Z7VTLRNzZQqrwpPgEwcmRRF4fP1B9h2sKSlhyKEEEI0GYPBwNdff81JJ53E5ZdfTp8+fbjgggvIysqiQ4cOAEybNo0HHniAO++8k2HDhrF79+4Gm4vff//93HbbbTzwwAP079+fadOmkZubC4DZbOb555/nlVdeISMjg7POOguAK6+8kldffZUFCxYwcOBAxowZw4IFC+jevTugNhH/4osv2LRpE0OHDuXee+/lsccea/A+Tpo0CYvFos+IV5+oqCiWLFlC165dOffcc+nfvz+XX345FRUVxMXFERUVxZYtWzjvvPPo06cPV199NTfeeCPXXHMNAOeddx6nn34648aNIzU1lXfffReA5cuXU1RUxPnnn9/gGBrDoIRa5NiOFBcXEx8fT1FRUb3pbiI83G43ubm5pKWl6bW2ovWS89V2yLmq9tm6/dz83jpG9UzmnauO58Z31vDlH9nMnnIUl52g/pNw/6cbeXPFbmaOyuTBMwc0+pgHCisY9a+fsJqMPHjmAH7emsvKXQUcLnfw4bUjOTYzCag+T/PXHOaVJTu5/ITuxEWaeXbhNmYc15VHzhnY6LGI0LT119CGfUVMefEX+neM45ubT2zp4TSZtn6ejiRyrtoWOV9tQ13nqbKykl27dtG9e/eAG2SLpqOV75nNZn1GvGDNnTuXzz77jO+++y7MowvM3/72N4YOHco999xT5zr1Pe8CjbPIu40QQoh2p8yuZhxFWdUMpNgItWFmcUV1NpOWlWR3usNyTK3JeUyEmenHdeWVi4czrFsiAJsOFNdav7xKa3Ru0sv3KiRTSjTCgSK1h9qWnGL9+SWEEEKItunqq6/mpJNOoqSk+TOg7XY7gwcP5tZbb23yY0lQSgghRLujfSCPtqnBnjhPI3HvMjptnXD1lCqprJ5NT3NUR/VbIX9BKT1wZjPrwTPpKSUao6hCfX4rCvyVIyV8QgghRFtmNpu59957iY2NbfZj22w27rvvvpBmJQyWBKWEEEK0O1oWlJaBFBepZkqVVDZDppR3UCrDE5TKrh2U0taPtpn14Jn0lBKNUVxRHXTdnF1/UCqvxM6y7YdCnqpaCCGEECIcJCglhBCi3dEyjqrL99TLYq9MKa1Uzu4ITyCotLK6fE9zVMd4AP46WILD5Rv8KvMp3/NkStklU0qEzjsotSm7qN51//HReqa/+hvr9hY28aiEEEIIIeomQSkhhBDtTkWNTKlYvXyvOuhTppfvhStTSg0IxHplSnVOjCTWZqbK6WZnXpnP+loAKtpqJtoqs++JxisKIlNq72G1/9SegvImHZMQQgghRH0kKCWEEKLdqdXo3KaV7/nLlApPUKrET6aU0Wigv9ZXqkbmSrlnjDE2M1Ge8j3pKSUawzcoVYzbXXdpnpbZV1juqHMdIYQQQoimJkEpIYQQ7U6tRud+ekqVhbnRub+eUuDVV6pGs/NSrcTQ5pUpZZdMKRE676BUeZWL3fVkQWmZet7bCCGEEEI0NwlKCSGEaHe0MrhIi2/5XnGlo9Y6YSvf85MpBXB0J7Wv1K/b832Wl+mZUia9zFAypURj1AwwbfbTYB/A7Vb0oKgEpYQQQgjRkiQoJYQQot2pzpSq2ehcXa4oStiDUloWVmyNTKnx/dIwGw1syi5me26Jfvwyr9n3tKBUpcONq56SKyHqowWYMpOjgNrZeZpyhwtt0j0JSgkhhBCiJUlQSgghRLujZ0rpjc7V8r0qp5tKh4sqV3XwJ2yz79VRvpcYbWVMn1QAPl93AACHS8HpOX60zawHzwAqwjQeceQpqlCfgwM7JwCQU1zpdz3vWR4lKCWEEEK0rJNOOol33nmnRcfw4osvcuaZZ7bIsSUoJYQQot3RglLReqNzMwaDeltJpVNvcg5hzJTSglKeAJi3M4dkAPDZ+gNqlpZXc/Uoiwmb2YjRM75yu5TwieApikKxJ8DUNSkSqLuJuXdvNQlKCSGEaEkzZ87EYDDU+tm+fXtLDy1kCxYsIDExMaB1v/zyS3JycrjgggtCPt7NN9/MsGHDsNlsDBkyxO86GzZsYMyYMURGRtKpUycefvhhFKU6O/+qq67i999/55dffgl5HKGSoJQQQoh2Ryvf08rijEYDMZ4AVUmlg7ImCEqVevpV1cyUAjj1qA5EWkzszi9n6n9+447P1X+0IixGzCYjBoNBD6B5j02IQNmdbqpc6nO5W1I0AEUVVX7XLfUKfBZLUEoIIUQLO/3008nOzvb56d69e0j7qqry/7evtXr++ee57LLLMBrrDs0YDAaysrLqvF1RFC6//HKmTZvm9/bi4mJOPfVUMjIy+P3333nhhRd48sknefrpp/V1bDYb06dP54UXXgj5voRKglJCCCHaHW0WOy0oBdV9pdRMqeoP5eGefS82onZQKspq5oxBHQFYvfswG7LLAOiaFFW9jmemwDLJlBIh0DKeTEYDnRLrz5Qq9cqUqmsdIYQQornYbDbS09N9fkwm9f+in3/+mREjRmCz2ejYsSN33XUXTmf137GxY8dy4403MmvWLFJSUjj11FMB2LRpE5MmTSImJoYOHTpw8cUXc+jQIX07t9vNY489Rq9evbDZbHTt2pVHHnlEv/3OO++kT58+REVF0aNHD+6//34cjuq/mevXr2fcuHHExsYSFxfHsGHDWLVqFYsXL+ayyy6jqKgIq9WK0WjkwQcf9Hu/Dx06xMKFCxtdNvf8889zww030KNHD7+3v/3221RWVrJgwQKOPvpozj33XO655x6efvppn2ypM888k08//ZSKiopGjSdYtf9zFkIIIdowRVH0Wey8ezXFRVo4UFTpMwMfqP2dXG4Fk1Y/FyJ99j0/mVIAD545gPH907A7XBQXFxMXF8dxPVL029VMKbteeihEMLSgVFyEmYQotYS0sI4sqFLpKSWEEO2eoihUOJs3uKCJNEdiMDTu/yqA/fv3M2nSJGbOnMkbb7zBli1buOqqq4iIiPAJ9Lz++utcd911/PrrryiKQnZ2NmPGjOGqq67i6aefpqKigjvvvJOpU6fy008/AXD33Xfz3//+l2eeeYbRo0eTnZ3Nli1b9H3GxsayYMECMjIy2LBhA1dddRWxsbH84x//AGDGjBkMHTqUl156CZPJxLp167BYLIwaNYpnn32WBx54gI0bN2I2m4mNjfV7/3755ReioqLo379/ox+r+ixfvpwxY8Zgs9n0ZRMmTODuu+8mKytLz0obPnw4DoeDlStXMmbMmCYdkzcJSgkhhGhX7E432gR2kXVkSplrpEhXOd0+64aiuqeU/z+t0TYzpx/dEbfbTW6umbS0NJ9Ube34ZVWSKSWCpwWX4iMtJERZ9WWKotT6YOAdlKpwuKhyurGaJXleCCHakwpnBce9c1yLHPu36b8RZYlqeEWPL7/8kpiYGP33iRMn8uGHHzJ37ly6dOnCiy++iMFgoF+/fhw4cIA777yTBx54QP8/qlevXjz++OP69g888ADHHHMM//d//6cve+211+jSpQtbt26lY8eOPPfcc7z44otceumlAPTs2ZPRo0fr699333369czMTG677Tbef/99PSi1Z88e7rjjDvr16wdA79699fXj4+MxGAykp6djNpvrDNBlZWXRoUOHekv3wiEnJ4fMzEyfZR06dNBv04JS0dHRJCQkkJWVJUEpIYQQIlTemUZRFu+glJo9UlLpwFbjA7jd6WpUUEpRlOryvToypRqi9ZTSSg+FCEZRuVdQKtJ7tsnaAdfSGtmCRRUOUmNtCCGEEC1h3LhxvPTSS/rv0dFqb8TNmzczcuRIn6DOCSecQGlpKfv27aNr166AmuHjbfXq1SxatMgn0KXZsWMHhYWF2O12xo8fX+eYPvroI5599lm2b99OaWkpTqeTuLg4/fZZs2Zx5ZVX8uabb3LKKafwt7/9jZ49ewZ1vysqKoiIiKi1fOLEiSxdutRn2YABA3weh9LS0qCOVTMwppXt1VweGRlJeXl5UPtuLAlKCSGEaFe0Juc2s9pEXOOdKRVl9f3z19hm5+VVLrSS/LoypRqi9ZQql0wpEQK9fC/SQpTVhNlowOlWKKyoItIa6bNuaY2+ZRKUEkKI9ifSHMlv039rsWMHIzo6ml69etVa7i/b118wRQtiadxuN1OmTOGxxx6rtc+OHTuyc+fOesezYsUKLrjgAh566CEmTJhAfHw87733Hk899ZS+zoMPPsj06dP56quv+Oabb5g9ezbvvfce55xzTsN32CMlJYXDhw/XWv7qq6/69HXq3bs3X3/9NZ06dQp4397S09PJycnxWZabmwtUZ0xpCgoKSE1NDek4oZKglBBCiHZFy5SKqpEdEufJlCqucNRqRm53NC4opX3INxog0hJaxpWeKSU9pUQIvINSBoOBhCgLh0qrKCx30DG+ZlDK5XdbIYQQ7YfBYAiqhK41Ouqoo/jf//7nE5xatmwZsbGx9QZojjnmGP73v/+RmZmJ2Vw75NG7d28iIyP58ccfufLKK2vd/uuvv9KtWzfuvfdefdnu3btrrdenTx/69OnDrbfeyoUXXsj8+fM555xzsFqtuFwN/z83dOhQcnJyOHz4MImJifpyf/etW7dutUrwAjVy5EjuueceqqqqsFrVEv/vv/+ejIwMn33u2LGDyspKhg4dGtJxQiUNBIQQQrQr2ux1NbOhtEBUcaWzVuCnsTPwlXg1OQ+1sWeU9JQSjaA18I/3lO5pl/5m1yu1+y4rlqCUEEKIVuj6669n7969/P3vf2fLli189tlnzJ49m1mzZtXbh+mGG26goKCACy+8kJUrV7Jz506+//57Lr/8clwuFxEREdx555384x//4I033mDHjh2sWLGCefPmAWqPqj179vDee++xY8cOnn/+eT755BN9/xUVFdx4440sXryY3bt38+uvv/L777/rDcszMzMpLS3lp59+4tChQ3WWww0dOpTU1FR+/fXXRj1O27dvZ926deTk5FBRUcG6detYt24dVVVVAEyfPh2bzcbMmTPZuHEjn3zyCf/3f//HrFmzfP5vXbp0KT169Ai6DLGxJCglhBCiXamoI1OquqeUv6BUeDKltGOEQpsp8EjrKbXvcDkb9hW19DDaPO9G54BXs/OqWutqM0VqCv2sI4QQQrS0Tp068fXXX7Ny5UoGDx7MtddeyxVXXOHThNyfjIwMfv31V1wuFxMmTODoo4/m5ptvJj4+Xg9m3X///dx222088MAD9O/fn2nTpuklbWeddRa33norN954I0OGDGHZsmXcf//9+v5NJhP5+flccskl9OnTh6lTpzJx4kQeeughAEaNGsU111zDjBkzSEtL82nC7s1kMnH55Zfz9ttvN+pxuvLKKxk6dCivvPIKW7duZejQoQwdOpQDBw4AauP1H374gX379jF8+HCuv/56Zs2axaxZs3z28+6773LVVVc1aiyhkPI9IYQQ7UqZFpSy1ZUp5ajVt6mxmVKlXplSoTpSM6UunreSPQXlLL/7ZNJiazf7FIGpFZSqN1OqRvmen3WEEEKI5rBgwYJ6bx8zZgwrV66s8/bFixf7Xd67d28+/vjjOrczGo3ce++9PiV63h5//PFawaRbbrkFAKvVyrvvvlvvuF966SVeeOGFemff0/Y5YMAAdu/eTbdu3fyuo/XRqktdj4G3gQMHsmTJkjpv37hxI+vWreODDz5ocF/hJkEpIYQQ7YoWcIqu2VMqsnr2vVqZUkH0lNpbUM6CZVk+gay9BWozylCbnEN1UOpIypQqqnCw61AZANmFlRKUagStBE/rnRYf5QlK+SnN08r3YiPMlFQ6Kao4sgKhQgghRGvRoUMH5s2bx549e+oMSjWHAwcO8MYbbxAfH9/sx5aglBBCiHalrkbn3rPv1Qz8BFO+939fb+abjTl+b+sQF/oMZloPrCMpU2pnXvV0xmX2I+d+N4XamVJq+Z7/TCn1se6UEMmWnBJpdC6EEEK0oLPOOqulh8Bpp53WYseWoJQQQoh2pa5G53He5XuO0Bqdl1Q6+HGL2m/gqhO7632gACwmI2cOzgh53NE2T6bUETT73s68Mv16iQSlGqV2TymLZ3ndPaUkKCWEEEKIliZBKSGEEO1KXY3O47wbndtr9pQKLFPq+z8PUuV00zM1mnsm9Q95pj1/tCBazX5XbY3d6cJkMGA2NTyXys5DkikVLnUFperrKdUpMdJnWyGEEEKI5iaz7wkhhGhX9Ebn1pqNzuuZfS/AnlKfr1dnMTlzcKewBqSgfWRKldmdnPjYIqb9Z0VA63tnSpVKUCpkiqLUCkrF19voXF3WKUENShVLUEoIIYQQLUQypYQQQrQrFVqjc1vNRufqnzyXWyG3pBIAq9lIldNNZQDlewVlVfyy/RAAUwZ3DOeQAa+eUm04OLNhfxG5JXZyS+w4Xe4Gs6V8yvcq2+79bml7CsqpdLixmAykefqaJUR5ekrVCDg5XW4qPUFYLVOq0E+JnxBCiLbJ7Q68T6YQjRWO55sEpYQQQrQrWqZUZI3yvSirmaRoKwVlVWTllwOQGGXhYLE9oEyp5TvycbkV+neMo0dqTNjHHa2X7wWeKbV6dwFf/pHNnaf3I8JianiDJrYlu1i/XlThIDmm7sbvLrfCrvzqoFRbDsa1tOU78gEY0iVBfx5omVI1s6DKvJr8a5lSUr4nhBBtn9VqxWg0cuDAAVJTU7FarWHP6haBUxQFp9OJ2Wxul+dBURSqqqrIy8vDaDRitVpD3pcEpYQQQrQrWk+paGvtP3E9U6MpKKvC5VYASIyyqkGpADKltOyqHinRYRxtNS2IFmhwptLh4ryXlgPQt0MsF4zo2iTjCsaWnBL9+uHy+oNSBworqPLq5SXle6FbsVMNSo3skawvS9DL93yzoEo8pXs2s5EUz/mRoJQQQrR9RqOR7t27k52dzYEDB1p6OEc8RVFwu90YjcZ2GZTSREVF0bVrV4zG0DtDSVBKCCFEu1LmKd+rmSkF0DM1ht+zDuu/J3pKnAJpdJ5fqn64T44J/Zug+nj3lFIUpcF/YD5ctVe/3lqCCpu9glI1gyE17cgr9fldglKhURSF5Z6g1PHeQSlPo/OyKhdVTjdWs/rPovY4x9jMxHkCV5UON3anC5u55bPthBC+CsureOGn7Vw4ogu90mJbejiilbNarXTt2hWn04nL1XZ7VLYHbreb/Px8kpOTGxWwac1MJlNYMsEkKCWEEKJdUBSFSoebcnt9mVK+ZXeJ0eqH8oCCUmVqkCUpummCUlpPKadbocrlrjdAYHe6mLt4h/57haPl//F0uRW2egWlCsrqD0p595MCKJWeUiHJyi/nYLEdq8nIMd0S9eWxERYMBlAUNWiZGqtmRWmPc0yEmVib2WedtFgJSgnR2ryzcg/zftnFkq15fHPziQHNbCqObAaDAYvFgsViaemhHNHcbjcWi4WIiIh2G5QKF3l0hBBCtAuPfrOFof/8npVZBQBE2Wp/wO6VViMopWVKBRDUKSizA5DcZEGp6vGW2+sfz1d/ZJNdVKn/3hoypXbnl/kEx/zN+uZt5yE1U0rraySZUoFzuNwUVzoornTw81+5AAzpmuDTV8xkNBDnmXGyyKuRuXemlNFrHZmBT4jWaXuu+l65LbeUD1fva+HRCCFE+EmmlBBCiHbhP0t2+vwe5afxd61MqZDK9+ruk9QYFpNRnw2w3OEisZ51t+X6lr61hqCUdz8pgMMNlO/leIJq/TvGsr+wQhqdB+hgcSWTnluqZ+5pvEv3NAlRFooqHD4BQu+gFKgN0YsqHK3iOSSEqC3rUHVW6dM/bOXMwRlE2+QjnBCi/ZBMKSGEEO2Sv3/aOyVG6r11jAaIi1TXCSQoVdDE5XsAsZ4xN5S1ctgzloz4iIDWb0pr9hzmytdX8VGNb/APN5AppQVKOidGAVAiQamAfLp2f62AVFyEmSmDOtZaV2t27h3E1Mv3vIJS0HBmmxCiZWizxUZZTeSV2Fm4+WALj0gIIcJLwuxCCCHahQ5xNg4W2/Xf/TU6NxkN9EiJZktOCVFWs17uFMjse1ogoKnK90DNbMkvq2owy0i7vVtyNAeKKls0y+Xd3/b4fEhKibFyqLRKD5zVpbBCC0qp5XuSKRWYL//IBuDhswZwwbHqjIsmowGTsXaT0ZP7dWD9viL+7+vNjO6VQpekqOpMqQj1X0CtIbpkSgnR+hRVOPQvRE7sncJ3fx7Us0yFEKK9kEwpIYQQ7UJJjUbZ/hqdQ3UJX6TVhM2TNWV31J8p5XC59Q/tTVW+B9XlhA1lrRwuU2/PTIkGWjagUDNrZ2TPFKDh8r3qTClPTylpdN6grENlbNhfhMloYPLAjljNasmnv4AUwPXjejK0awIllU7O/vevnPbMz7z8s9ogX8uU0mbgk6CUEK2PVrqXGmujiyertOZ7rhBCtHUSlBJCCNHmudwK5VVqtlP/jnEcm5mozzZWU09Ps/Noq0mf4a6h8j0t68doqC6JagqJniyshmau0wI+mcnqh5SWDCg4XOpjN7ZvKjeP781pR3UA6g+sKYqiN9/WyvfKqly43UoTj7Zt+/KPAwCM6pkcUHDUYjLy/AVDiY9UM/C2HizlkKc3mtb0P16CUkK0Wln5alCqe3K0/prX+hsKIUR7IeV7Qggh2jzvLJvPbjhB7xvlT89UNbsoymquzpRqoHxP+yCfFG3FWEdWSjgkRmn9fQIMSrWCTCmtHOzCEV2ZMCCdZdsPAVBQz30or3LhcKkBKG32PYCyKiexETKFdV2+2pADwBl++kfVpUtSFN/fehI78qr7SkVbzQzsFA9IUEqI1myXJ1Oqe0q0XjqeX2avbxMhhGhzJCglhBCizSuxqx+obZ5ypvqM65fGib1TOGNQR2wWLShVf6ZUczQ5B+9MqfqzjLQm4t09QalKhxu706VnfjWncrsa0NPKJRP0EsS6g1JaPymryUhClAWLyYDDpVBql6BUXRRF4a+cYgBG904NatsOcRF0iIvwe5sEpYRovbTyvcyUaJJjAsukFUKItkbK94QQQrR5Wj+pQAIacREW3rziOKYd27W6fK+BnlLaN9NNHpQKIKBTXOnE5Slz65IYhcGTuNVSQQUtUyrapj6WidHVs7kpiv9yvCJPUC0u0oLBYNBnSpRm53Urr3KhVTdqGXXhoAWlWnIGRyGEf7s8M+91T4nS//5I+Z4Qor2RTCkhhBBtXnVQKrg/axGWwMr3tA8BTdnkHCDJE5Sqr/RN628VZTURaTURazNTXOmkuMJBWqz/bJimVFblmc3NE1jSAmtOt0KJ3Umcn0BhoaeflDbzW4zNTGG5o1azelFNe2xMRgORlvBlxGlBqYaa6wshms+Dn//JpgPF7MhVy24zU6L1bFQp3xNCtDctmim1ZMkSpkyZQkZGBgaDgU8//dTndoPB4PfniSee0Nex2+38/e9/JyUlhejoaM4880z27dvXzPdECCFESyr1lO8FG5QKtNG5Vi6R3MSZUlqQ5nA9AQItYKUFf+KjWrb8qkzPlFIf+wiLSQ+aHK6jzETLlNKaxmsBrVLJlKqT9hyPsZkxGMLX1yxByveEaFXK7E5eX57FyqwC/T2xW1K0nilV6XBTXiXvlUKI9qNFg1JlZWUMHjyYF1980e/t2dnZPj+vvfYaBoOB8847T1/nlltu4ZNPPuG9997jl19+obS0lDPOOAOXq/5vvYUQQrQfWhaJFtwIVHWj84bK95qnp5S2/3r7MZX7jqUlewJVOd16w3LtW3yoLi+rK7im9ZTyzpQCKd+rT3GI2YANiZOglBCtyp8HivGufO6REk2k1USU1aRn90oJnxCiPWnR8r2JEycyceLEOm9PT0/3+f2zzz5j3Lhx9OjRA4CioiLmzZvHm2++ySmnnALAW2+9RZcuXVi4cCETJkxousELIYRoNUIt36vuKdVQ+Z5aLtHU5Xtak/D6GtlqTdC1gE5LBqW8g0haTylQ78eBokp9lsCatFKx+Ej1/sZ4zpuU79UtmL5pwZBG50K0Ln/sKwTglP4dmDq8sz6hhcFgIDnaxv7CCvLLquiSFNWCoxRCiPBpMz2lDh48yFdffcXrr7+uL1u9ejUOh4PTTjtNX5aRkcHRRx/NsmXL6gxK2e127PbqeuziYnU2G7fbjdtd/7flovHcbjeKoshj3UbI+Wo7juRzVezpURRjMwd1/7XWPHZn/e//WqZUYmRw+/envvMUH6EOqKTSid3hxGKqndBc4Oknkhhlwe126z2bCsuqmv3cl1Sqj4vNbMRoQD++1uz8cKnd75gOl6v3Id7zeEZb1ftdWulo0edva34NlejPcVNYxxcbUV3CWmF3YAtjv6qm0prPk/Al5yp4WlBqUKc4TumfBvi+t+4vrCCvpLJJHlM5X22DnKe2Qc4TAd/3NhOUev3114mNjeXcc8/Vl+Xk5GC1WklMTPRZt0OHDuTk5NS5r0cffZSHHnqo1vK8vDwqKyvDN2jhl9vtpqioCEVRMBplAsjWTs5X23Ekn6uDBeqXCya3g9zc3IC300qinG6FAzkHMRv99+rJLVJnQDI5yoPavz/1nSenW8EAKMD2PdkkR9fOitmfVwiAzeAkNzcXK+p9OHCosNFjC9beQxUARFmMPseONKr/hOw5WEBubu37kFNQAoDZXUVubi4mxelZXtTs98Fba34N7c87DIDV4A7rY+RWFDWgqMCOfTmk+HnOtTat+TwJX3Kugrd+TwEAXWKUWq/1WM/Lc3f2IXKTwn9sOV9tg5yntkHOE5SUlAS0XpsJSr322mvMmDGDiIiGZxZSFKXeJqB33303s2bN0n8vLi6mS5cupKamEhcXF5bxirq53W4MBgOpqalH7Au0LZHz1XYcyefKbcoDoENiLGlpaQFvF1tVXbaXkJRMlNX/n8WiSnW9np07kJYW04iRNnye4iItFFU4MEfFkZYWW+t2O+qHlE7J8aSlpdEhqQA4hNNkI7vKSnZh7S9X+nWMJTM5ulHj9mdfpRooiYmw+Dzu6Yl5wGGcJpvf81GlqBOSdEpNIC0tjdSEfOAQitn/+s2lNb+GDJYyAFLio8P+GMVFWCiscGCp4znX2rTm8yR8ybkKTkmlg92H1UzS0Ud1rVUy3jExB7KKqTI2zXulnK+2Qc5T2yDniYBiN9BGglJLly7lr7/+4v333/dZnp6eTlVVFYcPH/bJlsrNzWXUqFF17s9ms2Gz1e4LYjQaj9gnTHMzGAzyeLchcr7ajiP1XJXZ1aBRbKQlqPseYa3+AsPhwu+2VU63nlGVEhsRlse2vvOUFG2lqMJBYYXT7+1aP6bkGBtGo1HvQ/XbzgLm/5rl93ixEWZ+v/cUIsJcmlVepWZERdvMPmNN8nyQKqxw+L0PRRXq45kQZcVoNBJjs3j256rz8d2eW8p9n27gkpGZTBrYMaz3w1trfQ2VegKosRHmsI8tPkoNShXb6378W5vWep5EbXKuArcpuxSATgmRpMZF1ro9JVZ9bz1c7v+9NRzkfLUNcp7ahiP9PAV6v9vEozNv3jyGDRvG4MGDfZYPGzYMi8XCDz/8oC/Lzs5m48aN9QalhBBCtC/FITaBNhkNWExqYKquGfi02e4MBkiIbMLSJkWBJU9yn/NFEiipc+a6As94tGCU1qh6U7Zawpgaa+PYzET9x2hQe1Tlldj97q8xtEbnNWc91GbfO+Anawu8Z99T74PWoL60nkbnX6w/wIqdBVz/9hoWbjrYuIG3QSWV6mMW7kbn4NXsvI7nnBCi6ew6VMaiLbks2pLLl38cAGBgp3i/62qzrsrse0KI9qRFM6VKS0vZvn27/vuuXbtYt24dSUlJdO3aFVBL6z788EOeeuqpWtvHx8dzxRVXcNttt5GcnExSUhK33347AwcO1GfjE0II0f6V2tUP0zWDI4GwmU04XE7sTv8z8GmzksVHWjDW0XMqLNa8Dj/9k/HA/6wb2ZQ3D0ivtZoWJNM+nMTXCJTdOK4Xl47K1H8f8chCckvsFFU46BLmIZd5sneiazzugzonAPDTlly++zOHCQN870eRFljzjF3bvtRe9yyI5VXVAasb3lnDt7ecpM9KdSQIdYbJQMgMfEK0jEOldk575mccLsVn+cDO/oNSyVpQqp4ZWoUQoq1p0aDUqlWrGDdunP671ufp0ksvZcGCBQC89957KIrChRde6HcfzzzzDGazmalTp1JRUcH48eNZsGABJlPrnz1GCCFEeDTmA7vNbKTUDpWOOjKltKyepsySyv4Dvv4HAHZDJD2N2SSs+juMXa2maHkpKNOyjNTx1AxKHd8j2ef3+EgLuSV2ipsg4KBlSkXbfP/mDuuWyBWjuzPvl13c/sF6PuyxV7/ttKPSvTKl1LHH6EGpusfoHbCyO92s2Jl/RAWltCyy2BACrw2RoJQQLWNvQTkOl4LVbKRfutrPLT7SwnnHdPa7fnKMFpQKf+arEEK0lBYNSo0dOxZFUepd5+qrr+bqq6+u8/aIiAheeOEFXnjhhXAPTwghRBtRam9cUAqoO1OqvDpTqkm4XfDZ9eCyQ5/TeTniOq5dfz7JZTsgdxN0GKCvqihKvZlSSdFW+nTwbcSuBX4KmyDgoD3u0X4axN81sR/r9hayevdhFm6unkHq5615elZAQqR6H2K08j173eV7WvlaXb+3dyX2Zijfk6CUEM1KKz3vmRrD5zeObnD95Gi1p1SBlO8JIdqRNtFTSgghhKhPSYg9pQBsnubfdfaU0sr3PP2Pwm7tm5CzAWzxcNa/MSd2Zqn7aPW2zV/6rFpid+J0qwGdxKjaQanjeyTVmn22KQMO1ZlStYNSFpORt688jucuGMJj5w3ksfMG0ikhUg9IGQzVQUQtU6qsnvI9LWAV6TlfJfX0n2qPmqN8b+WuAm77YD2788vCfgwhRG1aBmtcgK9r7cuIQ2VVDX6xL4QQbUWbmH1PCCGEqI9W2hRaTyn1+5mq8mJwxYHJdx/ePaXC7uCf8OM/1evj7oboFBKjyvnOfSynmNZSueEzNmRepa++t6AcUAMz2kx63uMaWaN0DyCuCYNS5XpPKf8l8xEWE2cN6aT/vj23lP8u3QX49ujSzlt92U/aOc5IiGBHXtkRF5RqzHO8IdpzaPnOfEAtEbpnUv+wH0cI4Ut7H4sL8O+LVr5X5XQzc/7vGA3q++zNp/SmX3pck41TCCGakgSlhBBCtGmVDhdVLjXLKZQskr/xAxNtb5HxQQEk94JrfwVLhH57zabc4WAq3ofh8wvhwBp1QUofOPZKAJKiLSx0HYPLbCAi/09ufeUz9ilpPtunxFZnbcVGWLCYDDhcSq1+Uuq41XWbIihVWk+mlD/j+3fQg1Lej6f2gay4nkBTiR6UimRHXlmT9MhqzUKdYTIQNQOu+wsrwn4MIURtxfqsmoG9h0ZZzaTHRZBTXMnPW/P05fGRFv513qAmGaMQQjQ1CUoJIYRo07TAiMHgv7dRvdxuLix9gyhDofp7/nbY8AEcc4m+StgzpXI2kPTpBRjK88BkhV6nwKkPg0ndf0KUlcPEsdLdn5GmTUyP/YOPrGcBYDUbSY21MX1EV313JqOB2VMGUFzpoHeH2FqH08ZdWN505XuBZu8M75ZIfKSFogqHTzmkVrpS5XRT6XDpWWDetPPcKSESqD+A1R6VBPnh1S+XE4ymWs3zaz63DxZVhn4MIUTAqsv3Av/78u7Vx7MqqwBQsxs/XrNf+sEJIdo0CUoJIYRo07QMmhirWS8HC1jOeqKchZQqEXwRfR4Xlr8Ny16AIReBUS3rqzlTXKNUFGJ4+3yM5XkoaUdhmPERxHfyWaV3WgyRFhO/WY9jpGsT13fZzfUXj613txcd363O2+Ij1T/1TTL7nla+F2Aw0GwyMq5vKp+uO+ATCImxmTEawK2o4/QXlNIyCjL0oNSR8yGsyunWe54F8+HVx87F8P7FYI1WA6Fj74J4dYavMX1TOX1AOmlxNt5YvptsCUoJ0SyCLd8D6J4Src88ajIa+HjN/noniRBCiNZOGp0LIYRo0/ReO6FkkGz/EYDl7gE8UTwexRYLh7bCtu/1VbQMo2A+NNTpx4cxlOXiTOiOMvPrWgEpgOQYG8vvPpkbLr9MXbD3NzXDJUQJUU1Xvlfd6Nx/Tyl/LhzRFbPRwHHdk/RlBoPBq4Sv9jgVRdE/dGlBqSOpp5T3B85gHmvdzsXwzjSwF0NJttpc//UzoUztIRVlNfPyxcO4dkxPAHJLKnG7pYmyEE1Ne78LtNF5TVo575GWOSqEaF8kKCWEEKJNa1RZ046fAFhhHEKBM4KCfjPU5Stf0VfRgjmN7im1bxWseg2A4hMfgoj4OldNiLJi6Xi0OiNfVSkc3BDyYfXyvYrwTyFe3+x7dTmuRzIbH5rADeN6+SzXMoD8Bc/KqlxoE01lJKj9vo6knlLaczzKasJsCvJfN3spvH8JOCuhz+lw0f8gvisU7IDXp8DH18CKl8DtIjXWhsEADpdCfplMOS9EUwulfM+bVjpdegRljgoh2h8JSgkhhGjTSoLsa6SrLFazkIDctBMAWJl4hnpb1i/qh3nC2FNq0f8BCsqgaVR1Oq7h9Y0m6Hq8en338pAP25Sz7wXb6FzjrzwvTi8zrP2Nv5YNZzIaSItVg1L1zdTX3pToTc5DCLxu+QrsRZDYHaa+oZbuXfSRGhTN/RP+eA++vQvem4HFWUZqjA2AHCnhE6LJVZfvhZop5QlKSfmeEKINk6CUEEKINq0k1FnJspaC2wmJ3Unr1h+A34oSIaEbuKrU2/HKlPJqzB20wj16VpYy5q7At+s2Ur3c/WvIh9aCaUVN0Oi83NNTKuiAoB/x9ZTveWfDaR/eSuzOI6bETO+bFsrj/Mf76uWgaWBWA06k9oWrFsH42XDi7WCywdZv4JNrSY9Xg345xRKUEqKpVc++F9qXHlpQ6kgqZxZCtD8SlBJCCNGmhVy+5+knRa/xHN0pDoC1ewsp6TIOgIrN36EoSngypda9AyjQ/SRIzAx8u66j1Ms9K9Dr14KkNWgvrnTiCnMQR/t2PsoaQp+jGrTyFX9led7ZcNp6igJlVUfGB7GSUD+4lubCzkXq9UFTfW9L7gknzoLx98OlX6jLtnzF0ZHqrF45RRWNGbIQIgBaZmhjy/fKq1xhf38XQojmIkEpIYQQbVppqFkkOzxBqZ7jGdhJ7e+0fl8Rt6xOBiBvzZe8t3KP/o9+yLPvuV2w9i31+tBLgts2YyiYI6D8EBzaFtLhvYNp4Sx5c7jcVHlmhAtHplR9PaW8s+FsZiMWk8FneXunBf+CDrxu/BgUN3Qapgah6tL1OOh5MqAwseo7AJmBT4hm0KieiPhO8CElfEKItkqCUkIIIdq0CodaQhZlDeKf+vwdcDgLjGbofiI9UmIY0yeVKKuJ9eZBVClmuhrzWLn6dwCsZqPfPkgB2bkYivZCRAL0nxLctmYrdD5WvR5iCZ/FZNQzmcLZV6rc7tKvB9tTyh+9p5SfQJMWeIy1mdWZ+iLqLvVrj0LuKbXZkwE1cGr96wEMU2d7HFbwNRacUr4nRBNzutyUeUqgQ53d1WY2YfVMfiBBKSFEWyVBKSGEEG2aFpSKsATxJ83T34kux4MtFqPRwOuXj2DTw6ez6uGzKU5TA0EpOWpfqUbNvLflK/VywNlgiQh++y6epuj7fg95CNr4C8PYV6rUUzpnNRuxBDsjnB96Tym/mVLqMi0r4Ejro6JnStmCeB663ZC9Tr3e/aSG1+87EWI6EOUo4FTjKml0LkQT837/CjVTynvbI2nyByFE+yJBKSGEEG1apUMtIYsMJpNJ7yd1st+blR5jAThG+RNoROmeosC279XrfSaGto8uI9TLvStD256mmYGvTJt5Lwz9pKD+MdYsX4urJ4DVHhWHUuJzeBdUlarlnyl9Gl7fZIEhMwA4y7SswaCUEmKPMyGESgtKRVpMjQrsa8H60hpB+tW7D3Pq0z+zZGte6IMUQohmIEEpIYQQbVqlJ1MqMtDgiLN6Zj16jve7Snw/NbNkhHELoITe5Dx3s1q6Z44ILFvFH618L38blBeEtIv4JghKaYGicJTuAfWW5BXX6Bt2pGVK6bPvBROUyl6vXqYdBaYAtxtwDgBjjOspKi6sM/DkdLk5+9+/cuXrqwIfjxDCh/Zep5Uuh0p7XyypUb737cZstuWW8u2fOY3avxBCNDUJSgkhhGjTKjw9OWyBZkrtX6VmkESlQPogv6tYuwzHjpVkQwk9DQeIj7SGNrhtatNoMk8Ea1Ro+4hKqs50CbGET8v0KmyCnlLhaHIOXj2lKurpKeUJXB1pPaVq3v+A5PyhXnb0/xz3K30g7oRMIgwORjjX+O3vBbDvcAXr9xWxcPNBmfFLiBBpmZ6hzrynqStIn19aBYDdk00shBCtVXj+kxRCCCFaSKXTkykVaFDqoFqSR+fhYKzjuxmzlV0R/elXuZ4Rxi1URR4X2uC2aqV7E0LbXtN5BBzaCnt/C2lf9fVrCsbn6w/wzm+7cStQWK5+4IkKU/lefdlcNWeoOtIypQ57Huu4oDKlPEGpOgKvfhkMGI+aAsteYKJpJQ99/idxkRZMRgPnD+tM/45xAOSXVembVDhcYQtMCnEkKQ51AoMaYjy95mqW7+WV2oHqv5FCCNFayX8RQggh2jQtUyrgoNShreplA312DiUPh/1qUGpjKD2lKg6rQSSA3qcFv723LiNg3Vsh95UKV/neCz9uY1tuqc+yzOToRu1TU1/2U62eUhFHVk+pnXllAHQL9LFWlOryvY6DgztY/7Ng2QucbFzLHWt3YUfNEtx6sIQ3r1CDswVeQanyKqcEpYQIQXX5XngypUrtvu+H1ZlSEpQSQrRu8l+EEEKINq0y2Nn38v5SL1P71ruaq/PxsH8eI4xb2BvKh4btP4LigtR+kNgt+O29ac3O968GlzPwHkEeCVFqYEHLbgqV9o37HRP6kpkcjdlk4IReKY3ap8a7ebmiKBgMBv22klo9pbQAVvvPlCqvcrK/sAKAXmkxgW1Ukg3lh8BgVHtKBaPTMBzR6cSU5fDI0CKWKoP5bN0B/QMuwGHvTKkq+cArRCjCVb6nvS/WzJQ6pGVKSfmeEKKVk55SQggh2rSgZ987tE29bCBTKqHPCTgUE50M+XQy5AY/MG3WvcZmSQGk9AVbPDjKIffPoDcP1+x7TpfaP+ik3qlMHtSRCQPSw9dTyvPBzK1AWY1AR4m9Rk+pyCNnCnQtSyop2kpSdIC9zbTSvZQ+wfcyMxqxeGalPD9lL5eMVAOqZVXVH3jzfTKlJCglRDA27i/i7o83sDu/HGh8+Z62vXeQ3u1W9NdppWRKCSFaOQlKCSGEaNMqtEypQHobVRZDyQH1ekrvelft3imNPxX1A3m38iADQW4XbPtBvd7YflKg9r7qPFy9HkIJX7jK9xyeoJTZZGhgzeBFWIxYPdOi1xynFnw6EjOlduSp5ZI9U4Mok8zZoF4G00/KW9fj1cs9y/XZFcu8ZvYqKLPr1yUoJURwrnt7Ne+u3MObK3YDjS/fi9HL96pfo0UVDn0SArtTMqWEEK2bBKWEEEK0aXpQyhxAUCrfkyUVnQaRifWuGhdhYatZzabqULIpuEHtXw0VBWp2U5cQm6TXpO0nhKBUgudDT2F5Y4NS6ocbSxMEpQwGg9cMfL7jLK3RELi60Xn7z5Ta7unhFXDpHsAhT4lqWv/QDtptlHq5bxXRRvX1VeoTlKp+3KV8T4jg7C2o8Pm90ZlSfsr3tNI9kEwpIUTrJ0EpIYQQbZr2D3dkIJlSeZ4m5w30k9Kk9h0JQMeyzcENaut36mWvk8HUuG/BdVpfKa15ehC0b+IbO1ud0xOUMtc1a2Ej1dXAvKTyyG10rgWleqYGEZQKsG9anZJ7QVQKuOzEF6pZgpUOt37+fTOl2n+2mhDh1CPFN+uxsT2ltMxR78DxIa8ecDL7nhCitZOglBBCiDZND0oF0lNKn3mv/tI9zbhxpwNgPviH2mA8UNs8QaneYSjd03QaBhigcDeUHAxq0zi950gjM6XcTVe+B/57Xzldbj0bTvvwVZ0p1f4DIlr5XsCZUm435G9XrzfQN61OBoNewheVU52Zp/X68p59r0KyMIQIitXs+/Gr0eV7ttqZo76ZUlK+J4Ro3SQoJYQQos1yuNx6n6OAZt/Tg1IBZpCk9AZrrNpgXCuJakjxAU9PHwP0PjWwbQIREQcdBqjX9wVXwqd96Cm1O3F7Akuh0DJltN5P4abPwOcVbPL+9l/78BWvr9e+M6WcLje7DqmNzgMOShXvU5+vRgskdg/94J4SPvO+3/TzrZ2LgnJpdC5EqLzf06Dx5XtaT6kSu5TvCSHaJglKCSGEaLO8/9mOCCZTKjXADBKjCTKGqNf3rwlsG23WvU7DIDolsG0C1flY9TLIEj7tQ4+i+H5wCYbbraDFs8xNFJTqZC5mgnElFSWH9WVaNpTNbNQzDLT7U+lwU9WOm/juKSjH4VKItJjIiI8MbCOtRDW5J5ga8WG360jPIFYQY1Uz47Rm5wWlEpQSIlRlNd6DG1u+F+Onp1S+12tUGp0LIVo7CUoJIYRos7SyBINBDVrUy+WEgp3q9WDKmjKGqpf7Vwe2/lZPUCocs+7VFGKzc5vZpD8+ofZhcrirP9iEvXzPUQHvX8wjO8/nFeuzjPrjbv2mvQW1p03XPoRB+252rvWT6pEajdEY4GMeZIlqndIHgSUaKgsZYM0G1AyPSodLL+MDqJCeUkIEpcyuvn6irer7ctekqEbtTwtqldTR6LzK6W5UhqwQQjQ1CUoJIYRosyq9Zt4zGBr40F6aA26nWtYUmxH4QTodo14eCCBTymmHnYvV671PC/wYgerqCUrtXwNV5UFtGtfIkjenq/pDjSXcjc5/fxU2f44R9Rg9C5aSveFn1u45zM3vrwNgeLckfXWzyUhStBWAnOLK8I6lFdnjCcj1CKbJuVZmGmiJal1MZuiiZuaNMKr7LLM7OexVugf4BKiEEPWrcrqp8pRBf3bjaL695SRSY22N2qdWvlfhcOkl1t6NzkGypYQQrZsEpYQQQrRZFcHMvFesZnsQmw7BBFU6DVMvD/4J9tL61836BRxlEJMOHQcHfoxAJXaHuM7gdsDeFUFtGtfI5uDeQamwZkrZS+CXZwBY3Od+3neOBWDHB3dzztxl5JXY6Zcey2PnD/LZrFuyml2wOz+44FxbogWAkj0BuIAc2qZehjrznjdPCd8QRZ19sszu9CkLAqiQoJQQAfMu3ctMjqJ7jZn4AuZ2wfJ/w5vnkjhvJHeb3yaeUj0LyztTCqSvlBCidZOglBBCiDYrqJn3iverl7EdgztIfBdIzFSzrHYtqX/dPz9RL3ufqtYUhpvBAN1PVK/vWhrUpnqmVDjK9wItJQvEipehPB+SepI+9nI+jL4Qh2JitOlPxti2MSIziTeuGKE3N9dkJqsf5tpzUKq4Qv0AG9TsXHlaplQjy/dAD0od5fgTgFK7y2fmPYByKd8TImBak3Ob2di43nw//RO+uwd2/IihYDvXmL9ikW0WFTnq679WUMopQSkhROslQSkhhBBtlpalYQtk5r0ST6ZUXBCle6AGgnp5ZtHb/kPd6x38E9a9rV4ffGFwxwhGpicolRVkUCqi9sx2wdAypcxGQ8OlkoEq2AW/PqteH3cP/TKS+OjuC7Acoz5+rw/fxQfXjiQtNqLWptWZUmXhGUsrVOQJIMYFOjtXeQGUH1KvB9M3rS6dh4PRTLIrj07k+S3fk0bnQgSuzBPE9e6LF7RNn+nZpYy9G86bx24ySDKUYlv1MkCtjEa7Q8r3hBCtlwSlhBBCtFkVQWVKHVAvgw1KgZr5BLBtoTqFXU2KAt/eDYob+k+BzBOCP0agtEyp/WvU0rcANTpTytOrJGyle24XfHItVJVC11Ew4Nzq27TrW75S1/NDC0plteOglNb/K+BMKa3JeXwXsIZYFuTNGq2XoQ43/kWplO8J0Sha+V50qEEppx2+uFm9PvJGGHsXDDyf5yOuASB226eUlZbU+tsomVJCiNZMglJCCCHaLG32vYCCUlqmVLDlewCZo8Fkg6I91R/8vW36DHb9rK5z6j+D338wErpCQjdQXLB7ecCbadk2oTY614JSYWty/vPjal8sayyc87Jvn6/uJ0FEPJTlwd7f/G7e7Qgo39MypWqWLtYpnKV7Gk8J3wjjX5TZnXr5XmKUOibJlBIicKXazHuhBqW2L4SKw+pkHac8pC/eGjWUve5UzI4SKtarZeQRluoJISolU0oI0YpJUEoIIUSbpc++F1CmVIjle6BmjHQbpV7fVqOErywfvr5dvX7CzZDUPfj9B6v7Serljh8D3qQ6UyrE8j3PlOJhyZRa+xb8/C/1+qTHIbGb7+0mC/SdpF7f9LnfXWg9pbKLKtttE99ivXwvyEypxs68583zvD/WuEUNSnnK9zolRgJQ3k4feyGagpYpFWML4G+WPxv/p14efa46Q6ZHQnQEH7rGAGBc9xYAydE2Ijyl7e31PVII0T5IUEoIIUSbVRFUUCrERucarYRv3dvg8mQbKQp8e6ea0ZPaH066PbR9B6vfGZ6xvAOVRQFtUt1TqpGZUo1pzguwdyV8fpN6ffStMGS6//X6T1EvN3/ht2QyMcpCrCf7a29B+8yWKvIEEAPOlNKCUqlh6Cel8WRK9THuRynLp8BTvtc5QS2frJBG50IErLSyEeV7VWXw1zfq9aPP9blpxnFd+ch1Em7FQFLeb3SggJP7pel/GyUoJYRozSQoJYQQos3SZ9+zNhCUUhSvRuchBqUGTYPIJMjdBEufUvf540Ow4UMwGOGsf4PZFtq+g9X7NEjtB/ZiWDU/oE20AE6oPaW0RueNDkote14tPTzqLBg/u+71ep4Mligo3gc5f9S62WAwePWVap9BqeqeUgF+gNXL98IYlIpKojC6BwAdi9fp5XudtUwpKd8TImCljekptfVbcJSrs8FmHONz0+lHd2TQgKP5Q1Ffq+cmbOWuif2wmdX3a7tTyveEEK2XBKWEEEK0WXqmlLmBP2cVh8FZqV6PDaF8DyA6BSY9oV5f8gS8clL1DEin/ws6Dwttv6EwGmGUJ9toxUtq89sG6OV7IWZKOd1haHRenA1bvlavj7lLndmwLpbI6pkGd/zkd5XqvlLtr9l5pcNFleeDZECZUo4KKNyjXg9n+R5QkDIcgG6l68kvU59rWlBKGp0LETi9fM8aQlDqT7VXFEef5/e98+GzBvC7UZ2Y4JrOe4i2mSVTSgjRJkhQSgghRJtVWRVgppSWJRWZBJaI0A949HlqWZnbWZ29M/EJOO6a0PcZqoF/UwNspTnw7oVQXlDv6lqj85LK0MqtHJ5MKbOxEUGptW+pWVJdjocORzW8fq/x6mUdQanMdjwDn5bRZjRAdCAfYPO3AwpEJKgB1DAqTR8BQK/KDWQXqcHdHqkxQMOZUqV2Jz9vzdMDbEIcyUqrQsyUctphu+d9UCvfriEtLoLzpl4CQMKBX8Dt1oNSdml0LoRoxUKc+kEIIYRoeTWnva5TY5qcezMY4Jz/wKAfAQMk94K0fo3bZ6jMVpjyLHxwqdrw/NXxcPn3EJPqd/VGZ0o1tnzP7YI1r6vXh18W2DY9T1Yv96xQ+6lYo31u1jKlft6axwOfbfS5bWjXBM4Z2jm0sbYC1aV7FoyBBAL1flJ9689AC0FVxnEA9HBuV88DEfRIVR/7CocLt1upc4xPff8X83/NYmjXBP49/RgyEiLDOjYh2pKQG53v/hUcZRDTAToOqXO1pD4ngDUGyg/BwQ3Vjc6dkiklhGi9JFNKCCFEm6VNc21rMCjVyCbn3qxRarZU/zNaLiCl6TMBrvwB4rtCwU54f0adpXx6o/MQZ99zNLZ8b98qKNoLEfFqP6lAJPdS75urCrJ+rXVznw6xAOwtqOCN5bt9fm77YD2Fnpni2qKiYGfey9Nm3gtjPykPS1JX9ikpmHFzjHEbydFWfap5qP8D7/bcUgDW7inkrH//SlF5aEFRIdqDMrv6Wgk6U2rr9+pl71PV8u26mK0+Zc8RZinfE0K0fhKUEkII0WYFnCnV2CbnrVn6QLj4Y7DFw97f4H9Xqv2FatCaZZdUOnC7a89m1xCnXr4X4r8OOxerlz3Gqf2iAmEwQC9PttSOH2vdPLhzPE/+bTA3je/t8xNpMeFW4FBpw722WisteBhwk/NDTdDk3CPaZmalWw3ADjf+RceECP3DLlR/0PYnr0Q9B0aDev2nvw6GfXxCtBUhNzrf9p162XtCw+v2HKde7vgJmydTSsr3hBCtmQSlhBBCtFnVQakG/pwVH1Av4zo18YhaSEpvmPo6GM2w+XOYPwkOZ/msomXcuBUoqwo+W8rhUj/UWELNlNKDUmOD204r4dteOyhlMBg4f1hnZp3ax+enQ5w6C+LhNpyVo2VKBdTkHODQNvUyNbxNzgFibGY2ursD0N+wh4z4SIxGgx4Mrq/ZuRaUGtNHLStduvVQ2McnRFuhle9ps6EG5NB2NRPWaKkOONVHe4/d8xvRRvV4Ur4nhGjNJCglhBCizbJrs+8FmikVjvK91qrnOLj4E4hMhANr4MVj4bt7IXczKAoRFhNWzyyFxSE0O9eCUiFlStlLYd9K9XqwQanuY8BghPxt1bPLNSAhSi0tO1zWdsv39J5SgZTvud2eRueoAcowi7aZ2Kx0BaC/YbfeFyrKM8FAucP/88nhclPgKaE89xi1v9fS7YdQlOAz9YRoD7SgVECTF2i0LKluo8AW2/D6KX3U3lMuO93tW4DqUnchhGiNJCglhBCizdIzpRqafS9cjc5bu+4nwVWL1ECOqwqWvwhzj4en+8P8yZxpXQNUz+wWDL18L5RMqd3L1BkLE7pBUvfgto1MgE7D1et1zMJXU2KUGsgpbMuZUuVBZEqVHABnpZpJEd817GOJtprZ5O4GQFdjHt1i1A/W2uuurhn4CsqqUBQwGQ2celQHIi0m8krs/HWwJOxjFKItCKl8b6snKNUngNI9UMueM0cD0LNUfc+XnlJCiNZMglJCCCHaLK1sqMFMqXA2Om/tkrrDJZ/BjI+gz+lgsqqZYrt/4V/upxhm+Cu0oJSn0bk1lNn3Qi3d0/Qar14GHJTyZEqF0Oi80uHmjo/+4Ps/c4LeNpy8Z99rUMEu9TKhK5jCP7Gy0WjAYY3ngJIEQB/UjDUtU6qu8r3cYrV0LyXGSoTFxHE91O2lhE8cqbT+azGBBqXsJWpQHwLrJ6XxNDvvWqIFpSRTSgjReklQSgghRJul/aNdb1DKUQkVBer19p4ppTEY1Fmapr8P/9gJV/4I/adgxsW/rc9TURh8s2lHYzKldi1RL0MNSml9pXYuBlfDpYd6+V4ImVK/7Crkf2v2c/Wbq/WZ41pCUD2lCnaql8FmoQUh2mZmsydbqkuVerwoTwlSXZlSeaWVAKTGqj2+Tuyt9pVasi2vycYpRHMrqXSwO78soHX18j1bA1+kaHYuBrcDknpASq/AB+UJSnUo+gMbVdilp5QQohWToJQQQog2qzKQ2fe0flLmCLXf0pHGFgudh8PZL7Pf3JV0w2E6b/h30Ltxaj2lgs2UqiqH3D/V611HBn1cADKOgYh4qCyCA2sbXL26fC/4TKmSyuoPb3d8tB5XCDMVhoM++14gDZEPezKlEpsuKBVjM+t9pVLK1Kbqek+pOhrna03OU2PUoNTxnkypP/YVNdk4hWhu1721hjFPLOa7BrIrFUXRJ5kIOFNqaxCz7nlL7gmxHTEpDo4xbpNMKSFEqyZBKSGEEG1WRTBBqdiOagbRkcoWwxdpVwOQnr0Qgmw27fQEZyzGIB/D3M2guCE6FWLTg9tWYzKrfbIAtn3f4OoJ0aGX75XYq4NSa/cU8r81+4LeRzhomVJBle81aaaUSc+UiizYDARevpcWGwFAiic4VWp3SrNz0W78sl0tR73mzdX1BsIrHC60GHdAPaUUBbb9oF7vc1pwgzIY9GypE4wbJVNKCNGqSVBKCCFEm1Wpz75Xz5+z4gPq5ZFSuleP/UkjKVdsxFTmQPb6oLatLt8L8l+HHM9x0gc1LijYf4p6ufIVKC+od1UtUyqU8r0Su2/Wz5bslmnKHVRPKS1TKqlHk40n2lqdKWXI3QRuF5ENlu95MqU85XtaEMvlVrA7w5u5UWp38t7KPeR7jilEc/H++3PPJxtw15FdWeqZ9dRgqH4t1CtnA5TmgCUaup0Q/MB6nQLARONKKuvIZhRCiNZAglJCCCHarApHAI3OtaDUkdDkvAHR0TH87B6k/rLlq6C21cr3LMH2lMrZoF6mDwxuu5qOPg86HK2W8P38WL2rao3OG1O+p31oDGUf4aBnSkU0EJRSFCjIUq83cflelpKOHRs4yqFgF1Ge111FHTN76eV7elCqOjukrkBWqN7/fS93fbyB/yzZGdb9ChGMrzfk8OAXf/rNBNRn3rOaMQQSoN/1s3qZORrMtuAH028SLlMEPY3ZdKrcGvz2QgjRTCQoJYQQok1yuxW9T0Zkfd86a+V7cRKUykiI4HvXcPWXIINSDs+3/2ZjsJlSnqBUx0HBbVeT0QQTHlGv//4q7FhU56oJjcqUUoMlXZOiACgMYabCcCgOtNF5eQHYPT2aErs12XiibWbcGMmO8GRjZa/TX3d19ZTKrRGUMhkNeqltmT28mRtahlRBWcsEEcWRSVGq/w7dM6kfBgO8sXw3Ax/8noEPfsfAB79j8vNLKSyv0mfeC7zJuSco1WNMaIOzxXK4szpJxAkVi0PbhxBCNAMJSgkhhGiTvMt/AsqUiuvUxCNq/bokRvGTeygujGrz8YLAs0oceqPzIDKl3C446Glynt7IoBSos/f1OwPcTnjzHPhpjt/eWN6ZUsH2LtLK9zKTo4HQ+lI1ltut6OOIi2yg94xWuhebAZbIJhuTFhwriB+gLjiw1qvRef2ZUmmx1Vke2gfysjCXE2mBAe15KkRz8P47dOGIrvzfOQOxmAyU2p2UVKo/fx4o5o3lu6szpQLpJ+VywO5l6vXuJ4U8vsKeZwMw1rFEfT8WQohWSIJSQggh2qRKr5KhCHM9f868G50f4bokRVJEDGuVvuqCrF8C3ra6fC+Ifx3yd6ilXpao8PU7Ove/MOwyQIElT8D6d2utogWlHC6FsiDLxLRMqW7JaqZUUQjZVo1VYnfqsbYGy/eaock5wEXHd+P8YZ3pNnC0usArKOWv0bmiKLXK96C6hK/MHt4PyJWeRs5a7zMhmoPd4fvlyIUjurLynlNYdPtYFt0+ln+epQZxX1+WRX6Z+noIaOa9/avBUQZRyZA2IOTxVXUfR5ESRapSAHt/C3k/QgjRlCQoJYQQok3S+thYTcb6m28Xa+V70ui8c6IaaPnd1UtdsG9VwNvqjc6DmX0v5w/1ssPRavldOFijYMqzMO4+9fev/wGFe3xWibSasHkClYeDLOfSekp19QSlWiJTSivds5mN9WcBQnWmVBP2kwLomx7Lk38bTHKf49UF2euJtqjPBX+Bv7Iql/4a1WbdA7yyq8KbKaUFB6okU0o0Iy0YajIa9IB9YrSV7inRdE+J5sIRXemUEEl+WRWvLlVfq9HWAIJSu5aol5knQrAl015sEVEs0foIaplXQgjRygTwriiEEEK0PtoHXlt9M++53VAijc41ERYTqbE21pX1VBfsXx3wtk53CJlSWlCqsU3O/TlxFmz/Qf32/4tb4OKPfW5OiLJwsNjO4fIqunj6QwWi2FNi0y1JLd8rqnDgdisYgwnGNZIWCGuwnxRUl2A2caaULqWPmvlWVUoHxz4Aft1+iOn/XeGzWq+0GACirSafciXtetNlSklQSjQfLUuwrmxds8nIlSd256EvNrFubyEAyTHWhnes9ZNqROkeqIHtte7eTDGtCOpLCCGEaE6SKSWEEKJVURRF771RH618L7K+TJLyQ2r/IQwQmx6mEbZtnRMjWef2ZErlboKqsoC2c3oypYKafS93i3rZ4ahghhgYownOfgkMJtjxI2T/4XOzVsIXSLPz3OJKlm7Lw+1WKK1RvudWoKSyeadT33WozGcM9Tq8W71MzGy6AXkzmqDjYAB6OdUZvQrKqli2I9/n543l6rjS4iJ8Nq8OSoU7U0qCUqL5acHQ+jIapx3bheO6J9GnQwwXjujCbaf1rX+nVeWwb6V6vcfYRo0vwmJiref9Xtm/ym8PPiGEaGmSKSWEEKJVee7Hbbz403ZevXQ4Y/um1bmeFpQKqMl5TBqYAsg6OQJ0SYxi7Z4kSm1pxNhz4cA6yDyhwe308r1gMqUKdqiXyb1CGGkAknvCgHNg40ewYi6c87J+kzYDX2ED5Xe5xZVMefEXDhbbef2yY/FMMkhqrI0oq4nyKheFFVXERzXf82dHbilQnW1Ur2I1W4n4Lk04ohoyhsKe5fR2buPdq84jzzPznWZvQTlPfv8XigKpMb5T2Uc3Vfmep+G0wykfukXz0Rrs1/d3KMpq5v1rRga+070rwFWlTs7RyF58ERYTm5RuVCkmrGV5ULi7+QLYQggRIAlKCSGEaFWeXbgNgJnzfyfrX5PrXK/Yk70SG1HPnzJpcl5LlyR1hrbdEf0ZYM+F/asCCkpp5XsB95RyOauzeJJ6hjTWgIy8Xg1KbfgITnlQz4jTM6Vq9JTKLankr5wS/fenvt/KwWI1qLIqqwAAq6eXU0KkhfIqF4fLHXRLbrq7UNP2PDUo1TO1gaCU213dMy2+GWeXzDgGAMOBtYyc5P+B6RgfwX2fbmRM31Sf5Xqj8yAb0DdEC1JLTynRnKq/HAlj8YnWT6r7GDA0rmw4wmzEjpVNSjeGGHaqJXwSlBJCtDISlBJCCNGqZMRHcKCoEoDtuSX0Sov1u57WDLre2cm0TClpcq7r4ml2vtHQmwH8HHCfkeryvQA/fBXtBbcDzBHqN/5NpdMw6DoS9iyH31+Fk9UG6Al+yvecLjeTnvuFQzUyezSbPcEqrZdTQpSVA0WVDWZbhduOXLV8r2dDmVJluepjbDBCTDOWp2YMVS+z/1BLjay1ywzPPaYzZw7OqJVZF23zZEqFuXxPy1iR8j3RnCoCydgNlh6Ualw/KVAzW81GA2vdvRli9ASlBp7f6P0KIUQ4SU8pIYQQrYoWTAB409OXxh8tKFVvM+hiaXJek9b0e4U9U10QYLNz7cO+OdCeUlrpXmL3Rs0eFZDjrlEv17wJLvV5keinfC+3xM6hUjtGA/TvGEf/jnGM6J7EqUd1AGCLFpTyZN9VlwA23JcqXFxuRe8p1auhTKmi/eplbEcwNeP3jMk9IaEruOxqP686+Cv11HtKhTlTyu7p7VPllKCUaD72cAelKgrhwFr1ehiCUqA2O1/n1ia3kGbnQojWR4JSQgghWhXtm2eA/63ZX2fvGa18Ly4ygPK9OAlKabRMqUUlnVEwQPF+KDvU4HZOT7MlS6ABpnxtVrjG9UQJSN/JEJ0KpTmw9TvAf6PznGI1A69jfCTf3Hwi39x8Ih9cM5LTB6hZRvsOVwDVgU5tH82ZKbW3oJwqlxub2UhGQmT9K2v9pJoyE80fgwH6n6le3/xFUJtqPaXC3ehcMqVES9Ced/VOuBGM3ctAcat9+MJUkhthMbFW6a3+kr0enM2b+SmEEA2RoJQQQohWxTsIVWp3sm5Pod/1givfa+YP7a1Yx4QIjAYodFpxxXdVF+ZubnC7kDOlkpshKGW2wpAZ6vXVC4DqLKfDXgGlg56y0A5xvs23awZ/Yj1BqXh9H82XKbXD00+qR2oMpob6d2mZUs3ZT0rTf4p6+de3QX3IbeqeUlpDfiGaQ9h7Su36Wb0MU5YUqEGpPUoaTmu82kA9r+H3eyGEaE4SlBJCCNGqlHs+rA7IiANg7d5Cv+sVaUGp+sr3pNF5LRaTkY7xahCmNM4zK15QQalAM6U8QammbHLu7ZhL1MvtC6Fwj1eWU+1MqfT4CJ9NMxJ8f6/OlFIvtedac9ihNzmPbnjlYk9QqiWCrp1HQEwHsBdB1pKAN2uqnlLa7HvS6Fw0Jy2z1xauTCnvJudhYrMYAQNlSQPUBdnrw7ZvIYQIBwlKCSGEaDUURdGDUqN7pQCwds9hv+sWVwbSU0or35NG5946JapBqdyI7uqCAL451xqdWwPOlPKU7yU3U1Aquafng5wCa97Us5xKKmsHpTrE+Qahagap4j3ZdwmRWglg85W7bM9Vg1K9GmpyDlDUQuV7oPYJ6+eZHTOIEr7qnlLhLt/TMqUkKCWaj1a+F2EOQ1CqNBdyN6nXM09s/P48tLHttKhfQmRv+a3OsnghhGgJEpQSQgjRalS53Lg8vYtG6UGpQhSldklOcUUDPaXspWoWB0imVA3pnqDMPks3dUHulga3cXjOizmQnlIuJxR6mtQ3V6YUwLCZ6uXaN4n2PC1K7dVlYlr5XnqNoJTNbCIlprqkLz6y+RqdO1xuvlh/gDeXZ/Hm8ixWZalB2J4NNTmH6kyplijfA7WXF8COnwLeJFor37OHr3xPURQ9U8ohjc5FM9KCoZHWMHyk0rKk0gdCdHLj9+cR6enjNn+Hmn2cvWUFN727Nmz7F0KIxmrGqVqEEEKI+lV49Zk5NjMRq8lIflkVewsq6JrsO+28lilVZ08prXTPGgMRcU0y3raqoyczaJvSlZNBzZRSFLWBdR2cwfSUKtwNbieYI5o3INjvDIhKgZJsUrN/BqyU2hsu3wPolBDBoVI7UF0SmtAMjc6/+iObW95fV2t57w6BZEpp5XudwzuoQHUbCUYzFO6Bgl2Q1L3BTaK0RudhzNSwewWipKeUaE6Vnlkfw5IppfeTCl/pHsBlJ2RS6XBR7hgAJdDfsIfN+/1nIIeLoij888vNdE6M5PLRDb8vCCGObJIpJYQQotXQSvesJiNRVjNHefpKrfFTwqf1+amzfE9vci6lezVp5WubqtLBYISKw1B6sN5ttPI9SyA9pQq8Zt4LdLa+cDBbYch0AOI3vw2o5TVaQC23WA061SzfA/Q+W1C7p1RhE/aU2ltQDkDXpCgmDUxn0sB0bj2lD307xNa/ocupzjYILZcpZY2Gzseq13cF1ldKK98rD2OmlN1RHZSqcrn9ZlYK0RQqq7RG5+EISoW/nxTAGYMy+OqmE3n11gtwW6KJNFQRW5qF2910r5N9hyt47dddPPX9X012DCFE+yFBKSGEEK2G1udCKzcY2jUB8N9XqrihRufS5LxOWqbQvlI3JHq+xW6g2bnD7cmUamhGOIDDWeplUjPMvFfTMZcCYNn1I50NuYA605uiKHX2lALfGfji9Uwpz+x7ZU2XKaUFV08/Op25M4Yxd8Ywbj6lN4Z6stYA9fmtuMFogei0Jhtfg7QP0FqWRwOC7Sn11ordPPr15noDTVq2ikaypURz0XtKNXb2vcO71fdNg0nNQGwKRqNaGgj0Y1eT9srTXt+VUk4rhAiABKWEEEK0GlqmVLQnKHVM10Sg9gx8iqJQXOnpKVVX+Z5kStVJC8rkFFVCWn91YV79faW0TKmAZt8r2qtexncJeYwhS+kFPcZhUNxcZv4egDK7kxK7U39+1ewpBb4z8MXXKN8rrnTqvc7CLaCG/X431Er3OjZvNlpN2tT1u5aoJaAN0F7b5Z5AYUMe+2YLryzZyb7DFXWu450pBdLsXDQfvXyvsZlSWlC30zCwNZAl2QjGjoMBGGDMIrfE3mTH0YJ1LrfSZO+dQoj2o0WDUkuWLGHKlClkZGRgMBj49NNPa62zefNmzjzzTOLj44mNjeX4449nz549+u12u52///3vpKSkEB0dzZlnnsm+ffua8V4IIYQIFy1ooGVK9e+olu/tyivzWa+syqX/o1tno3MtKCWZUrVomVK5JZUoKf3UhQ1kSmklcJZAekpps8LFt1Cvo5E3ADDVtIhoKii1O/Um53ERZv355c07Uyo2Qn1OeQeKipqohK+ooYy/OjfUZt5rocdY03k4mCOhLK/B5xBAlCdTyuVWfHpB+aMoip5xUV9mVe1MKQlKieahNTpvdFBq+4/qZc9xjRxRAzxBqaMNTR2Uqn5NyutRCNGQFg1KlZWVMXjwYF588UW/t+/YsYPRo0fTr18/Fi9ezPr167n//vuJiKj+NvOWW27hk08+4b333uOXX36htLSUM844A5crfL0KhBBCNA+t0XmUZ4YuLXulxO7UM0qgunTPYjIQWdeHAa18TzKlakmLtWEwqGVOJQm91YUNZEoFNfteSweleo6H5N7EUsFU02JK7c56m5xDdfN3qA5GWUxGYj1BlNySSiodLqrCXI7SYG+0urT0zHsas6263CiAvlLer9cye/0lfE63gpZk4T0JQk3eH4BB7SslRHOo0Mv3GhGUcjlh5yL1eq9TwjCqeuiZUrs4WFTeZIepkKCUECIILTr73sSJE5k4cWKdt997771MmjSJxx9/XF/Wo0d1f4qioiLmzZvHm2++ySmnqG/ib731Fl26dGHhwoVMmDCh6QYvhBAi7GpmSkVZzSREWSgsd5BdWElcuvrB3XvmvTp770j5Xp0sJiPJ0TYOldo5aOtOHKhZLvXMwOcIKVOqBcr3QC1nO/46+GoW000/kWOfrZYq4r+fFEAnPz2lAOKjLJTYnZz+7FJAfXhuP60vN4zrFZahFlU4ax0zsA218r0WDkqBWsK34ye1BOn4a+td1WRUA8kVDhflVS7qm/jeO5Oq0lH3B9uaGVfSU0o0l+pMqUZ8z79/NVQWQUQCZBwTnoHVJbUvDoOVOCqw5+0EujXJYexeQSmnvB6FEA1o0aBUfdxuN1999RX/+Mc/mDBhAmvXrqV79+7cfffdnH322QCsXr0ah8PBaaedpm+XkZHB0UcfzbJly+oMStntduz26pTV4uJi/Zhut0Tzm5rbrc6MI4912yDnq+1oD+eq1K4GmyItJv1+dIyPoLDcwb7DZfROiwag0NN4OjbCXOf9NZRkYwDcMenQih6T1nKe0uPUoNRuOtLLYMJgL8ZdtK/OIIdWvmc0UP/YXY7qxz4uo+Ue+6PPw/XVP+ht3M+Bg1vIsXcAoEOcze/4U2KsXDqyKw57JZEWo77OyX3TeGPFbn09RYEfNx/kujHVX5LtKSgn0mIiNdYW9DCLKjzPZZspqOeEoWhfyz/Gmm4nYgSUrKUoziow1v/vZbRNDUqVVDrqvc8V9ursyPKq6nVrvobKa2Rc2R3OFn99CVVreb9rKlpQymYyhHwfDdt+wAAoPcahGIxN+3o2mDgU1ZOOZZux5G7E7fad6S9c56vcq9xWfT222o+cbVJ7f121F3KeGvh/0UurfYfIzc2ltLSUf/3rX8yZM4fHHnuMb7/9lnPPPZdFixYxZswYcnJysFqtJCYm+mzboUMHcnJy6tz3o48+ykMPPVRreV5eHpWVlWG/L8KX2+2mqKgIRVEwtmRzVhEQOV9tR3s4V7n5hQCYFSe5uerMacmR6n3ZujePAZ63+z056npRZvT1fLiddCg9CMAhuwW3v3VaSGs5TwkRasbTtuwixsZ3w1y4k8JtK6jqcqLf9R2ebJTiwgJy3WV+1wEwluwnTXGjGC3klilQ3nKPfbZ1MEOrVhO17XOybH8DIMbk8v+cAa45NpmioiJyc3P1c3P98SnMPCYRRYG1+0u4/fMdFJZV6vsoq3Ix+T9/kBxt5n+XDQx6jIWeGbCc5cXk5gY+G1ZyQRYWoEiJwd7Sz29TR9KssRjtJRT8uRhHh0H1rh7hybbbl5NHklFtYO5yKzzz8156p0Zx1tEpABwsqX48Dh46TK7n9V/zNXTwUKHP/g/mHiLKVfdzVDSf1vJ+11TKKtQvuSvLSsjNDSCL1I+kLd9iBYrTjqWiGV7Lh6J707FsMzH5f9R6LwzX+corKNKvZ+fmQWXwAXtRt/b+umov5DxBSUlJQOu12qCUFlU766yzuPXWWwEYMmQIy5Yt4+WXX2bMmDF1bqsoSr1TKd99993MmjVL/724uJguXbqQmppKXFxcmO6BqIvb7cZgMJCamnrEvkDbEjlfbUd7OFcmm/rHKyE2irQ0dZr77ml5/LKziBK3RV9m3KdmUCTHVa/no3g/BsWNYjCR0q0/GBvZhDaMWst56pqSCzuLKFcsmDoeDYU7SajKAX+PJ+D0VGCkp6WSVkcJHAAV29XL+M6kdUgP86iDszB+LEPzVtO9YCnFKVMB6JGe5P85Q8PnpsQQBeygwom+j12Hyqh0utlfVEVSckpgsxN6OF1uyqvU/3e6d+pAckzgH9wMnmBffJcBdZ6z5mTofiL89TWJRRtgYP19cWKjrFBkxxYdS1paKgCfrTvAR+vzALjq5KMAKDNWB5ZsUTH6Y17zPEXm+PaUio1PJC1N/p9rDVrL+12otueW8szCbXppOcBJvVO47IRMAJyK2tw/PTWZtLREf7uoX2kuhryNAMQOPZvY2KZ/LedlHAO5n9PJvqPWe2G4zpclorpfVVxCEmkp0SHvS9TW1l9XRwo5T/j0Aq9Pqw1KpaSkYDabOeqoo3yW9+/fn19++QWA9PR0qqqqOHz4sE+2VG5uLqNGjapz3zabDZut9j9+RqPxiH3CNDeDwSCPdxsi56vtaOvnSusbE20z6/chIyEKgJyiSn1ZiadcJy7S4v++erKkDLHpGMxB9uppBq3hPHWMV3soHSyxY0g7CjZ/jjFvi9qPqQZFqZ7W22o21T/uErWXlyG+M4YWfh7uSD4JV+7TpJRsRrHsBWykx0fWO/76zk18lBWAkkqnfrvdWd0vpcKpEB9Eb5myiuoSl4RoW+DPB6ddne0OMCZ08XvOml33MfDX1xizlsJJt9W7arRnIoMKh1u/z6v3HNZv15Y5vKaStzt9v2n2Pk/2Gj1rnApt9j2wPWoN73ehemflXr7Z6Ft9sWRbHucP60J8lEVv6B1pNYd2/9a+ASjQaRjGZpq0wNx5MKyDzKptGA2GWn0Ew3G+vN8XXfJ6bBJt+XV1JDnSz1Og97vVPjpWq5Vjjz2Wv/76y2f51q1b6dZNbco3bNgwLBYLP/zwg357dnY2GzdurDcoJYQQonUqq9HoHKpn4NtfWKEv02Ysi4uoI+BUuEe9bKnZ39qADp7Z5nKK7ZDWT12Yt9nvut6NoxvMBCraq162VJNzL4boNFYpfQEYWKI2Kg8mG6mm2Ag1mFJqd+L2BEy8Z5lqaDa5mrTncbTVhCWIDCt95j1zBEQlBXXMJtPDk8G+Z4UaNKtHtGdGwzJ79WO39WBprfXsXs3NKxxBzL4X5hkSxZGrpFJ9TU8e1JEnzh9ERnyEWsq7Vw2iVjc6DyEb11EJK/+jXj/uurCMNxCxXQfjVIwkUoyiTQgSZt6vSXk9CiEa0qJBqdLSUtatW8e6deuA/2fvLKPkuM6t/VTzMIOkGTGzLDMzxezYDjjMeMP3JvfG4S+Jw8zkkOMkTmJmki0ZxMww0jBzY9X349Sp7p7mnh5p4Dxrzaqa7qrqM9NUtc9+9wtHjhxh69atNDSIi4lPf/rT/O1vf+NXv/oVBw8e5Mc//jEPPvggH/zgBwEoKSnhXe96F5/85Cd5+umn2bJlC3feeScrVqywuvEpFAqFYuIgSyTynWEj73SzK1pTb1iU6kvVsazHDKYum537QU4Sas0SvNZeL1QtETe27xNJ3iMIRgRVpuy+Z3XeO/WCYKHbzjOhNQAs9u8CRKB59scLvy4HzCDf4Yiynshw33SQotSoOu8liSs4qVQthoJqCA4LYSoJBW5xAR/5/zrYFhalZKfH6O57iUWp2O576iJYkRuGA+I1eubscm47vZ6z54p+kVsaegDwmq+9yImUtNn5D+F4LJoOy27KxXDTorKslAOGcGUNHds8Jo8R+X5V70eFQpGKUypKbdy4kTVr1rBmjThh/MQnPsGaNWu46667ALj55pv5+c9/zt13382KFSv49a9/zT//+U/OP/986xjf+973uOmmm7j99ts577zzyM/P58EHH8RuHz/5IQqFQqFIj2HzIlVetEJYlGrp9VrulD6v6ZTKS1CF3n1ULEvHpt31ZKC2JOxA+9NBByHNAf4BvB3HYraNckqlsmKPI1GqwO1guyG65C3jEADlBdmLUh6nHZfpaJIOikgHz4AvsXASD8vxl6koJZ1SJ6ncJy00DeZfJtYPPpl003yXdJyJ/1fvcICuwXCoubyg9QVDMbfFI8YppS6CFTliaIR7d83MUgA2N3Sj64blAvI4MrykMgzY8FOxftb7wH7yysw9TjsHbHMA8DacDFEqdqJDoVAoIjmlotTFF1+MYRgxP7///e+tbd75zndy4MABhoeH2bp1KzfeeGPUMTweDz/60Y/o7OxkaGiIBx98kPr6U18yoFAoFIrMGXkBAFBT5MamiRPbjgFRFtSXqnxPilLKKZWQ2hIPmiZK0f7vgX0cDIlQ8kefeSZm22BogjqlPA526uLiq07roMY+EOV2yvaYAANxRKlsy/cyFqXk/7j41P+Po1hwhVgeSC5KFbiinVK7Gnuj7pf/08jyvaROqRH3BVS5kCJHWO5dS5QSGbZbj/cwFPG6y7h87/Bz0LYLnPmw9m05GWsmnHAvFCst28fk+N6I925QicQKhSIF4zZTSqFQKBRTj5EXACAyjGrMUrOmXi+QxsV8tyrfS0Wxx8mXbljGNctruWZ5LR358wDoProtZtug6VCz27Sk3W2BCFHq1E8QFbod9JPPUWMaAGfnHU89/hTIXKl+0603HFGCNpClKJVx+d54dEoBzLsUNDu07w2/B+MwMlNq+whRSopR0eV7iS9sY8v3lDNDkRuGR3wnLa4tIs9pp98bjBJTMxalXjZdUmvuhLwsuvaNko5ikSOY17lzTI4fKdYr56JCoUiFEqUUCoVCMW6Qzok8Z7SbZZpZatZkhp33eZNkSoWC4bDtMlW+l4y3njObn925lp/duZY1a88GoGTgEG193qjtZImKw5ZC0PH2gq9PrI8DwUR2eduuzwZgjSOxUJIuYVEqNlMqW6fUqDKlxhN5ZVB/llg/8ETCzaQo1drn5VD7AK8d6Yq6P175XiZB5yrDRpErRn4nOew2VtaVALDhcCcALrsNe6rPxkja95nvDw3Oen9Ox5suQ2XLAMgfboHBjpwfX5XvKRSKTFCilEKhUCjGnJBu8LWHd/P2373Ke+7ZyOaI9u+RxHNKQUTYuRSlrPK9OKVYfY2gB8HugqJpufoTJj35M5YDsEA7wQsHoi9SpFMqZYc46ZLKKwdXQc7HmCmy1G67buZKaYdGf0xTUOn3yfK9sAAy6M8sU0pmo2XvlBpn5XuQVgmffH8/vKOZy77zPE/vbYu63yrfSzPofKSLSjkzFLlipFMK4LRZwtm0/qAQpdzODC6nQkF44vNiffHroGJebgaaISWlZRzWRck2zbHu2NHijXjvKpFYoVCkQolSCoVCoRhzntrTyq/WHeG5fe08ubuVX687HHc7eTEaGXQOYVHqW4/vY/WXn6DRFKfilu/Jznsl9WBTTS/Splp04FugNbJuX2vUXTITZCLlSUFYQNppiFypeYGDoz5mkZljZpXvjSJTqi9rp5TMlBpnTimABVeK5ZHnwdcfd5MLF1Yxp7KAkjyn9XPG7DJmmO9zKTJFZkUl776nnFKKsUHmRkWKUqtMp9S2Ez1ABqV7hgEPfwIOPA52N1z4qZyONRMqC93sMmaLX8ZClPJHOqXU+1GhUCRndGmfCoVCoVCkwR83CKFoRmkejT3DVunTSKyg8xHle2fOLueXLxzGF9Qt90Rlodu6iI1ChZxnR9kcdJuLPN3P4QO7COmnWSUpsvzCka5TahzkSUG4TGynWb5XHmwVpSoFlVkfs2hk0HlEptRJKd/zD4K3R6yPgxLJGGqWQfk86DoE+x6DlbfFbDKvqpBnP3VxzO3X/GAdjT3DEeV76WVKxTilVNC5IkfEa74xt6oQCL8+Pek6pbb8CTb/ATQb3PprmL4mt4PNgMoiFzv1OVxvf3lMws69EUKxej8qFIpUKFFKoVAoFGPKofYBXjzYgabBO86bzVcf3mOd6I9kyLyoH1m+d/nSGl753GWWOwVgWkle/BlqJUplh92BVrUQWndS4zvKrqZeVtaVAhDUTadUqtyUceqUGiCfQ/o05tmaoWlLuMQsC4rcIzKlIhw82QadF+dlcDom86RcReApyejxTgqaBstvhRfuhp3/jCtKJUJe3Mcr30uaKaWcUooxIKQblqCS7wq/R2eW56NpwvgE4HGk4ZTyD8KzXxPrl34elt6Q6+FmRGWhm51j6ZRSmVIKhSIDVPmeQqFQKMYU6ZK6bHE1C2uKAOKKUoZhxC2VkNQUe5hfXWT9SBdMDFbnPRVynimaWcK3UDvB4fZB6/bMnVLjS5QC2GqY2S0nXhvVMWPK9/xhAWTIl1mmVFZOqT75Px6HLinJ8lvE8uBTMBw/Py4eeabIHC/oPGn5numUKjA/N9RFsCIXDEW4ICO/kzxOe5RLNy/O91UML/8U+puhdCac86GcjjMbKgvd7DIdpHQdFk0qcshwQJXvKRSK9FGilEKhUCjGjLY+L/dtFJ3w3nLObOvEPvJkX+IL6tbMc1on+YlQTqnsqRJtwhfYTli5XRDOlHJMsEwpj9OGNHdt0ReIleOvjuqYMjw9HHQefi0PxHldJyMrUWq8dt6LpHoJVC8FPQB7H057N+l89FmZUpk5peRzo8qFFLlAhpxrGrgd0ZdMcyrDjRxSOqWGu+HFH4j1S+8Chzun48yGykI3PRTRaJilzC07cnr8yJJaJUopFIpUKFFKoVAoFGPGtx7fx5A/xJqZpVy4oNISm+I5pSJviyyVyBglSmVPhFPqRHeEKCW779kmVqaUpmmWW8oSpRo3gZ79RZLMlLLK9yJetxlnSg1l45SSnffGsSgFYbfUtnvT3iVZ+Z4vjUwp6WJTF8GKXGB1g3Xa0bRoQT5SlErZfW/Xv8DfL0T/5bfmfJzZUF7gQtNgj25+VrftyenxVfmeQqHIBCVKKRQKhWJM2NnYyz82C5HiruuWommaJTYNxxGl5AW922GzArYzxtcPQx1ivVSV72WM6ZSarzXR3D1g3RxIxymlhyIEk/HhlIJwCd9eox7dmQ++Pmjfm/XxctV9T9cNy20Vt4tkIqzOe+PnfxyXVW8Ugc5H10H7vrR28SQp30vmlJLbyedaiVKKXBAOOY+dJIlySqXqvrftb2K5+k2QStg/SdhtGuX5Lg4a5udIx/6cHt+ryvcUCkUGjI9PRoVCoVBMOr71+D4MA25cPZ01M8sAosr3DCN69nQ4SZ5U2nQeEsv8Ssgrzf44U5Wy2YTsHtxaAKPriHVzMJ1Mqf4WMEJgc0JhzViPNG1k9lgIO/o0s9vViexL+GTQ+YBVvhe+4BrIIFOq3xe0ylUnpVOqpA4WXSvWX/t1WruERSmzfC+q+17qTCnpYlPODEUukKW58b6TIkWpvGSiVNcROP4yoMGK9EP/TwaVhW4O6ObnyCiE+pGEdCPqPahEKYVCkQolSikUCoUi5+xq6uX5/e3YNPjEFQut22X5nm5EX3BCRKnEaEr3Og+KZcX87I8xlbHZCZaLMrfivoOWcCgvKpJ237McPNPHjRsAwjlDTruGfeZZ4sbj2Yedx5bvhd1R8bLSEtFn5kl5nDbc6XTvkkyETCnJGe8Sy61/Bd9A8m0JZ/NY5XuBaFFqpJAdeR9Aseli86uLYEUOCH8nJRelPMnK97bfJ5ZzLxafjeOIyiIXBwwpSqXnZkyHkQKyej8qFIpUjJ+zRoVCoVBMGn72nHAsXbdyOrMqwifv+REzyiNL+OQF/ahCzqVTSolSWeOoXQrALL2BbjPzKKBLp1QyUUoE2o+XPCmJLOkqL3Ch1Z8pbhxFB77CkaJUluV7RzpEd8PaYk/6D24Y47JEMiFzLhbvRX8/PPrfosQzCXkucVoar3xPNxJf3EqB2yrfU0HnihwQLt+L/U6aUZqH0/w8TFq+t+PvYrnqDTkf32ipLHRzyDCFsoFWGOrKyXFHltoGgsq5qFAokjOK6WiFQqFQKAT3vXac+zYeR556bmkQbeA/cPG8qO0cdhsuuw1/SGcoEKIs4j4pUhWMRpTqkqLU3OyPMcWx1yyBHbDQdoLG7mHKC1xW9z1nsvI9K+R8fDl4ClxSlHJD3WpxY8c+GGiDwuqMjyczpQYsp1Rk+V76otTW4z0ArKovTf/Bvb3gNx1HE8EpZbPBZXfB398OW/8kWs9XLhClQk1b4fyPwSWfszaXTikpRo10U3oDelxXmeWUyjO77ylnhiIHDCdxSjnsNmaW53OofTCxKNV5CDoPiJJmWco6jqgsdDNIHr2uWkr8LSJXqu7MUR93pFNKle8pFIpUKKeUQqFQKEbN957az8Zj3Wwyf3QDLl9Sw5JpxTHbylnn4RGlToNJZqXTRpXvjZ6qcAe+xp4hIJwplZ4oNb4cPNLZVFHggoJKmG7mSu19OKvjyfI9f0jHGwhFvY69Ad0S8FIhRanVmYhSfU1imVcGrvz09zuVLL0RbvsD2F3QsB42/wGOvwIhHzz/Tdj/hLWpvLiXYkCsKBXrtAqGdKs7pOq+p8glllPKGX8OX5bwJRSlDjwpljPPBk/sd+GpprLQDUCTc6a4IUe5Ut4RnTLV+1GhUKRCOaUUCoVCMSoMw6BjwAfAN29dQWm+C4dN46y5FXG3z3fZ6R0OWCf8Enlxn3WmlGEoUSoXVAtRaq7WxPqufmAaAd3svpdOptR4E6UiyvcAWHI9NG2BPQ/C6e/I+HgFEa/Pfm8wplRlKBCiOJl4h3jPZCdKyTyp8fU/TsnSG6DiOTj4FASGhcvrxKuw+R749/vh/S9B8TQ8rpFB59H/23iiVKRwJZ9rvyoXUuSAIX/ioHOASxZX89y+dlbXl8Q/wEFTlFpw5VgMb9RUForPxKO2epbwas5ypVSmlEKhyBQlSikUCoViVPT7glannRtWzUjpdMqzOvCNzJQapVNqqEuUNwGUq/K9rCmpx2/Lw6UP4205CCzM0Ck1vjKlqouFG6CuLE/csORGePrLcOR5GO7JuEuj3aZR6HYw4AvSNehHH6F/DPqCVuB2Io53DdM16Mdlt7F0egYOinFaIpkWNcvEj2TFbUIcbNkBL9wN130Pj8PMlJLleyMcFyMFQIi+AA5331MXwYrRk6x8D+DNZ83i1tPq4jul/ENwZJ1YH6+iVJH4bNwXmsE1MGailOqGqVAoUqHK9xQKhUIxKroG/IBoi52OoJTvii7RkfQNi1npYk+W8yXSJVVcB8687I6hAJuNvkIh6tk79wDhi/yEQeeGAT3HxPo4E6XuPHsW37x1Be+90BQqK+eLEkU9CPsfz+qYUvxo6/dat0mXTjph51uOi8y1JdOLM+u81zeBOu+lwumBq78p1rf8CfqarIv7cNB5bKbUSLzmNi67Dbe5vxKlFLlgKJB6oiRh6d7RdaJEtWQmVC0ai+GNmsoCIUrt8NWIG3ImSkW//9ItaVYoFFMXJUopFAqFYlR0DgpRqsIsBUhFvpnPMdIp1ecVnd6K85K7TBIPRJbuzUu+nSIl/nJxEVXUdwDAyuxx2BKcNgx3g69PrJfOHPPxZUKxx8kdZ8ykND/i9bn0BrHc9a+sjikFqLY+UbbqtGuUmK/bAV/yDnMQzpNak0npHkCv7Lw3CUQpgNnnwcxzIeSH9T8iT2ZKJSjfGylkA/hM4cDtsOEyRVMlSilyQSqnVFJkntSCK0BLUvZ8CqksEp+Jm4dNUarvBPj6R31cFXSuUCgyRYlSCoVCoRgVXVKUKkhTlHLL8r1oR0nvsClKpSh9SjwQ2XlP5UmNFnutyJWqHD7C3pa+iO57CS6upEuqsGZiBHAvv1Us9z8GbZmH+4adUkKU8jjt1oVrOk6prPKkQFw0wsTLlErGRZ8Wy42/ozDUA4SFJumUkmKVNxivfE9s43barfJSvyoXUuSAodHkHB59USznXpy7AeWYCtMp1a3no+dXiRs7D436uCPLbNX7UaFQpEKJUgqFQqEYFV2D4sK8PF1RSpbvBUaW7wlRqkQ5pU45JTNXATBHP87V31/Ht5/YDyQp3+s2RanSWSdjeKOnapEIPMeAdd9Ob5/+FmjdDYMdYaeUWb6X57RTkEH53tGOQQAWTyvKbNyTzSkFMPcSmLYagsPUHbkPiCjfMwWn0nzxmeCN55QyhSqP02aJUoGgcmYoRk+4+16GTqnBTmgXpc/MOjfHo8odLofN+r71lZjlzV0HR33cGKeUej8qFIoUKFFKoVAoFKNClu+Vm7OuqchLUL5nOaWyFaUat4il2T1OkT2eGSKQeq6tGRcB6/aE5XvdR8WybIKIUgAXmg6dnf+EjgOJtzuxCf50K3xnMfzsHPjWPL7R+l7eaX+Ujr4hQGTOWJlS/tSi1IBP5qdl8Fo3jMmVKSXRNDj7AwDU7PsTDkRHQ8MwLMFJXjjHc0p1mJl2pfnOCKeUughWjJ6sy/ca1otl1WIoqMzxqHKL7MDXVyA+u7WOHIhSpgglqxZV+Z5CoUiFEqUUCoVCMSo6BzLMlErQfa/PKy7Us3JK9TRAbwNodqg7M/P9FdEUzwBPCXZ0bqwbsG52ORKcNsjyvbLZYz+2XDFtFSy8Bgwd/vU+0S1rJF2H4Y83wcGnAAM8pQBM9x/lLucfuajp14B0SonXdapMKX9Qt7pRFWRSFjTQCkEvaDYomUTlewDLboaCKpyDLVxp24g3oBPUDauzofxMGPbHXtwe6RCvz9kVBbgcKlNKkTuy7gh7zBSlZp2X4xHlntoSDwBtTrNBRS6cUub/rcitumEqFIr0UKKUQqFQKEZFl+WUyrB8b4SjpM/KlMoiv0NeBExfDe7CzPdXRKNpULMcgHfOC4tS/d4ELqCJVr4nueprkFcGjZvgn+8Wwo8k4IX73iYC3OvOhI9ugf85Bv99jA2z3g/A1YP/oZgB8lx2S2BKVb4Xeb/MV0sL+T8urgN7lm7C8YrDDWvfAcC7HI/iDQSjOu9ZTqlArOB3pEOIiXMqC1T5niKnyO57GWdKyTypcVy6J6kvExmAh41p4obO3JXvFZlOUJUppVAoUqFEKYVCoVCMis4Mg87zEjmlRpMpZV0EjP+Z6QmDKUot1hqsmwwjwcXFRCzfA5E/9oa/gt0F+x5G+95SSh/7EJx4De59I7Rsh/wKuO33UG5mruSV0rjiQ+zR6ylkmLfbn4jKlBpKJUqZYqzLEc5ASgvLjTbB/sfpcvo7Mexu1toOcLa+NarTXrLyPZnPJZxSKuhckTuGraDzDMRjby+07BDrE+D7qL5ciFJ7AtXihs5DolR4FMj3qWwIoZxSCoUiFUqUUigUCsWokEHnmZbvRV50hnSDfpmzk40oJZ1Ss8/PfF9FfGqFKKW17uShj5zPNctr+cDFcULkdR16j4v1ieaUAph1DrzxXqg7A83Q8Rx9Cttvr4RDz4AjD279TUyw+PSyfH4SvAmAdzgeo9Tut0SpVOV7g+b9MoMqbSaqGy1diqcRXPtuAP7bcS99w+JzxeWwWUJ2vKDzI6YoNacqwimlLoIVOSCr8r2GVwBDiNjF08ZmYDlEilLbBspAs6P5B7ANtY3qmLLMVn6XB9X7UaFQpECJUgqFQqEYFV0DGQadu2KDzvu94TDtjMKfQXRF6zoEaFB/Vmb7KhJTI8LOad3J8unF/OzOtcyqKIjdrr8ZQn6wOSZuAPf8y+DdT6F/YAPeWZeI28rmwLufgnmXxGxeV5rPI/pZHNOrKdMGWBvYSKFZipeqfE+GnBdkUroH0HPUHNckFaUA24WfpM/IY6ntGLZd9wPgdtis7mfeEWV5w/4QLX2iA+KcigJcSpRS5BBvIIug8+Mvi+XMc8ZgRLlnpilKHekOWJ8tjp4jozqmdEoVW04p5VxUKBTJUaKUQqFQKLLGMIyMy/fyzQvMoYh8GNl5L89pTxymnYgj68SydgXklWa2ryIx1UtFqPZQZ3TW0khk6V5JHdizyAMbT1Qtpuean6N/8FX44AbLLTaS2hIPhmbjCf10AFYMvxZ2SqXovjdk3p9RyDlMfqcUYC+s4Pf66wAo2XsfAG6HHbcz1l0JcLRTuKRK8pyUFbiUU0qRU+TESb4zg/fqidfEsu6MMRhR7qkvywOgtd9LqHw+APbRilIxmVLq/ahQKJKjRCmFQqFQZM2QP2QFEo8m6LxvOMvOe95eeObLYn3epZntq0iOMw8qxEUKLTsTb9czCcWSygXi70+Ay2GjusjN8/oqABYPvkqBMz2n1KDllMpQlJrsmVImz9iFw6S4YxNOgrgdNjxOcbo6Muj8aKcIOZ9dKRx8Trvsvmckzj9TKNLAMAyGAxmW7+khaNws1usnRhfY8gIX+S47hgH9BeKzZah1dGHnYVFKZUopFIr0UKKUQqFQKLJGdt5zO2xplzjIE/xBX6xTKiNRyj8ED3wUehqgdCZc8In091Wkhxl2TuuOxNtIB0/Z7DEfznhiemker+mLGDZcFAc6mOY/DMBAog6FJjJzKiNRKhSE3kaxPpnEvzg0OmbRbhTjCHlZrR3E7QyX7w2PEKWsPKkKUYLkjHBZqpIhxWjwBnQr7zvt8r22PeAfAFcRVC0eu8HlEE3TrBK+p9uLAWg6sndUx/QGhAhliVKqG6ZCoUiBEqUUCoVCkTUdAyKMuLLQjaZpae0j22tHXmD2mZlSxXlpXKiHgvDkXfDthbD736DZ4dbfgqcks8ErUiNzpZI5pWQL8SkoSvlwsUFfCkBdpwjb708hSoXL9zLIqek7AUYI7G4orMluwBOEPJeDDbp43Z1r24XbYccjM6UC0Re3snxvTmUhgJUpBapkSDE6hiKcvPL1l5ITr4rljNPAlmFm3CmkrkyIUvc3CMdhbaAh2eYpGVm+pwRihUKRCiVKKRQKhSJrpFMq3dI9CM86R570p+2U8vbBX26Hl34A/n7hGrnll1A/MfI7Jhy1K8WyZXvibWT785r4+UuTlbpSUd4nS/gqW0S2WWRofzwGsinfs/KkZoJtcp+6eZw21ktRyr4rOuh8ZPlehyzfM51SEaKUcmcoRoPMk3I7bNht6U24cGKjWE6QPCmJdErtCU4HYJrRju4dyPp4csKpOCJTSpXTKhSKZEzuMxuFQqFQjCmdWYhSeZYoFeGUMkWppJ33DAP+/nY49DQ48+G238NHt8KK12c6bEW6TF8tlh0HwNcfe79/CDoPiPVpK0/asMYD001R6jlTlCpseYWZWmtqp5Qs38vEKTVF8qRAuFKkKLVGO0CxzR83UyoYMjjcLi6c55iZUnabhtQPVI6NYjQMZ9V5z3RKTZA8KUl9ufgs66KYTqMIm2bQe2JP1scbWb4HENSVKKVQKBKjRCmFQqFQZE1Xhp33INx1LLKTlnRKFSdzSm36vRCkHB5420Ow7OZJ7xo55RRWQ3EdYEBzHLdU224wdCiohqLakz68U8kMU5Q6ZtTSXHU+mhHivxz3M+APoie5ABudU2pqiFINRjWd9mpcWojl+h6rfCqy5PdXLzfRNRSgJM/Jguoi63bZvVOV7ylGg9V5L90umUNdYYF+xuljNKqxQTqlAA4aMwAYbNyV9v5tfV5u+elLXHj3s1x497McaBUTGJGilBKJFQpFMtTZvEKhUCiyJpvyPemUCuoGfrPEJpwplUCU6mmAJ/5PrF/2Bahbm+WIFRkj3VJNW2Lva94mlrUrTtpwxgvSKQVwcNlHAbjJ9iJzaWTAn9gtlVX3vSnmlAKNnU7xmloS2G2JUk09w9z92F6+8vAe7nmtBYCv37IiqjuaLOFTOTaK0SDLy9PuvNe4SSzL50FBxRiNamyojxClDuhClAq1ph92/ty+djY39NDQNURD1xBB3cBp11hQExaL1ftRoVAkI8N+xAqFQqFQhOk2RamyLDKlQLilXA4bvcPiAiBhptQL3xZdjWaeA2e9P/sBKzJn+hrY+1B8UUpmTU2x0j2AGWVhUcpfsxpj0TXY9z3KBx0P0O99S8JSVOnAyKh8r+uIWE6BMHmP6XTaznwu4mnm+ffiMD9fuocC/PS5Q9a2t62t49oV06L2l2HnG4928dy+Nuv2fJeda1dMs8KXFYpkyDLbtMv3TrwmlhOsdA+EU6rI48AwwFe8EPqfxtG1L+39u4bEecAli6r4yGULAJG5V1XktrZRTimFQpEMJUopFAqFImtkKVKkTT8VTrsNp10jEDIYCgQpwRmRKRXnOENdsP0+sX7ZXapk72STzCklQ85rp54oVexxUOh2MOALkue0o13wKdj3KNfaXuF4XzdEOKkiya58zxSlyueOdtjjHumK2hgQf+ts717yqgr46k3LOdwuuu0ZGDhCPj529dKY/aVT6tP/iC03berx8vErFo7V0BWTiBcPdgDRpW1JkXlSdROrdA/Ee+4f7z8XgBeeaIJ+KOw7lGKvMHJyam5VIafNLIu6z2W34Q/pGYlSg74gbocNh1191ysUUwUlSikUCoUiawYt10dmXyd5TjuBUNByjSTtvrf5HggOixKxmeeMbsCKzJm2Riy7DoG3Fzwl4vdQEFrN3JEpKEppmsaamaVsONTJ7MoCKFlLgzadmTTh2P8wzHxP3P1k+V5huqLUcA8MdYr1KeCUkp32Nvpm4LM7ydf7oeswd54939pG13Xa2trillY5HeFOaWX5Ts6bX8nBtgH2tvTT2ucd+z9AMeHxBkLcv/kEALedXp96B10Pl+/VTTynFMCiWlFq93zFQjgMJd5GCAyDM764Hkn3UOIyfoddwx+CQDC98r2eIT8X3P0sq+tL+eO7zsrgL1AoFBMZJUErFAqFImuyyschHB7r3PcQrPsO/uE+IE6mVCgIr/5KrJ/1ftDSbM2tyB0FFVA6U6zLDCkQob5BL7gKp4SDJx6/ftvprP/spSJfStN43nMpAKUH7k+4jxRy89N9z0iXVEE1uIuSbzsJkJ32BoM2dhqzxY2NG9Pe3xnhrrhpzQx+/KbTeP3aOiC646dCkYhHdzbT5w0yozSPC+ZXpt6hYx/4+sBZANWx7r2JRFHFDHqMAmzo0HkwrX26h8SkUml+7KSSfD+m23hgX0s//d4gWxp60huwQqGYFChRSqFQKBRZk7HrwyTfZeda28vMfOp98PSX+eXARzlN2x/rlNr3MPSdgPwKWP76XA1bkSnTTbdU4+bwbXK9ZvmULal0O+xUF3ms318rugKAstYN0NcUd5/weybNrBqZJ1U+J/uBTiBk+R7AVt10R51IX5Ry2MLC9WWLa4CwCK5EKUU6/PXV4wDccUY9NlsaEyEyT2rGaWCf2EUoNSV5HDA78NGeXq6UlS2ZH+uUCjceSE+Uah/wAaLMWeVQKRRTh6l5FqlQKBSKnBDOx8kgtBlYbTvI95w/A8BwFlBHG79z3U0p/dEbvvILsVz7DnB6UJwiZItzefEFcPg5sZx93kkfznjFW1jHq/oiNAzY/Z+428iuXmm7C7sOi+UUcaNFilJbpCiVgVNqf+uAtX7mnHIgHFbtDShRSpGcAV+QV490AXDb6XXp7TSB86RGUlPs5oBu/t1te9LaR5bvxROlXHYh6qUrMHX0+6x1mTWpUCgmP0qUUigUCkXWZFu+d6fvXtxagNZpl+D76E726PWUaENUbPlxeKPm7XDsJbA54Ix35XLYikyZebZYNrwMhiEyVA4/K26bd+mpG9c4o8jj5NmQ6So7tj7uNpaQm24O2xQKOYcRTinDFKVadop8mwxw2jVcZic/mT0lBUGFIhH9XiGEOGwa00pS5ykBcPwVsZygeVKRVBe5LaeU3rY3rX1k+V5ZQZzyPUdmTqmOAb+13qNEKYViyqBEKYVCoVBkzaDZNjsjUUoPscQvArLvL34r/9ozwDeCbwLAuenX0H1MbCddUktvhOLpORuzIgumrQK7G4Y6hHOndScMtosMlUlwIZYrijwONupmd7fjrwgBL4JgSMcbEBdn6TulTFGqbGqU782pLLDWTxiVDHimgR6ALX9Ka//51YUAfOTSBdZtMjxdle8pUjFsvkbihejHpfMQdOwXkyezzh3DkZ0cyvJdHEY4pUJpiFK6btAjg86TlO/50ww6b49wSvUMKVFKoZgqKFFKoVAoFFnhD+pWeGlhJt33WnaQZwzRZ+TxrW1OPnv/Dp7XV/IKK9BCfvjPh+DAU7DtL2L7s94/BqNXZITDHc6VangZDj0j1udcAI7YC5GpSrHHwXZjLkHNAQOt0H006v6hiPKx/HQveqdY+d5Vy2p445my45nGrjlvF6vrvpOWW+o3bzudb9yygg9fEu7WJ//Xw6p8T5ECKVym/f7c94hYzjoP8krHZlAnEZtNoytvNgCOniMQ9CXdvs8bQDf1ptIkolRQT9cppcr3FIqpiBKlFAqFQpEVsnQPMsyUMsuaDuet4PQ5lZw5p5wz51TQdcGXRCe3o+vgz68HQ4dVb4J65cQZF8w023MfjxClVOleFEUeJz5cHHdHuKUikO8Zh03D7UjjFMw/BP3NYn2KBJ1rmsZXb1rBG8+sp8Blp/Ccd0Jxnfg/bPp9yv1nVRTwhjNnRgVUh8v3lCilSI4ULvOcaX6n7TVFqcWvG6MRnQIKa+gz8tCMUMIOfI/saOb//r3DcjYVuOxWuWwkGWdKRYhSPcP+JFsqFIrJxMRuEaFQKMYVf321gapCN5cvrTnVQ1GcBGQ2jtthw2HPYI7j2EsArD7/Wu47/5zo+2bdA3+5HfQg1K6A676bq+EqRkv92cAP4MCTMNQpblOiVBRFHnFatc+1jDne3cJVtuoN1v2RGWyalkZXL+m08pRAXlmuhztusds0vn7LSr5y43Lx2XLhp+Chj8FLP4Qz3wuk8b+LQHbfG1ailCIFQ1b5XhqXSIMdQqQHWHTNGI7q5FJZ6OJAVx1rtQP8+8mn2VMhvt/tmsbNa2awoKaIrz28h8aeYSoL3QCUFcR3zKryPYVCkQ5KlFIoFDmhqWeYz96/g3yXnR1fvAp7Om2UFROaQb9sbZ/BV4lhhAOgZ8Xp2jb/MnjDX2DXv+CSz4EzzaBZxdhTbzqlpHNn5rlQMT/x9lOQIo8I+t1hW8TVEMcpZWawZVq6VzYH0hGxJhmW2L36TfDUF6G/CY68AHMuyug4keV7hmGkJwgqpiTD5vdaWuV7+x8Tjt7aFVA6c4xHdvKYXuLmgD6DtbYDHNu7hV8E51n3bW7o5jdvO4PGHlFKu+lYNxC/8x6ERal0nFKGYUQHnU9xUeq//7Gdf24+Yf3udtj4f7es4MbVM07hqBSKsUGV7ykUipzQ3CtOUIb8IVr6vKd4NIqTQVad99r3wXAXOPJg2ur42yy8Cm7++aQ6yZ8UFFRA9TKxvuR6ePPfp6RQkgzplNokw87b9sBwj3V/xu8ZK09qapTuJcThhuW3ivVt92a8uyzfC+mGlYOnUMQjo0ypQ2YH0oWTxyUF8KbTaqidvwqAK6u6ec8Fc3jDGSLnbVdTH0c6Bq1ttx7vARI7pRwZlO/1eYNR78/eKZ4p9dD2JoK6Yf0M+kM8uqPlVA9LoRgTlCilUChyQqTl+ljECYti8jKQTee9hg1iWXe6CsieiNzxR7jjT3DbPeAuPNWjGXdIUeq4v8jslmdA4ybr/oFMRan2fWJZuSiXw5yYrHqjWO55APwDGe0amQ+kSvgUybDK99LJlGrcKJYzzx7DEZ18KgqcXHju+QAscTTzv69bypdvXI7DptHvDfLSwQ5r236v+Ewry3fGPZYrA6dU5HkkKFEqYCbI/+dD5/GNW1YA0D6QPHheoZioKFFKoVDkhPYIy/XRzqFTOBLFyUK6PgozCTlv2iKWdaePwYgUY07FPOGSsqnTh3jI8r1+bwBmrBU3Nm227pcXvGk3Bmg3W7JXL87ZGCcsdadD+TwIDMGehzLa1Wm34TQdGyrsXJGM4XSdUoOd4cy3GaeN7aBOBVWmEN55EIJ+XA4bc6sKAHhkZ6xbJ1X53sG2AX709IGkQlPHCMGlZ2hqB51LIW9aiYd51WISaOT/SKGYLKizSoVCkROinFKdyik1FcjY9QHQvFUsE5XuKRQTmGLTKTXgC2JMXyNubNxi3W+9Z9IJUTaMsFOqSolSaJrlltK2/y3j3aXzRYlSU5eWXi+GkTxwO+2gcyk2V8yfnE0IiutEN1w9aJURL6wpAmCbWbIXSUJRyuzI96t1R/jOk/v595bGhA8ZI0pNYadUSDeQL1WH3UaVGSg/0k2mUEwWlCilUChyQuQX5VElSk0JMs7HCfqgdbdYn756bAalUJxCpFNKN2C4erW4McoplUFzgL4m8PeDZhcOIQWsvF0sjzyPbSCzbBXVgW9q8/eNxzn760/z+/VHk243FEgz6PyEWbonHZGTDU0Li+FtuwBYZIpS8SgriF++Jx2KktYkmaPyPFJ29OudwkHnkeWOTrtGZZH4nwz5Q9a5l0IxmVCilEKhyAnRTilVvjcVsMr30nF9gAh91gPgKYXSWWM3MIXiFOFx2nCYnUf7SheDZhPdCvuagHAOW3465XuydK9inspfk5TNglnno2GQd+CBjHaN7MCnmHpsO9EDEJWHFA9vuuV7MituxiQuRa8xG1u0ClFqYW20KFWSFxaiEjmlZKaUpDtJSZ50Ss2vFmWCUzlTKqiHHX1Ou40Cl91ye6oSPsVkRIlSCoUiJ0R+SR7tHExpkVdMfAb9GQadW6V7q1TXNsWkRNM0K+y8L+SGqiXijkbhlsrIXWiV7qmQ8yhWvQEAz/7/QAbfM7IDn3SrKaYWbX3iHGVvS3/S7WT5nidZ0LkR0cBgsjqlAGpFuDYtO4Fop5TTrnHe/Arr91SZUpLuwSSZUv1CsJpv5if1DAem7LlkMMIp5bBpaJpGZZH4HytRSjEZUaKUQqHICZFOKW9Ap03VvU96Mg46b9oqlqp0TzGJiQ47NwOQzRI+KYiklSklnVJS2FIIlt6I4fDg7D4YFrrTQLoMVPne1ER2LTvRPWxlu8VjKJCGU6r7CAx3gd0FtctzOs5xRY35t7UKUaq+PB+PU1w6zqooYH5VuANr4vK99J1S8jmSxw3pRtLnajITCIXFOLvpvlW5UorJjBKlFArFqDEMwzqZcJuhlkc7VK7UZCfjoHMVcq6YAlhOKW8wLEqZTilZvqecUqPAUwyLrwNA23JP2ruFnVJKlJqKSKcUwL4kbqm0uu+Z72dqloPDnZPxjUtqloplXyMMdWG3aSyoFm6peVUFzDG78UGyoPNoV3RPkpwo6QCqK8u3ziWTbT+ZkZlSTrtwSUE4ayuy27VCMVlQopRCoRg1fd4g/qD4Al1VVwqoXKmpQEalSEG/lUuhnFKKyYwUpfq9QZgunVJbwDDSdxcaRoRTSnXeG4lx2tvFyo5/gC95OZZEigxDKlNqyhE5cQbJRSnpZkzafa9lh1hOW5WT8Y1bPCVQOlOsm9/fi81cqfnVhcyuSEOUsmXglJJB50VuSvOF82qq5koFTaeUI+L/V1WknFKKyYsSpRQKxaiRs1tFbgeLzBMW1YFv8jNouT7SKN/r2AchP7iLoWzOGI9MoTh1yPK9f29p5HvbnQQ1F3h7oOuwJUrlpyrfG2gT+2g20XJeEc2scwmWzkXzD8D2+9LaJdx9L8hjO1t4eHvzWI5QMY7oGw5PnAHsb03DKZUsU8osZ5vUpXuSGjNXyvyb33/xPN52zizuPHsWC2uKKMlzMreywHIijmRk+V7PUOKcKOmKKs93UZonRK6pKkoF9LBTSiKdUipTSjEZSbPmIjFerxePx5OLsSgUigmKnLWpKnIzqyIfUKLUVMAq30snH6dtj1jWLFMh54pJjZzNfmZvG8/shYtdM1ljOwiNmxn01wJQmMpd2LZbLMvnglOdY8WgaQwtvYPi9V+Hjb+D098Z/bky0Aav/QZ6j0PxdJh/OXku4eroGgzwrcc3Yxhw6eLqhBfTislD+4A36ve9LX0Jtx1Kp3xPOqVqV456bOOe2uWw72Er7HxeVSFfujEsxj37qYujhJORjCzf84d0Bv2hmM/AQEi3OmMWeRyUmE6pqVq+J51SkaKeckopJjNZOaV0XecrX/kKM2bMoLCwkMOHDwPw+c9/nt/85jc5HaBCoRj/RFqupVNqZ2Pikz7F5CBcipSGKCVL96pVaLNicvOBi+bx3gvn8rZzZvGGM+rZps8FwGjcxFC6mVLW+2XpWA51QjO88CYMhwdad8Dh58J3bP0LfH8FPP8N2PpneOFb8NureNeRTzJPa+R41xCBkEFQN1QnvimCbLziMAOj97X0J3TrSFEqoVg50A4DrYA2Nd6fVtj5jrh3lxe4LHdoPOL9m7sHY0v4Brzh92Khx0FJnilKDU/N/CSZKeVQTinFFCErUeqrX/0qv//977n77rtxucI1xCtWrODXv/51zganUCgmBpZTqtDNSjNTqqFriK44Jx6KyUNGmVLS+TEVTuIVU5r68nw+d+0SvnTjcr54wzK26fMA0Bs3W+7CpC4MCL9faqZAeVCWGJ5SOO1t4pfnvi6ufgPD8PjnIOiFGafDJf8LK24Hm4N5fa/wkOt/WdL0T+sY/oi264rJizxHWVFXgk2D7qEAT+5uZcOhTl453BnVkXHY6r6X4HtNijPlc8BdGH+byYQsUWzbC6HMXUstvWGXWk2xEFXiuZ/6TVEqz2nHabdRmjfFM6V0lSmlmFpkJUrdc889/PKXv+TNb34zdnv4xGrlypXs3bs3Z4NTKBQTAxkgWlXkFvkCZkeWbcd7TuGoFGNNRt33Isv3FIopgtthYxdClLK1bMfrE5+VKd2FMrOmRom4yTDO+xg4PHD8FTj0NOz6Fwx3Q8lMeNcTcNFn4NZfwUc20VB2Nnmanw8P/pgLbNsBonKGFJMXeRFfX5bP7EpxfvLeP27ijb96mTt++TIf+esWa1sr6DxRplSLzJNaMXYDHk+UzhaB5yFf2MGZAa19YVFKhqHHCzvv8wrxSTaKsILOp2j5XmT3PUl1Udgplcjpp1BMVLISpRobG5k/PzZ4U9d1AoGp+eGhUExlOiIypQBW15cCsEWJUpMWwzAYNGeXU15ge3tFtguo8j3FlELTNNrd9fQZeWjBYWYEGwDIT9YcIBSE9n1iXTkLk1NUC6e/S6w/8hnY8BOxfvrbwRbxPy6bzTNrf8o/QxcA8Hr7CwD4lCg1JZDle9VFbj508XwW1xaxoLqQuaZAteFQB7puoOsG3oB4TSQs35N5UjVTRJSy2YTrEODEaxnv/sFL5uO0a3zg4nmW0BRPlJJOqbAolVjAmgqEy/fCl+qyfM8b0K1JQYVispCVKLVs2TLWrVsXc/vf//531qxZM+pBKRSKiYXllCqMFqWUU2ry4gvqhEx7ecrue22mg7ZoOuSVjfHIFIrxRb7bxU5ddJxcoR0CUgi5XYdF+ZkzX3WqTIfzPy4+W7oOCYeZzQlr3hqzWb7bxT3BKwC4wraJfLzKKTVFiGzGcuvaOh772IU8+YmLeOLjF+J22Bj0hzjWNYQ3GC7jS1hiO5U670nqTFGqcVPGu66uL2X7F67iv69eTHmBEJril+9Jp5QQrmaU5gFwoG0gmxFPeOIFnee57NZ3R8fA1BTrFJOXrLrvfeELX+Atb3kLjY2N6LrO/fffz759+7jnnnt46KGHcj1GhUIxTtB1g//99w62n+iNuv1wu+i0N9Ipte1ED4ZhoKlua5OOyFm6lN332kzLvypFUkxBijwOtg/M41x2s0o7zN+1SxKXBkH4ord6iXApKJJTWAXvfhL+9Hpo3wPLbhK3jSDPZWebMY8jeg1zbK1caduIL3jpyR+v4qTT1i9KyKrNTCOJw25j8bRith3vYWdjL0WeCuu+uO/RoA869ov1qZT3NgqnFIRdZ9L9FC9vdKRTas3MUgB2NfbhDYTwJPvMnIQE9djyPYDKQhcDviDt/T4KCk7FyBSKsSGrs53rr7+ev/3tbzzyyCNomsZdd93Fnj17ePDBB7niiityPUaFQjFOePVoF3999Ti7mvqifoYDIWwazK8WoZ+La4txOWz0DAU41jl0iketGAsGIwKbbbYUomOrCjlXTF0K3Q52mE6pJbZjFLgcyYV6K+Rc5a+lTUkdvPMxuP6HcPU3424iRAaN/+jnAXCj/SXllJoihJuxeGLuWz69GECcy5gl6R6nLf73Wvte0IPgKRWvuamCdEp1HhSZbVlSZpbv9cQt3xNOqWLTKTWzPJ/KQhf+kM6upt6Y7Sc7gZAMOo9+HVYVqQ58islJVk4pgKuuuoqrrroql2NRKBTjnIe2NwFw+ZIa7jx7ZtR99eX51JfnA+By2Fg2vZgtDT1sPd5jBYsqJg9ZhZwrUUoxBSn0ONhviAvY+VojBa4U84EyTLhaiVIZkVcKa9+W8G5ZjvWf0Hl8zHE/F9h28OpgO1CRcB/F5MDKlBrhlAJYNr0EgF1NvQz5U3Tek3lStStgKjnA88uhfK4oLW7cBPMvz+ow4aDzxN33ZHmapmmsmVnGk7tb2XSsm7WzyrMc/MRElu9FZkoBVBRIUcoPNXknfVwKxViRlVPq+PHjnDhxwvr91Vdf5WMf+xi//OUvczYwhUIxvgiGdB7d0QLAW86ZxcWLqqN+5lVFt0aWvzf2DJ/0sSrGnkFfmiHnIEpqQIWcK6YkBW4HR41aQtgp1oaZ7epJvkOrKncdC2QJ0RFjGtv0uTg0nbIjD5/iUSnGGl8wZGUYydzLSJbPEE6pnY296Xfem0qlexKrhG9j1odI1n2v3xddvgewdpbIoNx8rCfrx5yoxOu+B1BemLgEUqGYyGQlSr3pTW/i2WefBaClpYXLL7+cV199lc997nN8+ctfzukAFQrF+GDD4S46B/2UF7g4d17qmeUC8wJA2uEVk4tByymVIudhsBOGOsV65cIxHpVCMf4ocjsI4KDJPh2AxbbGxBsPd0PPMbE+FS98x5BI98sDoXMBqD32wKkajuIkIQOhnXbN6v4WycKaIhw2je6hAIfMfEwVch4HWcJ3/NWsD1FWIMv3UgedQ1iU2tTQjWEYWT/uRMTqvmcb6ZRSopRicpKVKLVz507OPPNMAO677z5WrFjB+vXr+ctf/sLvf//7tI/zwgsvcP311zN9+nQ0TePf//531P1vf/vb0TQt6ufss8+O2sbn8/GRj3yEyspKCgoKuOGGG6JcXAqFIjc8vKMZgKuX10Z1A0lEnnkBMKREqUmJVb6XKuRchsKWzARX/hiPSqEYf0g34QGrhC/JOYosDyqdKUpmFDkjUmh4IHQOuqFR1rUVuo6cukEpxpxwnpQ7bpabx2m38jA3Hu0CEohShhFdvjfVmCWy2GjYIALfsyBZ0HmfN9YptWJGCQ6bRnu/jxPdU8t1H9Rju+8BVgdDJUopJhtZiVKBQAC3W1hgn3rqKW644QYAFi9eTHNzc9rHGRwcZNWqVfz4xz9OuM3VV19Nc3Oz9fPII49E3f+xj32Mf/3rX9x77728+OKLDAwMcN111xEKqQthhSKXrDvQAcC1y6eltb08qRsOBFNsqZiISPt9vJnnKKQoVblgjEekUIxPCs2LrJ0B4ZSaozck3rh5m1hOWzXWw5pyRHbvaqeM9bpZHrnzH6doRIqTQWuf7LwXG3IuWT5D5Eq9aopScTu99Z4Abw/YHFC1OOfjHPfULIOCaggMwfFXsjpEuSlKxQ86jxWlPE47y8znZsvxnqwec6ISTFS+p0QpxSQlK1Fq2bJl/PznP2fdunU8+eSTXH311QA0NTVRUZF+YOQ111zDV7/6VW655ZaE27jdbmpra62f8vLwzGFvby+/+c1v+M53vsPll1/OmjVr+NOf/sSOHTt46qmnsvnTFApFHLqGAjT3etE0WG226U2FFKWUU2pyIksiKuNkdERvKEUpVbqnmJpIp9Te0AwA6oJKlDoVjHS/yC587FW5UpOZll4hSk0rSSxKLa4tAuBwsvI9WbpXuRAcKb73JiOaBvMuEeuHnsnqEGX5Li6zbeLW0CP4/dElfANxyvcA5pmNcpqmWD5pIEXQuRKlFJONrESpb37zm/ziF7/g4osv5o1vfCOrVomTpwceeMAq68sVzz33HNXV1SxcuJD3vOc9tLW1Wfdt2rSJQCDAlVdead02ffp0li9fzvr163M6DoViKrO/bQiAORUF6QVbEw6VVaLU5ES2I04tSh0QS+WUUkxRRpbvTfMfFaVA8bBEqdVjP7Apxsjw6tf0RWKlbS/o6ntqstJsilK1SUQpWb4nidt9T4acT8XSPcm8S8Xy0LOZ7+sfpPiJ/+I3ru/wZecfCD3wX1Gfg9IpVeyJ/t9XFYlzjLa+7EoGJwq+YAhdD/8/rKBzW3ynVKcSpRSTjPSuLkdw8cUX09HRQV9fH2VlZdbt733ve8nPz11myDXXXMNtt93GrFmzOHLkCJ///Oe59NJL2bRpE263m5aWFlwuV9QYAGpqamhpaUl4XJ/Ph88X/nDr6+sDQNd1dF3P2fgV8dF1HcMw1P96HPPE7lY8DhsXLqxC13X2mqLU0unFaT9veQ6heQ/5g+q5PkmczPdWh5nTUVHgTPp4Wsd+NECvWADqdQCoz8DxzFg8N7Lpw1GjloBhx60Po/c0QEl99Ib+AbSOA+L9UrNCvV+SkO3z5HHa8AbEPg1GDUGbG0dwGL3riGh5r8g5p/rzrqVXOGxqitwJxzCvqiDqd4/TFrOt1rJDvDerl03q92bS52v2hdgAo3kbRn8bFFSmd1DDQLv/fWh7HySEDQyDvJ1/xiipxrjsLiAcdF7gtkc9dqXZba6t3ztpvzP7vQEu/c4LrKgr4bdvE4HyflOUstu0qL+7LF9cuvcMBwip69Zxz6n+/BsPpPu3ZyVKAdjtdoLBIC+++CKaprFw4UJmz56d7eHicscdd1jry5cv5/TTT2fWrFk8/PDDSUv+DMOIG2Yo+frXv86XvvSlmNvb29vxer2jG7QiJbqu09vbi2EY2GxZmfUUY8igP8SH/rIVu6bxxPtX47KLVskAs4ttUW7FZASGhQ2+b9Cb9j6K0XEy31vN3QMAOPUkz2/QR43ZSayDMnT1OgDUZ+B4Ziyem6BXvFcCODhi1LJQa6TnwMv4Z0a7DJ3Nm6jAIJRfTfsQMKTeL4nI9nnyOMKilI6NdvdMpg0foPfAy/jmFKbYW5ENp/rzrqFDTDzn40/4XeUwDPKdNobM14YWit22snEzDqDHXYd/En+XJX++bFRULMLZuY/erQ/gXXBdWsd0H3qUsr0PYtgcfM7zefTeRr7l/CWs/yEd816Pnl9J37AQpfyDvbS1hY0Dbl2sN3X1T9pzyZ3Ng3QO+tlwqMP6G3v7+gEI+qPPsWTWVEg3ONHahQbqPGIcc6o//8YD/f39aW2XlSg1ODjIRz7yEe655x5L/bLb7bz1rW/lRz/6UU7dUpFMmzaNWbNmceCAKAepra3F7/fT3d0d5ZZqa2vj3HPPTXicz372s3ziE5+wfu/r66O+vp6qqiqKi4vHZOyKMLquo2kaVVVVU/YNOp5p7B4mpEMIg17yWFZdxJGeXQCctXA61dXpzYzV9tqAQ/gNG9XV1WM4YoXkZL63en27AZg7vYrq6gRdwlp3oRk6hruYyllLRSaFQn0GjmPG4rmZMewEDgKw36hnIY2Ueo/DyM/Fo8cBsM1Yoz4zU5Dt81TgdtIzHG6+0VGwgGnDByjxNcU+H4qccKo/7zqH9wCwsL468XcVML+miO0nxARceUlh9HtwsB1bn3h/li67FDwlYzfgU0yq50tbeCVs2EdJ2ysUn/fO1Acc6kJ76ati/fxP0td0AY92tfCZivVU9e2ksuU5Qmd+wBIEZ0+voSIiFmD+gB04Qo/XmLyfi11CdPIFDYrLKvA47bg9PQAUFRTE/N1FHgf93iC6S9ynziPGL6f682884PEkLp2OJCtR6hOf+ATPP/88Dz74IOedJ4IiX3zxRT760Y/yyU9+kp/97GfZHDYlnZ2dHD9+nGnTRPevtWvX4nQ6efLJJ7n99tsBaG5uZufOndx9990Jj+N2u63ugZHYbLYp+4I52Wiapv7f45ThYNhmeaBtkFnl+TT2itr1FXWlaT9nsuPUsD+knueTyMl6b3WaQefVxXmJH6tLXIhrlQvR7HGCY6cw6jNw/JLr56Y4Lxzcu0Wfz3X2l7GdeA1GHt/Mk9Kmr0ZTr4uUZPM8yaxDt8OGL6jT6pnDCsDWvif2+VDkjFP1eWcYhhV0PqMsP+njL6gOi1IFLmf0to0bxbJqMbb8sjh7Ty6SPl+LXwcbfoR24Ak0IwT2FB14d9wHQx1QtRjtwk8x84lDALxaejWv69uJbdu99K9+n7V5Sb476nGri/MAaB/wTdrvy94IobzXGyTf7SRo5m25HLHPQ0WBi35vkF5vUJ1HTACm+vleun93Vv+df/7zn/zmN7/hmmuuobi4mOLiYq699lp+9atf8Y9/pN9ad2BggK1bt7J161YAjhw5wtatW2loaGBgYIBPfepTbNiwgaNHj/Lcc89x/fXXU1lZyc033wxASUkJ73rXu/jkJz/J008/zZYtW7jzzjtZsWIFl19+eTZ/mkIx5Rnwhb8c97f2s7tZWN9nlOZRarbzTYc8pxClVNB5bukY8OELntr/6bA/xKD5vMq8h7hYIeeq855i6hLZHGKjbr4XGl6OzqUxDDj6olivO+Mkjm5qIfO9ZpSKC91m1xxxR9ueUzUkxRjSOxzAZ060VRcnb8oRGXYe033v+Ktiqd6bUH8m5FeCtweOpdFU6thLYrnqDeBwUV8uqmke5zywu6B1B8PHtwBCLHY5oi9N5fPW7w3iDcQ/93npYAeP7GjO7u8ZB3QPhUPLuwdFGWMwQfc9gDIz7Lw7QsxSKCY6WYlSQ0ND1NTUxNxeXV3N0NBQ2sfZuHEja9asYc2aNYBwYK1Zs4a77roLu93Ojh07uPHGG1m4cCFve9vbWLhwIRs2bKCoqMg6xve+9z1uuukmbr/9ds477zzy8/N58MEHsatZeYUiKwYjRKl9Lf3sbBKi1LLpmZW2ypO6Yb/60swVrX1ezv36M7z7DxtP6Thk5z23w5a8G2PHfrFUnfcUU5gid9hJsMuYTcjuERd08v0B0HUYehvA5oRZieMHFKPjzrNnce68Ci5dLMphTjhnizs6D0BQdbOabMjOexUFLtyO5NcFCyJEqbyRotSJ18SyPrcdxickNjssvFqs73sk+baGERauZonKmpmmKLW31y5cV4Bzx70AFHliXVdFbgduU6hq74/twOcNhHj3Hzbyob9sjnv/RCBSlOox163ue/bY2IMKU5TqGVLn14rJQ1ble+eccw5f+MIXuOeee6w6weHhYb70pS9xzjnnpH2ciy++GCNRW2Tg8ccfT3kMj8fDj370I370ox+l/bgKhSIxg77wTNT+1n5kN9qVdZllKEhRaigQStl8QJEeB9sG8Id0K3j+VNFuilKVhe7kz2unKN9TopRiKlPgDl/gBnEwULmaktaXoWEDVC8Wdxx+TizrzwJXQexBFDnhttPrue30en7xvCghatMqwV0Mvj7xeVWz9BSPUJFLZOlebUnqTJMFNRGilDNClAoFoHGzWK9TohQAi6+FrX+CvY/A1d9InBfZvg+Gu8CRB9NWA2FR6njXMMbVr0fb9S8Kjj4JXEqxJ/ayVNM0qovdHO8apq3fazmtJLuaehk2HVQNXUNUFSV3xI1Hukx3FIiuegAB6ZSKU/pUfoqcUp0DPj759210DYZFtPryfL57+6qUoq9CkYqsnFI/+MEPWL9+PXV1dVx22WVcfvnl1NfXs379en7wgx/keowKheIkEumUau718uLBDgAuX5JZwKScaTQMLPu8YnTIlsmiFXBiQX+s6eiXolSS0j3DgM7DYr183kkYlUIxPnHYbXic4dMt7zSzBOj4K+GNDj8rlnMvPnkDm8LIEiF/yIDqJeLGtt2ncESKsUA6pWqLU4tSdWX5liMnqnyvdScEh0W4uSpFF8y9RAhNvQ1hwS4esnSv/gxwiPOF6aV52DQYDoToqD4HbE48Aw3M1looiiNKAVSZwefxnFCbj/VY6009w9n9PaeY7giRR7qmZJc9RxynVHmB+H/0nGRR6g/rj/Lcvna2n+i1fh7e3symY91R23kDIQZ8QetvUCjSIStRavny5Rw4cICvf/3rrF69mpUrV/KNb3yDAwcOsGzZslyPUaFQnESGRpTbBUIGs8o8Udb2dMh3hU8uVK5UbujziufGMMIW71NBp3kCVVmYZEZysAN8vYAG5XNOzsAUinFKYUQJX6jubLHSsEEs9RAceUGsz7vkJI9saiJFKV9QD4tS7XtP4YgUY0FLX/pOKbtNY6kZUxDltjlulu7NOF2F4Utc+bD0RrH+4ncTbzeidA/Ee29aich0axiwwSxRYXOxbVvc8j2A6iLx/LXFE6UawoJIc+8EFaWiyvfMTClz4jFp+d5wIOa+sSKkG/x90wkAPnb5An739jNYaLoL5ZgB/vpqA0vveozlX3ic8775DL1DJ2+MiolNVuV7AHl5ebznPe/J5VgUCsU4YMAXKyBdsqA04/I7u02zOhwN+YOW3ViRPX0RJyBdg/6otsknk7BTKsnjy9K9knpw5p2EUSkU45cij8PKYrPPPBPQoPuoKG/xDYC3F9wlVomLYmyRpSb+kA5lpmje03AKR6QYC1pMkWJaGqIUwLdvW8X2Ez2cNjOiw96u+8VyVvrxJFOCCz4J2/8Gex+Clh1QuyL6/qg8qeicvPryPBp7hjneNcTa+VfAkRe42LaNFvfb4z6UFAlHOqUMw4gSpZp6vKP7m04R0UHnIzOlxkf53osHO2ju9VKS5+T9F83D47Tzp5ePsb91gN6Ic9O/bzyONPK39vnY1dzLufMqT9o4FROXtEWpBx54IO2D3nDDDVkNRqFQnHpGOqUALp2fXQvkfJfdFKWUUyoX9HvDz01kTf/JRl5cVxYlERqlKFWhSvcUishcqfziMph/GRx8Cv7+dsAU/OdeCPas5woVGWCV7wVDUFInbuw9cQpHFM1rR7to7fNy3crpp3ooExqrfK8kvYmReVWFzKuKcIWf2CQcjTYnrL5zLIY4calaCMtvgZ3/hOfvhjv+GH3/waegv0n872acHnXXzPJ8Xj7cRUPXEKy4Ap78PGfbdvO4K/65YrUpSrX1RYtSTb1eWiNum7DlexFuIrmerPteeeHJDzq/77XjANy8ZgYeM3OtJE8426QoNeQPsv2EyDydVuKhudcb5aJSKJKR9tnPTTfdlNZ2mqYRCqkLUIViojJgZkrJL5SZ5XksqMrO6ZLvcrBweDueHQ1Q9T5lfR8l40eUEo9dUZCGU6pi/kkYkUIxvonsUpnvcsCNP4GfXxDOMSqsgcu/dIpGN/Vw2aUopQs3J0Dv8VM4omg++GfRSez0WeVplZ4p4tPal36mVFxe/olYrng9FE/L0agmERd+GnbeD3segIZXYOZZ4vbBTvjPh8T6Ge8W5X4RyLDzhq4hqFpJn6uaYn8bywM7gNgwecspNRAtSm02s4w0TRizpAg5kTAMIypTKqb7ni1Z+d7JEaWG/EGe2N0CwG2n11m3F48QpTYd6yaoG8wozWPJtGKae71RLjCFIhlpXyHqup7WjxKkFIqJjQw6v+30et51/hy+ecuKrDvnnWPbyZ9dX2Pmi/8Dr/4yl8Ocksigc4CuU/hFb3XfS9blpkt0t1KilEIRzpTKc9qx2zQoqoXbfg92FxRUw9seUq7Ck4jbCjrXw06pviaR73WK8QZCVpnSqZx8mAw0Z9B9L4buY7Dr32L97A/mblCTieolsObNYv3Rz4Cui3Lk+98NA61QtRgu/0LMbrKD3sG2AY50DrEjTwhRSwdfidkWwqJUW3+06CRL986YVQ5MTKfUgC9o5UdBuJQvoCdxSkWU7yXrYp8rTnQPEwgZFHscLJse7sRdmh8tSr1yuAuAs+aUU2bep5xSinTJyLbwzDPPsHTpUvr6+mLu6+3tZdmyZaxbty5ng1MoFCefQbPUrizfyeevW8pZcyuyO1DnIb4w/E0cmtl946kvQueh3AxyitIXKUoNJL9YeelgB3f9ZycDviB93gDv/sNrXPejddbPO3//WlQOQCZ0DqTRfU8+1+pCW6GwukoVRDimmH0efHQrfHSLKIVRnDTC5Xu6EAhtDtCD0N9yikcWLo8GrFb3iszxBUOWu7gq2QRKIh7/HBgh0RFz2srcDm4ycdkXwF0MzVvhH2+H314Fh54Buxtu+WXcTEkpSm093sMl336Oe9oXADC3Z0Pch5BB55GZUm19Xv5pBm/fsFqUuXYO+vFOsPdM92D0eZgMLw9amVLxnFLi9RzUDfp9Y++WkmLf9NLo53Jk+d7LhzsBOGtuOWVSOFPCuiJNMhKlvv/97/Oe97yH4uLimPtKSkp43/vex3e/m6QLg0KhGPdIp1TUxVM2PPoZiowBNuvz6ag8S7RUfvC/cjDCqUtU+V4Kp9Q3H9vLPRuO8dsXj/Dnlxt4ak8bOxv7rJ9n9rbx0PamrMYhy/eqEgWd67oSpRSKCGT5XmS2FAAlM8CdWWdTxeiJEqVsdig2s5vGQa5UZ8SEw0S7wB5PDER8XxZmej6z71ER4G1zwFVfz/HIJhmF1XDx/4j13f+B1p1QUAVvfwimrYq7y7LpxZwxu4wij4Mij4NtrlUEsVMy3ABdh2O2l6Jix4CfQEgnpBt84YFd9HmDrJhRwhvOqCfPzDmaaCV8I8vbekZmSsWJvchz2S2358nobif/pwlFqaEAw/4Q2070AHD23ArLRdWtnFKKNMnoU3rbtm1885vfTHj/lVdeybe//e1RD0qhUJw6hszuewWuUYhSzdvh4FPo2PhY4EN8ZsVSrnvuWji6TogVSqjIinQzpQzD4FDbAAB/eaUBp0PMtH3k0vmsnVXGozta+NvG47x0sIM3nzUrozH4g7o1K5aw+17fCQj5RMBpycyMjq9QTEakyD+qz1VFzojKlAKRK9XTYOZKnXXqBsYIp5RqEpI1Mh+zwGWWzKbDUBe88gt49Rfi93M+DDVLx2iEk4izPwhls6FpK+gBOP2dUJr4u9/tsPP390d35ON3v4ZjL8LBp+HMuVF3VRS60DQI6QYL/vdR63aHTeObt67EYbcxrdTD4fZBmnuGmVNZkMM/bmyRE4yVhW46Bnz0DPnRdYOAntgpBeFGQidDuJZOqZFdLCOdUlsaugmEDGqLPcwsz6csX4axK6eUIj0yckq1trbidDoT3u9wOGhvbx/1oBQKRWJOdA/x7j+8xtbjPWNyfOtEbuSMfia89AMANhdeTINRQ4ejRljgQYRiKrIiKlMqiSjV1u+zyjBb+rwc7xqm2OPggxfP5+JF1dx+hshQWX+oE103whdmaSBPTlx2m3VCEoN0SZXPUd3EFArC5XsZOzYUY4IrMlMKxlUHviinVFCJUtkiJ3GKPImvW6IIBeGeG+D5b8BwN1Qvg4v+ewxHOInQNFj8Orj0f+HyLyYVpBKy4HKxPPBkzF1Ou40LFlTF3P7xKxaydLqo3plhungaJ1iulBRt5ppCmm6I1650SjnjZEoBeJx26rR25t6zFu57q0h6zyEbDnXyuh+uY9OxLpp6UjilhgMc6hgEYPmMEjRNszKlVNC5Il0yOjuaMWMGO3bsYP78+MG127dvZ9o01Z1CoRhL7tt4gqf2tKEb8Nu3n5Hz4w/5xYlc1hdP3cdg178AWFf9JuiAoUAIlt8Kh54W7YMv+nSuhjul6EvTKXXEPDmI5PVr68lzCaFxZV0pBS47PUMB7n3tOF9/dA+vX1vHF65flnIMW46LYNGl04uxJZp9Vp33FIoo5Odp/mjEfkXOkKKULzj+RKl25ZTKCVKUKvSkeS6z6XfQsgM8pXDdd2Hx9eBIkpuoyC3zLxfZo0degIAXnNGunD+844yoHEyH3RZ1nipdPBOtfK/LzJSqKfGQ77Iz5A/RPeS3uu85Ejil8px2PuK4D+dwuyibPPgULLgiZ+P615YT7Grq4x+bTtDcG98pFRl03mZ2upTblJpOKVW+p0iXjJxS1157LXfddRdeb+wbfnh4mC984Qtcd911ORucQqGIpdmcBdp4tAtdz33XjQGzfC8/2zKTLX+0wkF7SpYAZkng4teJTlPte6B1d66GO2UwDCPKKZUsPPJwuxCllkwrtsoW3nRWeObSabdxthlg/7l/7aDfG+R3Lx1NaxxbGnoAOG1mWeKNLKfU3MTbKBRTiPPmVzK7Ip9rl6uJu/FAbPne+BGlIsv3VKZUalp6vTyxq8X6eWF/O/6gbn1fpjXBNtQFz35NrF/6f2ISTQlSJ5ea5VBcJ/JHt/455m5N0yjNd1k/I59X6eKRAspEQTqlyvKdVslblCgVJ1MKYKntGDfa1odvePILGXcPNQyDg20DbD/RY/3IhjonusX/cW9LvyX0TSuJdkoVm06pPm/A2qam2G3+PeG/RaFIh4yuOv/v//6P+++/n4ULF/LhD3+YRYsWoWkae/bs4Sc/+QmhUIj//d//HauxKhQKRDkWCNfMvtZ+lkyLbTwwGkbllDIM2PF3sb7mLeSdcJjHDEFeKcy7DPY/CrvuVzkNGeIL6gRCYRGyc9CPYRhoWuws2mHTKXXuvAo+d+1i/EGd+dXRYcrnzq/k6b1t1u9xDhMX2YL5tFmliTdSTimFIor51YU89+lLTvUwFCbuiPI9wzDQZPZd7/FTOCpBdNB5+qXVUxHDMLjlpy/RNMId8/HLF1JfLi6gi9JxSm34cbhkb+07xmKoilRoGpz3UXj0M7DuO7DmTnCk3zVxeoks35toTikpSrkozXfS2DNMz1CAoC7L9+KfnL3D+0dsmkFbzYVU926Dtl3i/HvVG9J+7L+9dpz/uX9H1G3TSjy88JlLLFFqf0u/NZYZCcr3DAMOtYsc0+pij/n3hF1UId1IP9dNMWXJ6KqzpqaG9evX84EPfIDPfvazGGb9qqZpXHXVVfz0pz+lpqZmTAaqUCgETRH18q8d7cqpKKXrhhCQyLLM5MRr0H0UnAWw6Bry20R3t+GAWXa27CYhSu17TMxGKtKmbzjaAu0L6gwHQnEdbbJ8b25VQdwcBoDz51dG/W7XtIQil2TIH2RPcz+QyimlRCmFQjF+keV7hiHaqjstp9SpF6Wigs6VUyopHQN+mnq9aBqsqS+lfcDH8a5hDrUPUFYgLopTilJ6CLbdK9Yv+ozKQTyVnPY2ePH70NcIj30WKheAr188RzXLYNZ5UFARd9dppUIMaZlgTinpJCovcIXDwYf94e578TKlhrpY498IwJal/81V+jqRhbbv0YxEqR2NvYB4jxR7nDT3DtPc6+VY56B1rTEYUUJcUxItEroddjxOG96AzoFWIUrVFEeX7xmGOH8tK1DOQ0VyMv7knTVrFo888gjd3d0cPHgQwzBYsGABZWVJLlAUCkVOMAwjql7+1SNdvPWc2Tk7/qB/FC2UAbbfJ5ZLrgNXAflmhpEUuph3mVi27oD+VihSIna6yDypYo8Db1DHH9TpHPCTXx77PEmnVLIONAtrCnn92joGvEEe29VCUDfo9wUpThIKu/1ELyFddFcZGXhpEfSLLlagRCmFQjEukaIUiBI+Z8kM8Yu3F7x94MmtAzkTIp1SSpRKzvHuIQBqiz3c/8Hz+OemE3zy79voGQ6Eg87dKYLOj64TIoinBBZdM9ZDViTD6YELPgGPfAo2/ib2fncxvP1hmLYy5i55zjo0wXLYus1MqdJ8p5XR1D0YsMr34jqlGjZgw+CAPoN2Vx1Uni5u79if2WObgtinrlzE286dzet+uI5dTX2sP9RpuaMklYVu3I7YyeqSPCfegM9qkiTL91wOGwUuO4NmRpYSpRSpyHo6oKysjDPOyH3IskKhSEy/Lxj1hfva0a6U7pZMkMe2aeHyhrQJBURZHsCK2wGsYG1rzIVVMG0VNG+Dw89mNKMz1ZH5GEUeJ/m6QUufl+4hP/Xl+VHbBUK6ZbueV1UYcxyJpml8+7ZVACy96zERrjnoTypKyTypNTNLEw+055jIFHMWQFFtGn+ZQqFQnFxc9mhRqqCgSARce3tMgWJsRKneoYCV2RLJ9NI8q7xFZUqlz/EuIUrJ70F5Ud8z5E8/6Hzb38Ry2S0ZlYspxojT3gatO6GvCdxF4kcPwtGXoPsI3PsmeM+z4nwyAimY+DLoJjweiOuUGvJHlO/FORc/+hIAr+iLhXBduUDc3nlQuMps6VU6WKWDpmA0r6qQXU19PL+vPWbb6aWemNsASvNctPaFP7NqisLblea7GPQPq7BzRVooj6pCMYFoMV1ShW4HvmCI1j5hVZ9ZkZ9iz/SQMx0FbkfmQtfeh2CoEwqqYe7FAJZTKqqD0LxLhSh16BklSmWAPMEuznOiIbLFOuOEnTf2+gnpBgUuO9VF6Z1gl+W7GPIP0zXoZ1aFcFfds+EorxzpIhQyCBkGId1gd1MfkG7p3tz0g6oUCoXiJOKw27DbNEK6gT8kw87rhSjVcxyql+T8MTcd6+aOX2yIcSAAnDmnnPvedw7BkE7XUGSmlBKlkmGJUmUjRalAekHn/kHRuQzU+ch4weGC638Qe/twN/z6cnGO8Y93wNsejDrHsDpqTrD3TPdQOFNK5jB1DwUIBGXQeZzzqGMvAvCKvoSFgRCUzAGHB4JeEaFRMS+9xzZdWuX5YVEKYP2hzphtR3bek8hcKRBiv3wPghDaREaWCjtXpCZDK4RCoTiVyNK9urI8lk0vAWDbiZ6cHX/I7LxXkE3nvVd+KZZr325lMuQ5pZ06XBZolfAdegb0iTWjdSrps5xSDioKza4mcUSphm7xGplTVZC2sCizN3rM2ayuQT93/WcXD29v5rFdLTy5u5Vn9rZZIfvnzIuf6QCoPCmFQjEhkG4pnwwTL5sllj3HxuTxdjb2EtQNbJpo5y5/QJTiN/YIR4ERoVkNT7BSpJPN8S7hCpah5iV5YaeJnGRLmim1/3EIDELZbKg/a0zHqhgleWXwxnvBmS9KLmVTHZPI5gUThZBu0GGW61YVuSmxMqUCBHRZvjfiUn24B5q3A/CyvoThgA42G1SYbqmOA2k/vhTA5Tng3CoxKSnLhmuLw0LUyM57kuIIUaq62B113lkaIbIpFKlQTimFYgIhAxynlXisWaGe4dx92IedUhmGnLfsgIb1YHPA6e+0bpbHiarxrz9LlHYNtguLdpxsAEUs/RGZUjLcvCuOKHXMFKXmViYu3RuJtIzL48mAy2KPg09fvRiHTcNu03DYNOrK8lk+oyTxwZQopVAoJgAuh43hQAh/yPx+Kpstlt1Hx+TxpOvp5jV1fOf2Vdbtt/5sPZuOdfPC/nZW15eO2GfiXGCfCmSm1EinVJ83SO9weCInIXsfFsslNyhn70SgcgFc8El45ivwxP/BwqutUlu30xSZg3pOYy3Gks5BHyFTqK4ocFFkuvoGfcGIoPMRf0fDy4BBl7uedm9ZOHeuaqHIa+3YB4uuTvnYhmFYE5vlBdFOKcmlS6r5yysiI3Rk5z1JpFOqpjjaTRVZjqhQpEKJUgrFBEI6pWpL8qwQxP44+RTZIh1NBZmGnL9quqSWXA/F06ybY4LOQViz51wA+x+DQ08rUSpNIjOl5EnA8/vbsZknXkumFXPWnDL2tYmT9EW1RWkfW56QSBt5q+mImlmRz1vOnpXZQDsPiaUSpRQKxTjGKveRGTRJRKnvPrmfR3c084/3n0tJforg7ATIi0ePM9r5cMGCSjYd62bdgXbqyvLi7qOIjxSlZIRBacQFcqOZrViYKOg8FIADT4r1xa8bu0Eqcsu5H4Gtf4GuQ/DC3XDlVwFw28X5pmFAIGTgcox/UarNzGKqLHTjsNusc+8BX9Aq83XYRjilzNK9xtLToBe88vy6cqFYphl23h/xGFI8mlNZgKZhuTVPn1XGQ9ua6PMGre6GI4kWpaIjI8LliEqUUqRGle8pFBMImSk1rcRjzf5JB00iAiGdLz24i+8+sY8T5glcIiynVCble/5B2PFPsX7me6PuCpfvjTixnnepWB58Ov3HmeJEOqWqzS/+dQc6+PJDu/nyQ7t5y29eobXPy+4W0XlvVV1p2seWJyTyxEGW6dUWxz8JSYoSpRQKxQRAlu/50xClHtjayIG2AauFejZIgUmW7EkuXCgCm1880BEVGBy5jyKWYEinqUd8V0mnlMNus9wmUrBK6JQ69hL4eiG/EupU46YJg8MNV39DrL/yC6vbrztC7J0oJXxt/eL1Kx1G+WZ1QV9EBYRrZPneiY0AdJSvBSI+I6Qo1Z6eKCVdUnlOOx7zMynPZY9yRNWX53PtimkUeRwJs0QjM6Sqizwj7pPnlqp8T5EaJUopFBOIsFPKQ5HZJS2VU+q5fe387qWj/PCZg1x497M8tL0p4baDMlMqE6fU3kfCmQwzz4m6Kxx0Hi2c9U6/EACj4WUhailS0jccdkrdtraeO8+eyQ2rpnPDqulUF7kJ6gYPbm+mqU+caKyoS1JiN4Jw+Z54jNbe6BOltPEPQr/5+iqfm9m+CoVCcRKxMmikKFVqukK7jxEV7IQoBwPCpX5ZILOrPCNEqZUzSij2OOjzBnl2bxsQDueeaKHNJ5PmXi8h3cDlsEU19ZBONln6mLD73t5HxHLR1Wl3K1OMExZcAXMuhJAfnvkaEC3eTJT3jRShpcNITgj3RohSUeV7ug4tOwHoK1sKxBGlOvbFfH7Fo2tE6Z5kbkQJX11ZHt+4dSWbP38F07Mq3wt3w1QoUqFEKYViAhHllJI23xROqcPtA9a6bsCjO1sSbhsu38vgBG272U555R0xmQxW+V4ghBHxJfmJp/o5rleh6QE4+mL6jzXJePFAB1d//wX+s7Ux5bbSKVXkcVBV5OarN63gh29cww/fuIbXr60D4LcvHgFgbmVB1IlCKsJB57J8T54oZShKyYDN/ArIL89sX4VCoTiJuEYGI5fOFEt/Pwx1WdsZhmFN/viDqS/2EiFDy/Nc0d+vDruN8xdUAvDk7lYAq4xPOaUSIzvv1ZXmYbPFhitLiuJNshkG7HtUrC9SpXsTDk2DK74s1rf/DZq3YbNpOE0BxyrJHefIqIQq02Ekz717hhKIUj1HxeeT3U2gVHTYszp0VswDNPD2iszWFHSPCDmXzDPDzp12zXI+xYStR5C0fE9GQwymdkrpukGjmWeqmJooUUqhmEA0RQSdp1u+d7TTLOcyA1T3tfQn3DYcdJ6mU2qgXXTRA1hxe8zd8uTbMMInCc29wzy7v511+gqxkdx/ivH8/nbe+YfX2NvSzy+eP5xwu23He/jaw7ut51465CI5b764oGkxxaSVGbikIDboPOvyvfa9YlmV+3bqCoVCkUtcI51STg8UTRfrESV8vqBOwAwdHk1ZUDhTKnbS53Urpkcdv84sR0skSoV0g8/ev4O/bzye9XgmOlbIeXl+1O3y+0wS7zuT9n3Q2wB2N8y9eKyGqBhLpq+BFbcBBjz8KdB13A7x3vJPGFEqvlMq8n3vjMyUatkhljVL8bjFPlaHTmdeuINo+76Ujy2d8SPfLzLsfHppHnZb6lyuhE6pUJCFrY/wb9f/8cH2LwmxLAG6bvDhv27mvG88w2M7m1M+pmJyokQphWKCMOALWgJUbUleRPleclHqSIcQpa5eVmv97gvGP9GV2U8FrjSdUrvuByME00+DytgMofyIbCp57Ps3N6Ib8LxuBpxPwVypE91DvPeejdaJ0+7mPtpMIWgk//fvnfxq3RFePixm7ovzYgXDtbPKrFIUgFUZilKJgs5rSjIUpdr2iGXVosz2UygUipNMTKYUhC/qeo5aN0Xmu4zmYtebIOgc4NoVtXz39lVUFooLTTmxMOyP/3ibjnXz11cb+MIDuxJ+n092GrqkKBVdVjTSJRy3fE9Ohs06F1z5sfcrJgZXfBlchXDiVdj6Z+s8aKI4peR5nxRzRk4I2zSiXICWKFW7whK3hyM7dMosz67EE52SkZ33JOfOq8DlsFmTnakojueUOrERfn4+SzZ8itW2w1wQWE/L9y7ia39+gq89vDumnO9nzx/ikR2iiuNHzxyMqqxQTB2UKKVQjFMMw+D7T+1n7VeeZOUXH+ec/yfEmyK3g0K3w3JK9aXIlJKi1Nlzyyn2OAjpBgfbBuJum7FTate/xXLFbXHvtts0azZ6yB/EMAzuM2d2N+jLCGKDzgPs2LWdhs7kIeyTid+/dBRfUGftrDKWThPtjF840BGz3fGuoZhg3Xizvh6nndNnh0MoM3VKlVodUsRrKXunlDk7V62cUgqFYnwTU74HccPO+yImfkYjSiUKOgfQNI1bTqvjuU9fzIMfPp/rVwnnVKJsnPZ+4bAY8od45XBX3G0mO8e7hHtYhpxLIsv3NA3y4/y/OfysWMqmK4qJSfF0uPh/xPqTn2eeTQgbE0WobbWCzk2nlDu2tDcKS5RaaX2OeCM/I0rqxbIvdSSEVb6XH5spte2uK/naTcvT+huigs4LHfD0V+A3V0D7HnRPOT8J3kiLUUat7wg37Ps0v113kP9sDWfb7jjRy3eeEOeONg12NfXx6pGp+Zk21VGilGJS8fz+9klh/dR1g8//Zyfff+oAnYN++rxB+k3B6Mw5IqsnnfK9QV/QsgfPrSxkca0QQBKV8A1l0n1voB0aNoj1Jdcl3Ey6rq770Yus/epTHOscwuO00UcBW3Uxq/OXv/yBa3+4jp2j6Gw0Uej3Brj3NSHMffiS+Vy2pBoQr92RPBrntZyok9C588Sslt2GJXSli+WUGvTjDYSsPIOR+QApaZdOqcWZ7adQKBQnGVc8V0UcUSqymUhgFOV73iSilKTQ7WBFXYm1TaLyvc7BcJe+Z8xw9KmGnDyZNiKAuTQvfJFd6HZEO00Agr5wluW8S8Z0jIqTwFnvh2mrYLibnwS/wEytdcKV78nspjynPSqa1TnytRvhlJLxGFGfESUzxLL3RMrHlqLUSKcUiOgNTUtdugfhjNslZTpF990G674Nhg4r34Dto5tY9pZv88Q5f8TrKGaF7Sjvtj9C52DYKbXpWBe6AefPr+SOM0Su34+fPcgrhzt55XAnWxq6CU6QboqK0aFEKcWkIaQbfOBPm3j/nzZHhXuPluNdQ1bA+MnikZ3N/OnlBjQNvnTDMp7+5EU8/cmLeOaTF/HLt54ORIpSiZ1SMk+qLN9JSb6TRbVFQGJRaiCT7nv7HgEMcTIgA2LjsHyGcO30DAWszKI3njmTykIX60IiV+oC23YGfEHe9ttXLWfXZOW+jScY8AWZV1XARQurrHbg6w60E9KjLcsylP6cuRXWbcUJRKmrltXgctg4a2Yx7iQXPfGQM2VB3eCQ+d5xO2wZhaXjHxJdq0CJUgqFYtwTv3xvtliOgVPKm6D7XjykKBXUjbhCWMdA+KLumb1tU7LcRZYAlY9wekQ6N+KGnB9/FQJDUFAN1cvGdIyKk4DdCW/+J1Qtpsro5A/ObxAcGv8TnMGQTsdAdFMZTdOiJoWdEbEMDHaGHVA1y8Lle/44Tqne1Flz8ny8LI4olQn5LgdPffw8Hqj5NdrRdeAsgFt/A7f8AvLLuXhRNW+9+gI8r/sGAB93/ANHzxFrf6/5mVpT7OFd588GYN2BDu745cvc8cuXufmn6/nWE6kzshQTnwz6visU45sBb9DKLXpkRzMfvnTBqI95vGuIq77/AiV5Tl7670tjZ9zGiP2tQhi4bW0dbzt3dtxtZBnXgE+UxcWb1TjaIUri5lSKbhpSlNobIUpFnswO+jLovrf3IbFcfH3SzX739jM43DFodah12DXmVBSwq7GPF46t5OP8k/NsO/HYdToH/fzsuYPc/fpVqR9/gvLXVxsAeNf5c7HZNNbUl1LkcdAzFODNv37ZOtGoKfKwpaEHTYPv3rGKD/15M239PisAdyTzq4t47pMX4e3vznhMHqedPKed4UCIPc3itVFb4kl7pgyAjv2AITrvFVZlPAaFQqE4mcQEnQOUmplSUmAneuJnrILOR+KOyJ3yBkIx3a86B8JOqYauIQ61DzK/upCphCw3H9ltrzRCpIobci7zpOZdAjY1Nz8pKKyCtz5A2/fOYw6tFGz4H1hyb0xH6PFEx4AfwxAxFxURwlC+y25FaTgiX5+tpkuqfC64i8hzinO16PI90Yk5LaeUGXQ+UtTNhpqXvwZHnwNnPrzjEZi+Onaj1W/i+At/oL77FS46/lPgHk6h9QAAq+pJREFUKgB8pljvdtqYX13Ehy6ZZ03Iev0hmnq9bDjUOeoxKsY/SpRSTBp6I8JIH97RkhNR6kfPHGDIH2LIH6JryG+FkI41cgawJkmmj3RK6YbIlYjnbpJOqdmmKLVkWrRTqqlnmBt/8pKVTyFJWb7n7YPDz4n1JKV7IGriF9YUxdw+r7qAvx2dR6+RT4k2xH8t7uebu0po6jm5rrSTia4bHDWdYBcvEsKNw27jssXV/HtrkxVmHsnps8qYVpLHfe87B5umJRVGa0s8tPkyc0lJygtcNPYMs6e5D0j+2ouL6rynUCgmEEkzpXpPQCgAdmdUifxYBZ2PxO2woWmic+1wIBQjrnQORAcFP7u3bUqJUoZhWOdJI50epREO37gh5zJPaq4q3ZtUFNXwvdLP8aXOT1F9/DHY+mdYc+epHlVCZEOZ6iJ31HldodtBm3lO7rTHDzkHokp8rYlpS5RqFB8eSUS5Luv9k4EjPh6dh+Dln4r1m38RX5AC0DS2Lvk0M166jVV9z0HTFpi+xsr/8pidEz991WI+fZVw2x/tGOTibz/H3pZ+giE9NmNLMalQz65i0hAZ+L2nuW/UZWCH2wf45+ZwWGBrgu5oY0F4BjDxDEae0261a02UK3W4XfwP5lQIUUqKQy19XnqHAjy1pzVGkCr2OKySu4QcfBJCfiifl3Wp1ryqQnRsvKiLMMUr3LsBomrNJxtdQ36CuoGmQVVRWOD80o3L+cEbVvOt16/kW69fyd23ruQ9F8zhssXVfOZq8f912G1j6tSTs817W7IUpVTnPYVCMYGI2z6+qFbM9hshyy2VK6eUlSmVRndbTdPCQcZxOvDJTCmZH7ivNX5J/mRl0B8iEBL267IYp1SEKDVysm6wE5q2inWVJzXpaMhfyo+DN4tfdv7z1A4mBZYoNeJcKz+iUsGRRJTymJ8juhHxuVQ0HdAg5IPB2OY5kSTqvpcx+x4RyzkXwdIbkm4aqlrKv/XzxC9PfxkIZ/q544j1M8vzKXDZ8Qd1Dk/yaA+FckopJhGRbZtBlPB96JL5ae/f1ufljb96mTYzeNAX0qMyftr6fZys9AE5A1iaJNNH0zSr7KvfG6C2JFZEkE6pOVVClCryOJlRmiccMS19bD3eA8D7LprLey+YC4iZRXmynpA9ZunekuuytkfPNcf0gr6K19lfZVrHeuAcugZ9yXecwMjXVkWBK6ocoyTPyY2rZ5yqYQHhE5O9snwv45Bz1XlPoVBMHNzxyvc0DSrmiQvAzgNQOZ++4Rx13/OnDjqPxOO0M+QP4Y3TSUw6pWZX5rO7uS9hIPpkRV5Quxy2mP9nVKbUSKfUkecAQ2RJFdWO8SgVJxuX3caT+lo+wT9EdlgoCPbxeanbak4I1xRFn2vlR2ZKRZbvRXTeg+jPEa9fF+ftDhcU1sBAi8iVShCloOtGOOh8tOV7e01RavHrUm5a6HbwpeCt3GDfgOPQM9CyE29AXGe5HbGilM2msXhaMZuOdbOnuS9u1YVi8qCcUopJQ9+IwO+n9rRmtP8LBzo41D5Iv090uvMHdVwOG7MqRIZP20l0SsnuZ6lstfKESwaxHmwb4M5fv8JNP3mJm37yEjvMbnazTacUwKp64YJ65XAX20+I+8+aU05FoZuKQndqQSrogwNPivUlyWdFkjGvSpQayLDz/PYtFDNA16B/0oa2yva/stPKuKDrCLz8M/6r55v8w/VFFg5vAbJwSrXuFEsVcq5QKCYAccv3ACrM0v+OA8AIp1SWopRhGFagbzqZUhBRnuOPFZxkQHK9mTHojbPNZMY6R8p3xmQfluRFZkqNECQOmaV7yiU1KXE77Owz6vE7isA/EM5hGifouoE3EMIbCNHcMwzEnmtFuvssp1RgODzxZzqlnHYbcm5zOF6uVF+40mMkfd4Acs49WUVGSgY74fjLYn3RNSk3L/I4OG7U8Kr9NHHDgSfCTqkE1x7SDbq7qS/7cSomBONTPlYoskDOZk4r8dDc66Whcyij/U90i+2vWzmNT10pSpBK8538v0f2cKxzyGrdejKQMxipviwK3U5g2Dpp/ttrDbx4MNqyW+RxWK4kgPPnV/HIjhYe3dlsdVpbWVea/uAOPw/+fiiaBtNPS3+/EdSV5eOy22gKVTJUPI/8vkOca9vNY6Ez6fcFKY4XUDrBkcJmTaYupLGg6wj858NwTLTGPh3ABr91fou3+v+H2pI16R+r+6iYlbM5YHoG+ykUCsUpIm73PYBKU5TqlKJU2CkVrxNeOgRChuW8TleUktlTI11Q/qBuTUTVleUBWE1epgryHKkszjlSwvI9w1Ci1CTH7bShY6OlZBUzO1+EYxvGzTmJNxDidT9cx6H26DK0keeD+RHlvZajvm2PKCnOrxDn3iYeh41Bvx4rSjVuTBp2LjvvFbkdljifFQceB0OHmhVJu3BLZMbbOmM15/IaHHwKn0e8F+M5pQCWTjdFqWYlSk12lFNKMWmQTilp7+wc9FsBeulwolvMWiyuLWJ2ZQGzKwsozXdZsxht/afAKZVClJKzgPKkWWZIvfWcWfzqrafzq7eezsMfuSDKDnzBgkpAdOAzDJhRmpdZgPveB8Vy8etG1bnGbtP4+BULuXnNDNyLLwfgUqeY1eqepLlSsnzvlDuldvwDfnGhEKQ0O8y5kI4zP8M292nkaX5+5/oWZxT3pH+8I+vEcsZacE+dsF2FQjFxkRdjvpGiVIVZ9t95CIh2YWfrlIq8aEy3fE9mT3lHiFLygtJh06zzkylXvmdN3MVOXjntNkuMigqI7zwIfSfA7oaZ556UcSpOLlJobixeLW5o2HDqBjOCo52DMYJUntPOOfMqo26LdkqZ59iReVIRzkCP+RkW5aZMowNfd4ImARkj86QWX5vW5nKy+cmAKEGk4WVsPlGxkUisXxLhlJqsVRQKgXJKKSYNsvverIp8XA4b/qBOW5+P+vL8tPY/3iWcUiO3lyGEJ8spFQjpVjvYZJlSIELJAWt7Ge5+1bJazptfGXef+vJ8Zlfkc9R0kq2uL01/cHoI9j0q1hcn77qXDh+4eJ5Y2d8Gr/6CC2zbAYPOQT+zIkoOJwuyfO+UOaW8ffDIp2H7veL3+rPh1l9B6UwqgcorPoH+hxspPPEKhS99EWbfl95xj5qi1JwLx2LUCoVCkXPCopS4oNN1g6OdgzhtM6gHgu37semG5UoCkTWZDT5TNLJpIzpqJUF2oxopSsnSvfICl9V1N16J32RGnu8lmrgryXMy4AtGO6UOPiWWM88GV3rnhYqJhQzLbihczTkgRKkUXehOFgPm50h9eR6P/Zc4V3LabTFOpehMKXPcI0LOJXHdlCX1Ytl7POFY5GdaTHlrJughUTkBsPCqtHaR78eDgQqM6gVonQeYP7AJWJzQKbWopgibJowG7f2+mGB4xeRBiVKKSYMMOi/Jc1Jb7KGha4iWPm/aopR0Skk7vKTaDCE8WZlS0iWlaVCcQpSSs4D93gCBkE6DKazNqUwu6Jy/oJKjnQ1AOGMqLY69BIPt4CmF2eenv18qZp8HdhfTQu3M1ZrpGpicTikpbJ6SL9UTG+Gf7xKldpoNLvw0XPiZ6BBQZx62m34KPz1b2LL3PQaLrk5+XMOAIy+I9dkXjNnwFQqFIpeMLN/71D+2cf/mRgoZYqcHHEPtfOEfG+j3hi/4RuuUynPaYzKQEiGdUiNdULJDbUWhO+E2ExXDMPjVusOW6xuEm+PDl8y3BDiA7kHZoTj+OVJpvpPGnmGrXAiA7eYky8IU32mKCYvMJWrwLBKOuMF24XisTL/p0VghKxqKPc6o1/JICuJ13xsRci6RTqko4brEbJrTmzhTKmh2roxsuJMxLdvB1wfuYpi2Oq1dIt+P/tmX4O48wLLBV4DFcbvvgfgcnFtVyMG2AXY19SlRahKjyvcUk4a+iA/8WvNDq6U3PSEpGNJpMUWnurJoEStcvndynFKy815JnhO7LfnJa2T53onuYYK6gcdps/7+RJw/P9yRI6M8qZ33i+WS68Gew8wnV4GYvQQutG23yhMmG/I1VF00Bk6pzkPw8k/J232fCMTUdfFz5AW4983w68uFIFUyE97+CFzyufhdaSrnwzkfEuuPfloEWaZ63P5mcQJYf2bO/yyFQqEYC1wjuu/Jxh+4i2k3SgFoPrQzqrNvtplSlijlSq90D8LlLN5A9GN2mk6pykKXVQo4WTKlXj7cxf97ZC/3vnbc+vnZc4d4eEdz1HapcjdlyY/Vrat1FzRtFrmHK28fuz9AcUqR7+kh3Q4zzMzTps2ncERh+n3puZMiBSun3SbO42QjmRFOKXeW5XtB83MsXddmXI6KPFJmnQu29D7XnHab5e7qq7sYgBU+8fwka7I015xoP2GGwysmJ8oppZg0yBPH4jwHNSWy5C49Uaq510tIN3A5bFSNyFeSAkJ7vw9dN7ClEIpGS3eaeVIQLUod6RCh5XMqC1OO8Zx5FRS4xIzt8hlpOqVCAdj9H7G+/Nb09smEeZfBkRe4zLaZnZNVlLKCznM409N1BB74CBxdhw0oAXjh85BXBs4CkaEhWXE7XPstyCtNfswLPw277oeeBrj3TfDW/4AzwZiPmPbt+jPBmRd/G4VCoRhnjOy+N2ReNP753WdR8vhSOLGegoEj9NjDAb7ZOqWksJSyu20EngTd9zpNJ3FFQViUGlniN1F5bKcQn86YXcZFC6t4em8bWxp6aOyOvhjtsYLO40+O/b+bV/Bfly0IO+W3/FksF10DBfGjDRQTH3ek0Fy5QJTvdR0+xaMSyIZEokFRYgoihGuHTYPuI6KToN0d7gxqkrR8b6BFdMt2xE6CBs2mC6kmvpMiRakMHfJFHifegI+O8tOoQqNKb6ecvoTlexCuGukf0WVdMblQTinFpEGGkQqnlPgQTtcpddzsvFdXmhcj6FSZolRQN+gaGnuxJNIplQr55dbnDVh297kpSvfksf/xgXP5+/vPic5cSMaRF2C4C/Irx6ZMa+kNAJxr24W/tznFxhMPXTcsp1TORKndD8DPzxeZTpodY+4l+KafieHIg+FuIUi5i2HtO+BDr4r8qFSCFIiw8jf9HTwlot3vvW8SxxtJ0A+v/Vqsz7koN3+TQqFQnATcI5xSMpuxwO3AWb0QgDlaE4P+HJTv+TN3SuUl6L7XMSi+RyoK3VanriF/cMKHAOu6weO7WgGRN/nhSxdw8cJqILbRjJy8S+SUcjlsYUEq6A/nKK55yxiMXDFekKKvL6hD+VxxYxJRatgfyqgh0mgYsKo5MnRKNW4Sv9Quj3G3W0HnkZ8R+RXgMM8x++OfSwd16ZTKUgbQQ3BsvVjPMMqjyPz7+nU3lM8BYIntWNKupHICXnZZV0xOlFNKMWnotZxSTuuivyVNp5TMk5pRFuv0cNptVBa66Bjw09rnTbtT3eO7WigvcHHG7PK0tpeEO++lFqWinVJClEqVJyWR9vZ00Xb/S6wsuyl+2ddoKZ9La9Fyavp3Ut/8BJDDzKpxQOegn5BuoGmi7GLUHH4e/vFO0AMw8xy4+ecYJTPpbmujuqIMrW2nKL2bfX52oa7Vi+ENf4E/vR4OPQ2/vARe9x2Yd2k4NHT9D6FttzgJOuNdo/+bFAqF4iQRmSllGIZVAlfgtqNVCkfCXC36oi7b8j3pZPIkyE2JRyIXlOWUKnThMUUp3RCOr0ycWOONbSd6aOnzUuh2cK7ZkUw2BRnZaCbslErju3TbX2GoEwprhSNbMWmJ6qiZQpRq6/dy80/Wo2nwzCcvjgkczzX9aYaLRwWd221w/FXxS11sPIL8PIn6jNA0KKoVcQ19zVA2O2a/gJkp5cjWKWXlSZXElBSmInzdEhD7dh1mqXYsqVMqMj9XMXlRTinFpEEq6CV5TqaVCHEpXafUiQSd9yRVRWauVJod+Jp6hnn/nzbx5l+/QmOGNdDdGZxsRX64S6dUuqJUJmj+gbEt3TNpqrsGgBXdT47ZY5wq5ExvRYE73OY3W9r3wd/uFILUspvh7Q9Hn3jYnTBjLSy8cnRdhmafD+96AkpnCgv5n26BX10Cz98NT/yfWAJc/Q3Iz0x8VSgUilOJDNb1BXV8Qd0qaSlwO6BSOKUWaNFhwb6sy/fCQefp4kkoSpmZUgXuqON5/dmNbbzw2K4WAC5ZXG397TXF8aMYutOdvPMNwLNfE+vnfXRsJtQU44aw+zGUVJTSdYOP/20rjT3DnOgeZldT75iPzSrfS+mUGhF0fsIUperPiNlWduiM6b5ZbIad98UPOw9Z5XtZnotmkSclKYzsGm4KWkttxxIGnUPYXdbvVU6pyYz6dFZMGqLK90rM8r0MnVIjO+9Jaord7GmOtZAn4kjHIIYhZmC/+8R+vvX6lfR7g5Sk4X5KZUuPpNicPRjwBenoF2LWnKrci1KeAw8IYapyoXDljBH9829A3/1tFvh2izyj0plJt+8a9PP3jcd5cndr1MXC2lllfOH6pWl3OToZSEFTzvxmjWHAo58Rs1Qzz4Wbfp7xSUFGTFsJ730eXvgWbPwtNG0RP5IFV8GK28bu8RUKhWIMkI6EQX8wKig832mHmmUAzNOacOPHh/g+9o8y6DxZicpIrEyphN33XDjtNpx2jUDIYCgQpIQcNiA5yTy5W5TuXb2s1rqt2nJKjRSlkgedW7z0AxhoFQLFGe/J4WgV4xF3pFOqTJSGMdQJwz1R0QW/efEILx0MN3HZdKybNTPLxnRs4aDzFJlSEeV7+figxQw5T+KUium+WTTNfNAE5XujDTpveFksZ52b8a4yMqTPG7S6CS7VjuFK4vKMclcpJi1KlFJMCgIh3TqpLM5zYLOFnU2GYaQUJ6QoVV8W31Uiw85HWsgTERnKef+WE2xp6OZI5yC/ffsZXLKoOum+vcPyZCv98r3WPh/tZl5ROplSGWEY5O/6q1g//Z3h0q0xoKCynlf0JZxj3y3yks79cMJtm3uHueK7L1g5IJHsaOzlnefNYWbFKFxCOUaeVI+6896hp+Hwc2B3wc0/SxxAnkvyy+Hqr8N5H4N9D8ORdSI8c8GVsPi6MX1NKBQKxVggvz8HvEEGze8Rj9MmnKzF0/E5S3AHepmvNbLLEBe4ow06z0SUkvlTXl9QlGt3HYJQkP5+MVlTYUYJ5DntBELBWLfEBEOeh62qDzdfkU6pjgE/gZCO024jGNItx0RSp1TTFiFKAVz+JXDkoGxeMa6xyvcCusjGLKwRomT3EchbY2330PYmAOZVFXCofZBNx7p59xhEpUYiX7OpclwLIsr3Zvv3gxESIpPsqheBJ173PYDi6WLZF1+Ussr3snHtGwac2CjW62LdW6mQotyAN+yUmqc10YYPiH/9UmyV7ymn1GRGle8pJgWRH1SFbgfVZrmdP6TTlUYnNyvoPKFTyhS50nRKRbYtNQw4bDqn/vpKQ8p9uwczyZQS20hBqrzAlZbDKiNOvIqza78Iz171htweewQVBS6e0NeKX/Y/lnTbdfs7GPAFqS328LWbl/O7d5zB795xBjPNEsyjnYNjOtZMyUnIecALT35BrJ/53rhZAWNKUY0QJm/7Hdz8c1h+izrRVygUE5Iid9hpPOg3Q87lBaGmMVyxFBClJbJLVbaZUsPZlO+ZF5xnd9wH99wAD30cHv00nx/+Jg6CVjZhnhV2PnFFKW8gZAl+kU1eyvNdVu6NPM/pGQ67JRI2hBnsgHvvhJAPFl4DS64fo5ErxhMyU81yNCYo4ZMZtLecJoSejce6x7xRwECamVKR5Xuzh3eJlboz4k7+JXRKWaJU8vK9rDKl+hpFZz/NDtNWZby7FOX6vQH0glo6jSIcmk5B78GE+xQpUWpKoEQpxaRAfsEUuh047DZcDpt1wpaqhM8f1K1t6hI5paxcg8ycUm85exbXrqjlbefMAuCFA+0pZzPTtqUTW5t+zryKtMaXCdrLPxMry2+BvLG1N5cXunhaPw0Ao2EDeBPX+W9uEN3gbj5tBm8+axaXLKrmkkXVLKotAsafKGU5pbIVpboOw2+vhNadoiveBZ/M4egUCoViaiG/P4f8ISuTMj8yz2VauLSkvMAs3zuJmVJ5LjtFDHF15x/FDbMvIGR3c6ltMz/N/xUzSjxRxxyZPTWR6DPP4WxatFPEZtMinOpejnQMcsz8bi/2OBI7PR75tOg+WzEfbvmFcvNOEcI5ceZ7IYEoJcWN8+ZX4rBptPf7LKfeWNHvE6/xlKJUxOt/1pApStXHlu5BEqdUivK9gNl9LytRSrqkapZllVlaHJEp5QsZ7NGF89PTuTvhPlb3vQzL99YdaOd//rk9bkWFYvyhRCnFpECe0ETOmtWaJ2ypws6PdQoXU6HbkbArWq0pJDT3pvel1dgjnFdrZ5Xx0zev5Ys3LKO+PA9vQOf5/e1J9w1330s/6BxEJ6HPv25pWuNLm7a9sOcBAIyzPpDbY8ehyO2g2VbLQX06mh6EQ88k3HbTMSFKrR2RAzDbLNk72jE0dgPNgmbzdVibjSjVewJ+cyU0b4O8crjtDypYXKFQKEZBZBmNnDSIvCDMnylcAEtsDVTkSJTKpPuex2nnPY6HKNT7oXIRvPU//GXW1wgYdq7U16Ft/j0Aea6wuDZRsTJB85zYRlwoy4mcV490ceX3nufWn20AoKwgwTnScDfseVCs3/IrMYmjmBK47RHlewDlZq5U1xFrG8MwrNdbdZGbZTPE60OeU44VYadU8ioIKYy78TNzYJu4MUGZnMzQinVKyaDzprj7BUdTvnfitaRjSkVhRGi5LxhitzEbAGfbjoT7FGUZdP7/HtnLva8d5+k9rVmNVXFyUaKUYlIgv2AiRRp58Z/KKXWofQAQteWJsqdkWV9jmjMpsuPeDHM/TdO4aqkI73zc7DCTiJ4MMqUKI06gP3P1IkuIyxnrvo2GgXfOFVbw61iiaRpl+S6e1s3a//2Px92udyjAgTbxvJ02a4QoZWZqjTenVIPV4TF+iWhCAsOi095gO1Qvg/e/CPMuGYMRKhQKxdTB5bBZF3WWKBUhVNnMvJMl2jEqC0YZdG4KRh5X+k6pIqOfd9kfFb9c9nkMzcYvmufx9eCbxG2P/x90HSYvUQnPBEK63YvjXLDLc7l/bWm0snAgiZt8z4OiM231UphxWu4Hqxi3SKdUsvI9X1C3XkdFHoc1sTnWolS6mVJuhx2nXeMN9mfJD/VBSb3ophwHKXLHuCSLI5xSeuxnVnA05XuNm8Sy7vTM9yW6FM8X1NmmzwPAdnRdyn0GfEGr9DAV/d4A+1r6gNhGCYrxiRKlFJMCab0vjnBKyeyerz28h9O/+iSnf/VJPvyXzTF14wfbpChVmPD4UlzqHgqktIGGdIPmHvEBOKM0LEBctVyIUk/sauGDf97EB/+8iQ/9ZTPfe3I/G492AWIGJ9x9L7UoZbNpfOv1K/nqhfm8q/cn8MTnoXGzCLIaLR0HYOc/ARg4bexdUpLyAhfPhMwSvv1P4PXFZoJtPi5OHuZWFlhlFZI5FeNPlDIMgxNmblmiMP2EPPZZEdiaVwZv/AuUzBiDESoUCsXUI9wsJFaUomoxQRyUaEPM9/QAIiA4m+yZbDKlaro2U6D5OG6rg8XXcah9gBPdw/xZu4bQzPMgMAh/uYPlHAImevmeOK+KlxElO9bubemPun0gUSmPed7C8ltzN0DFhEBmSoWdUrGi1MhS0TUzSwHY2ZQ4LiIXhLvvpe4xVurU+YBDVClw/sfBHv96wJPIKVVYA2igB2GoI2Y/2X3PkWn3vVAAmraK9RnZiVKRmVK+gM46fQUBww4d+6DzUNx9Iv9n6ZbibTvei9Sv2tKMXlGcWpQopZgUWNbviFm202eL2Y8hf4iOAT8dA34e2t5siT6SQ+1CvJhXnViUKvY4rTroVG6ptn4vQd3AbtOiQq1Pm1lGbbGHQX+IR3a08MiOFh7e3swPnj7A63++gf9sbWQ4IuwznfI9gNtCj3DnpjvQNv4a1v8QfnUJ/HANPP0V6D4Wu4O3VziQXv45bLsXvH2x2xiGEEMMHWPh1QSrxt4lJakodLHJWECvkY823MmbvvgTPv33bVHbbDZntOK18J1lOqWOdw1ZX7ynmvYBH96AjqbB9NIMnFKHnoVNvxPrr//tyQ82VygUikmMnIFvMS9aCiKdTA4XPQWi/OcMTzgwOBu3VDbd98p6RDnLRn0h333qAN94dB8AZ82twn7zT6GgGjr288W2/+Juxy+wdyUOCh7vWE6pvNgL9kQ5jLKpSRT9rXDkBbGuRKkph9V9T2ZKlZnlewOt4BMT0H0RjiWbTaPCjO0YGMMQbV8wfG6fqnwP4A7H89Rq3fS7amDNnQm3S5gpZXeawhRxw86lU8qZafle224IDoO7ROS1ZUFRZKZUMEQfBWzRlog7EzQ48jjt1nPbn2auVKTzTTYaUoxvUsu1CsUEIN4Jzc1r6jhjdjmDPvFhfdNPXmI4EGLAG2RnYy8f/9tWvn3bKsspNT+JKAUiBH13cx+NPUNWmHY8pGhVW+yxOvYA2G0af3r3maw/1Gnd5g+KjKl1Bzr40TMHWWuWornsNvLTsfl3HYFH/xswYO7Fwk2z/3HR/nbdt2Hdd2Dh1XDGu8FVAAeegNd+Db4IIcqRBzPPhumrYdpq0aK1dSccfBJsTowrvgIncQL2kkXVrD/UyfP6Km6wb+BS+xZ+u3d51DZWntSsWFFqWrEHl8OGP6jT1ONlZkXmQYy55niXeE1ML8mzvlhT4huABz8q1s94N8y7dIxGp1AoFFMTOWsf1ykFlM09DXYc4IryNkC4nf1B3XJkpEs2Qeel3UKUejUwh78+fcC6/dJFVWKC4oMb4NH/xrbzH9zueJ7QuvWw4FGozy7r5VQiJxbjO6WiRalHPnoBf3z5KG89Z3bsgXb/GwxduDhknpBiyiDLca3st7xSkSnm7YXe41C9JCq/DMLvybHMZBsY0SE8FVcY6wHYXn8n5zncCbcLd9+LI5QXTxNd8vqaYfqaqLtkF9GMy/caN4vljDVgy87XEpkPJcX69fYzODO0E/Y9Cud8KO5+xR4HHQP+tHOlZDMkSL9zuuLUokQpxaSgL0EeQWQ3vSKPg+FAiD5vgKf3tNI56OdX6w5HZEqlEqXy2N3cl7JDx8g8qUjmVxcxvzpa0LrjjHrO/fozHGwb4IsPiE4blYWuhPlWUWz8LUKQugTe8i/RYcY/KGYbNv8RDj8L+x8VP5GUzRbiU9te6Dwgtjv8bOzxz/mQmA1pa0s9lhzx7gvmcufZs2B7Hzy4gctsW/ju0B3ouoHNpmEYBtuO9wBw2qzSmP1tNo1Z5fkcaBvgaOfgOBGlROleXZzXREI2/Bh6GqBkJlz+xbEZmEKhUExhYkSpEZNB9hlrYMffcLZuBUQ3vshco3QZzjToXNfJaxcO4fpl5/OWfNHBtyzfyRvOFN2qKKiE1/+GnwxdzlkHv8vptv3w0vfhDX/OeHynmt6hxJlSsnwPYG5VAUunF/P1W1bGP9COf4jlitfnfIyK8Y9VvhfZkKBkJnh3QI8QpfpHBI7nm9msY1n+Kh+zwGWPmqyOix5ioS7K2Foqz066qRV07o8j1BTPENEPcZxSoWwzpZrNqoURIlcmROZDSUfbq64zYfh3cGy9aFQQp9N3kceZtiil60aUKNWunFITAiVKKSYFyWbZJEUeB239PgZ8Qcu+u+FwJ4YhPphnpRAvpMAlRSlvIMQ3H9vL7qaw6yjfZaeyUJxA1aVZplXkcfLGs2byyxcO89QeIf6876J5qXcMDMMWs1X0me8Ntzx2FQjb+vJbRS7Ua7+G7feBwyPcUKvfDIuuFbMchiFcUSc2QvNWUSvevk/Yc8vmwIWfTutvyDUepx2WXIXxkI0ltgZqjQ4G/EGKPU76fUEGzRmtWeUFcfefXVlgiVIXUnUyhx6X41bIeZoCmX8QXvm5WL/ii+BO7MxTKBQKRXbIWXvZpTd/pIthusg31Bo347C9laCeXQe+cPe9NJ1SXYfRfH3g8PDBO65PmCkD0F66ks8G3s2T7s/AvkfExXdpfcZjPJWk65Q6LU7JvkX3MTjxKqDB0ptyPELFREA60YO6QciM0aC0Hlp3QG8DEDmJLd7rsiphLJ1SVsh5GnlSdBwgzxhm0HAzWJz8WsDjEOf93nhOqaKIsPMRBLLtvidFqdoEonAaRGZKyXF3uuqgcDG074W9D8ctWZSf1fL5S8bB9oEo8UqV700MlCilmBTECzofSWFExwdZkyzzSmdV5KesrZ4R0YFv2B/ivX/cyLoDsQGCI7dPh7efO5vfvniEoG7wlrNn8dZzZqXeade/xYxCST0svCr+NpUL4Jpvip94aJpwTJldhgDxTxnqAnchONxxO3ecFPLL0erOhOMvc6l9Cz2Dt1HscdJhfrkUuh3kJShxnCM78HUMnbThJuN4piHnm+8Rz23ZHHVyrVAoFGOEvEiUzoqY0praFaDZYbCNmY5uDvvLshKlMg46lx2ualcmFaQA8lx2Dhh1HC08jdkDm0UO4WV3ZTzGU0k4giGOKFWUpii1636xnH1+uPuYYkrhjohH8Ad1cY5YYgq0PccBYpxSUigeDoQsR36u6ffJDuGp86RoEiVyO405FOYlLt2D8N/rDcYR1OR7oC9WlMoq6DwUgFZRzcG0VenvNwIpLgVChnUt5nHaYOXt8PSX4YVvw8o7Yj73rLI/X2pRSubOLptezK6mPrNUMJRRpp/i5KOCzhWTgt4RMx/xKLbC9QKWU0qSKk8KwqVXJ7qH+PQ/trHuQAf5Ljv/7+YV/ORNp/GDN6yO6hAxI4NA6+mleXzn9lV87PIFfOH6pRmU7gFr3wa2HH7QahoUVAhB6lRjim2X2rbQMyy68EkbbmVh4iB46XobLx34ZKZUfXkar4lQANb/WKyf99HcPrcKhUKhsCgaIULFZDm68qFmKQCrbUcA8Icyd1TIIOK0L4qaZHZL/FbwkUih68WKW8QNm/4gvkcmENbEYpxzuOI8hyUWygY2cdlhdt1TpXtTlkhRygo7L6kTy94TQERjpLxop5TYZ2wmYfsjwtVTYuY2eWadztVm1+5EWKJUvNLDYrNTc67K9zr2Q8gH7uJwgHwWFLgcVmFHx4A4n3c77HDm+6CgSmTibvlTzH5F7rCxIBVHOsS5/1lzKqySadWBb/yjRCnFpOCYKT5MK0l80R+2jAZjPtQyEaUOtg3wyA4x8/Dbt5/Bm86ayetWTuPG1TP4/OuWWttn4pQCuHH1DD52+cL07LTt+4VNXbPDmrdk9DgTikXXAHCebRf9vV0AdAwIcaqqKLFoJsv6TnSPD6dUg1m+F7db0EgOPAF9J8SX86o3jfHIFAqFYuoy0rkwMugcsEr4VtpEzos/mHmmlLzYTeTujUE6pWaclnJTeVG92XO2CHUe6oC2PRmP8VSSzCmlaRrfuX0VX7lxGQtrEpSyt+8TJVo2Jyy5YSyHqhjHOOw2pM5iCUyylLVXOqWi88siheKheNlMOWDAcmelIUqZgvSqMy+x8q4SERaldAxjxOdSsvI9S5TKQAaILN3LMuQcRO5rofl3tZvn826nTVRnXPApsdHzd4uKjQikiJiOKCUnr2uK3VSbTksVdj7+UaKUYsLT5w1wtFNc9C+fUZxwu8iODyNrklOFnEM4U2rQH0I3YFVdCWfPrYja5rbT67jltBksrClkdX1pJn9GZmw1ZxEWXAFFyWdSJjRVi2l01OHWAniOPA1Au/nFIrO74lGaL042etOoPR9rAiGd5l7plEpDlNr+N7FceQc447fCVigUCsXoGZnxUhDvItAUhpZhilKhLMr3/BmU74UC0LzdfOzUTil5UT0Y1KDGLMVv3ZnxGE8lIzuijeSqZbW8JV63PYkMOJ9/GeSX53h0iomEDDu3ymxLzMYAI8r3pCvPbtPCgeFjFHYuhbCUolTQDy2i62Y6YeKeKGfYiM+l4uli2dcU+zDmZ5gzk/I9KUqNonRPIv8P8nzecrid/g4onQX9TfCnW0TXRGsf8dkgPyuS0W46sKqK3FSbE9gqV2r8ozKlFBMeGTQ+ozSP0vzEJV2F7thMqTtOr2dvaz+XLKpO+TgleU6KPA7rC+11K2MzCzRN47u3r870T8iMUBC23SvW44QBTio0jW2FFzGj589UNjwKvCctp5QMSx0PolRzjxfdEAGcVUmENACGe2DfY2J95R1jPjaFQqGYyowspylwxxGNTGFoiX4QDX1UmVJpdd9r3SXKZDwlUD435ebSKTUc0GHaCjj2YvjCdoIgv6uTNatJiGHATlOUWq5K96Y6bqeN4UAoXL4nnVL9zRD0W5PSkS7JPJcdX1C3xONcM+AznVLuFK/vtt0Q8oOnNK33flS5YkCPLg+WTin/AHj7wBOetA+aTil7Nk6pHIhSpfkumnq9tPZFlO+BiA15033w+2tF58CfnQ8rbwObg+sbD1Pl8FLavBZYkvT40ilVVeSm2uze2dannFLjHSVKKSYMD25r4ntP7Sdodo3QNLj99HrrQzmZSwrCM6J93oD1BfHJKxdSXZy+G6W+xIXPd4zDxjSuXXGKgjQPPgUDrZBfAQsSBJxPIg5UXgY9f2ZGx4vgG4jIlEos8MjZVm9AxxcMhb/wThL7W/t5YX87hhEOOa8ry0sdoLnnAXExUrUkOnxeoVAoFDlnpHMhbvle1RJw5FEYHGKu1jz23fdkntT008JddZMg3VfD/iDULhc3TjBRKtwRLQtRqnkrdB0GR55V8q+Yurjs4ZI2APIrwe4W51b9TWGnVF74vZ7vtNNDYMw68PWnW77XtEUsp69J673vsGvYbRoh3WA4EKKEiPePuxDcJeDrFYJcpCiVadC5rofdmzkRpcQ4W02hyB0p1lcvhrf8G/54s+iYuO47AKwGVjuAhgdh3+Kk7/W2SFHKKt9TTqnxjhKlFBOGezYc5XB7dHD1D546wPkLKgFYPr0k6f7FHgf1WisXHP0PR7T5bDCWJe3WF0PbHn4y/N/Mce9jv2MhdX0VUHZuxn/HqDAMWPdtsb7qjeBI7AybLAyVL+GYXs0s2uDgk3QMiNDKZE6pIrcIUjQMcTLgLjy5otR779lolZRK5lQUpN5x+31iufL2tE5IFAqFQpE9Iy8SY4LOAewOqD8TjjzPdbaXCYRuyugxdN2wSmvSEqUyyJOCcE7VcCAUnsxo2SG+ACfA94iuG/SbE4VZOaVk6d6ia8SFuGJKIwUOq8zWZhNh512HoOc4fV7xfol0Snki30M5JvL1PbJcOAaZBSfF5TTwOGwM+kMJws6nQ3uvCDuvWmTdLJ1SaZfvdR2CwKAQfisXpD22RJSZVS2WKDVy4njaSvjYdtj7iMhZdRWwu9dJy75XudS+FR76BMw6L0pokwRCOl2DZkVFodu6VlCi1PhHZUopJgyN3SKX5+5bV3L/B89lUU0R/pDOM3vbAFg+I4kopeucd+SHPOP6FNf0/o1fO7/NHHt7lPU1KQ0vwy8uYo5/HwALg/vhd9fAxt+N6m/KmANPwonXxBfDuR85uY99iigrcPOofpb4Ze/DVreOZE4pm02zuiqd7BK+9n4fRzuH0DS4ec0Mblkzg9tPr+MTVy5MvuNgJxx9Uayr7kEKhUIx5hSOKKdJ2B3LbChyh+NZ/H5/Ro8RmfWSVqZUo+mWSCNPKvKYQ/4QVC0GmwO8PVa3sfFOvy+IzGiOdK+kRSgAO+8X68tvze3AFBMSKXD4AhGOxoiw83CmVPi9b5XA5tAp9fLhTu74xQYWff5RHtwqcp1GNlaIod0UpaqSl6dFIoVubzCeKGVWdPRFh53LipO0g86tkPMVOekIXWI6pWQcR9xrMVeBKN279Vdw/fdpWP0JPhj4L5rt00Tm1NNfjnvsTvOYDptGWb5LZUpNIJQopZgQBEM6LaaiftGiKk6bWcata2dEbbMsWfnec/+PJYd/h1ML0UsBBZqPu52/RBvZrSIe/iH49wcg5MOYcxEtb3wSVr5B3PfQx2Djb7P8qzLEMOCZr4j1M98zuQPOIyjNc/JsaLX45fBztJuvg2ROKQiX8I0MtR9rdjT2ADC/qpDv3bGa796xmrtfv4plKZx8HHwKMKBmOZTOHPNxKhQKxVQn1imVQBRZegP9tmKma12UNj2f0WNEui9SOqX8g+EL0+mZOaW8/pDIZKk0HRETJOxcfkd7nLbMS+13/VtcoOZXisYviimPLN/zRYo0JVKUOhGRKRVZvifWc+WUeulgB2/45cu8cqSLQCjslCpKJHpL2vaKZfXitB/LEqUCccqKi8yw8/7osPOgbpbvpYqUkDRvFctpK9MeVzJKRzgi3Wlk7RV5nHhx8z33B8QNW/4IvoGY7SIjPmw2zYpoUZlS4x8lSinGLYZh8JNnD/LsvjZa+33ohrCayrDoG1fPsFq/RtYNx7DtXnjhWwD8T+DdXO/7KkOGmzPYBS99L/VAnv2ayCsomo52xx+pXXQm3PxzOOfD4v6HPgG7/jXaPzc1ex6Elu3gKoTzPjb2jzdOKM13ssWYjxc3DLZTPig6IFUWJi9dlLNgJ9spte246Bayoi6FCDWSA4+L5YIrczwihUKhUMRjpDMqoVPK4WZdgfhsnnn4bxk9hrzQddlt2FNdBDZvA0MXF5PF6eVWSpfHkLygnmC5Ur3Z5kkZBrz0g//f3p3HN1bX+x9/nSRtuu+dLjOdfV+YYZ9h3xfZBJVNEBQXFEEu4FW81yt6vaJef6CAXERZFFRcWEVkE3BYB5iFWYBZO/u0ne57mibn98fJSdI2TdOZNkv7fj4efeQ0OUm/yTdJTz75fD5fa/voa62AnIx7wfK98N5vdlCqeWdYT6mB5Xsj1VPqve2NABw+pZDssJLgqD2lOhuhw6r8CAaWY2AvnjBo+R4MWIHPa2dKOYeZKTUC/aQgVL5niyUYbb8/LPcusJrA93ZbpX397G/v+8W1nSm1X5lSSU9BKUlaG/a28r8vbORbf10bLN2ryA81iy7Ly+DYmXY/qUGypLpb4flvA1BzyHU85juFnWYZP+wNrFr3zx/Amj8MPohNL8Lbv7S2z/uFtRoOWH0azvghHPklwIQnvgzb3zyo+xuV3wev/sjaXvo1yC4evb+VZPIz0+khjbXOBQAcjdVsMVr5nnU9e/nY3tEdYD9rdzcDsHhSQexX8vUGMqWA2WO/eb2ISDII/5DoMKKvjvdm3rkAlNW9bh1bxKgjkCWRFWllv/6G2U8KQpkSwdKj8L5SKcBe4n3Y/aS2vgK16yAtG468ZhRGJqnILgULL5u1y/fM5l2hrKWMvo3OYeQypTbXWRk8Zy0o5/KjQ5nvUXtK7Q9kSeVPHlZvtFCmVOzlez6/HZSKIVPKNEc8KGWX79liWZXUnq82Ty/Mv8A688OnBuwXvvJe+GlDRw9e3/AXqZD4UVBKkta+FivaXdfmYf0eK/tkYkFmn32uO3kmE3LdfOaIqsg38s7/QVcTlMymbdm/B8/+g+9Uns0J9O15+uuw9dWB123YCo9/ETDhiGtgdr8MFsOAs38Cc8+1lnB97LJQk8KRtv4JK6U/Ix+WXTc6fyNJ2at0vOm3vv091rGe3AzXkGUQdm+KeGZKmabJuj0HkCm1+13oboHMQph05CiNTkREwoVnRmWnuzCiNAZvzprCTn8pDvzWe3aM7P9BMQVdwlffipFdcujp9VsfNssCmVK1G2K+jUQKrrw3nKCUacK/fmJtH34VZBWNwsgkFaXbPaUiZEr5m3cGzwoPSgUXC+gZmS8xt9RaQamZZTlcc9z04PlRswHtzw/DKN0Dq9E5DBaUCrQ5ad3T52w7OBNT+V7zTuv41JE2rF5X0RxIppQ9Xx09PnrnBoJSm160Sp7D1LUGglKBL66Lwv5WvCsnZHgUlJKk1dAeSrV8bdN+ACr7BaWWTi/m3f84jU8sipDm3tkIb99jbZ/0bXKy+mbW/H3CtXDIJWD64C9XW0EoW8se+P1nrKVUJx0FZ/048iAdTvjUb6DqaOtN+9FPD0iTPWjebquEEOCYGyCzYGRvP8nZ/7xe7pkPwNGOj6jIGfqtKz8BPaX2tnRT396Dy2EwvyJKj7P+NgVK92aeNiJNJEVEZGgupyPYKHyoTKY0p8F7ZuAD4463Y/4bLZ3W/6D+fVQiqv3QOi2PvXdLePP0bq8vtDpW8w4rCzfJtXYdwMp7a/8Eu1ZYWVLjZNEXiY2dKdUTIVPK0boHMHG7+vYvyxzB8j2vz8+2eisoNWtCDuX5Gfzi0iV89aQZHBLty0o7U6o09tI9CJUeRu4pFfhs1Nav0bl/GI3O7SypsvkjtuJ3Qb9MqVgWnQpvEt9eOB8Kp0Jvl7UAVJj97X0zpRwOI3L2nCQdBaUkaTV0hFa4eWdbAwATCzMH232g9x8ETytMWADzLxyw6kVOZjqcdxdMPMJaqebRT8Gu92DHW9bKeo1brTTai38X/Y04LRMuewyKZ0HrbiuY1d0ynLsa3Rt3QlM15JRZfRPGGfuf14e+SXSnF5FteFjq3j7k9exvpOIZlFq7qxmAOeW5sS39bdsWyNSbqUatIiLxZJfUZA/W5Dwg3eXgXX8gKLUz9qBUc6yZQD4vNGyxtofV6Dh0KN/l9Vn9qFwZ4O+1AlNJLtRTKsaV97pb4cXvWtsnfjPUN0eE8PK9sABTbiVgYPg8lNA64LWYOczyvZZOb7Ast78dDZ14fSZZ6U4q863PLBcsmci3zpobNRMzmCk1zGykDFe08r3Aa6NjP/SGPlPZ5XtpsZTvjXDpHkDhAQSl0l2O4HtdS/fgJXz9y/fCb98zQuWZMjoUlJKkFd6Uzv7GY2LBIM3MI7Gbjy/7GjgcZKU5Cf9/kJuRBmkZcMmjkDfJCvw8cJoVkGreAYXT4PPPxdZsNKsIrnjcChzVroc/XdnnH8ABq98Cb9xhbZ/142HVmY8VGWlO3C4HJg62ZFtLZC811w55veDqe91xDEoFSveifhvWX1cz7Avcn2knjPygRERkUHZZSPYQK2Oluxy85w9kMex+H3oHNs7t9vr45atb2FTbFjwv5vK9hq3g91qLmeQP0pIgAsMwQh+qe3zgcFiNgMFapCXJDbun1IpfWQ2hi2ZYPTZFwrgjle+50oNZQxON/RFW3ezXly2Kbq+PU/7fa5x39xuYEVbw3lJnvfZnTsgJ9sCNyf7hr7wHQzQ6zyoGZ+BL9bBsKbt8b8iFF2BUglL5mf3K92L8ErcssJJebasnWMJnbnrRWiU9wP7sOCE8KBVthUJJGgpKSdIKz5Sy9S/fG1T9Fis45HDBnE8AVgpneP8Iu+cQeRVw7euw+DLr97QsOPQK+MLzwZTfmBROgc/+xTqgrP4XPH0d+Ad5A+xusdL0t70Ga/8CK+6Hd+6zVgps2Gr1S2irgT9dYfWrmnEqLLgw9rGMMXa21DuG1cB1oWf1kNcJle/Fr3xhV6P1j3HmhNzYr7TjLcCE4pkxr7YkIiIjw16mPSs9+gejdKeTbWYFHWmF4POE+j+FeenDWv73hY389PmNwfPsoFT/kpUB9tuZEnMhWkZFBMEP1fYHUzsoFd6WIEm1DKenlN8Pq35nbZ/471pxTwZIj1S+B8Hj+YlG/YDKicxhBKXq2z00dPSwrb6DngiNszfb/aQmDONL5M5GK5sJhrXyHoQ1Oo9UmmYYEUv4en12plQMYQC7N13ZomGNK5r+74UZMWRKAZQHglL7Wrr4694SdvlLMbwdoYWCGFi+B6HAXZ/sOUk6MebKisRfeE8pW/9G54Oy0zmnndinAWau2xVcDrbPP6WsIrjwPjjhm5BdChnD6AcUrmKxVe73h4th3Z8BExZfCu48aNkFG/8BO9+xtqPJKrYCau21kFMO59457IPUsaQgM53aVg/Ptc/mi8Ckjg+tFP4o85SIRudNnVYgtSRnGHX321+3TqcePwojEhGRaOzyvZwhMqXSXAZgsDN7MfOaX7O+UJi8tM8+zYH/ATWtXcHzWgLnDZkJdICNjiH0wTTYE6d4hnXamDpBqZgypba9Ai07rUVf7PIdkTARy/fAyj7ctYJKo4G2fplSdqZhZwzlXeF9pzo8vgFNujfV2f2khvHlpL1SZsHwVt6D0P0dNKCWV2lVf4Q1O++NdfW97hZoC/TJHWavq2jSnA5y3C7aAyWQsWZK2YkJ+1q62d3USYv/KL7i+DudHzxB1vzzgcHK95QplQoSmim1fPlyzjvvPCorKzEMg6eeemrQfb/yla9gGAY///nP+5zv8Xi4/vrrKSkpITs7m/PPP5/du3eP7sAlLuojBKVizpT68GnrdMEn+5wdHoiK2L+geMaBB6RsM0+F8++2ttf9xepV9cDp8NcvWL/bAanMIusb0anHWwdXCy6CqqXgdENngxWQyp8MX/iHlYU1jtnfqqxqzaPaX4YDH+x4M+p18kegfK/d08vOhs6hdwxo7LD+Vv+VRaIKBqWOG87QRERkBOS6rf8VWUMEpdyBrILt2YEm5DvfGbCPnanU2B7K9A5mSmUO8X/hAHvKQIRMj6JAUMruUZXEdjdZAbwJeTG0Z1j5W+v0kEutfp4i/bjtrJj+AYj8SYCVKdV/FTw707A7hkyp9rBeUpH6Sm0OlO7OLhtGcGnfGuu0Ykns1wmwX/vdg2UB2X2lWsMypfwxrr5Xv9k6za0Y8UWWwrOlYukpBVCeH8iUau5iV2MX//AdDYBz8wvg7aLd0xsMGpbkROgppUyppJbQTKmOjg4WL17M5z//eT71qU8Nut9TTz3FihUrqKwc2Mzwxhtv5G9/+xuPPfYYxcXF3HzzzZx77rmsXLkSp1OrWKWyhsBBncMAv2lln8TUPLpxG9SsBcMJc87pc1FOWCCqf/ruiFpyufUmvv6vsP1NwLS+2Zt2Isw6HcoXQWZh5Ov2eqweQ3UbYPbZkFs2euNMEeH/vN4yFzGNWqv0cc7Zg17HPug4mEyp6/+wiuWb63n0mqNZNqN4yP2bAiWnRdkxBqU6G6FmvbWtTCkRkbgLZUoNUb4X+GCz3R3IGKj7cMA+XT3Wh73GzoFBqSEzgYI9ZYYflAqV7wU+JBfPtE6TvHzPNM3gh/hZQ5U7te+Hjc9Z24dfNcojk1RlB48HrLQWKN+bZNSzKbPvx98BmYZRdHpC+/Tfv9fnZ1t9BzDMTCm7b1PlktivE2A3Oh8QhLPZ5XthK4Pb5XtDrr53gCsCxqIgKy0YkI41KFUZCErtbelmV1Mn28wZ7DGLmehv4Om//o7V2daXu9npzj49Au351ep7yS2hQamzzz6bs88e/EMlwJ49e/j617/OCy+8wDnn9A0wtLS08MADD/DII49w2mmnAfDoo49SVVXFyy+/zJlnnjlqY5fR5fObwYO6hRPzWbu7ZRhZUs9Yp9OOh+y+gYQ+PaViXenlQM042foZLpcbqo60fgTo+w2zp+p42PuyFZSKItjo/ACDUn6/ydvbGvD5Tb7/tw38/YbjozaFNM3Qc7Yw1qDUjkDAsmSOgo8iIgmQG+Pqe3b/lT2uydYZLbvA0wbu0IdPO1Oq2+uns6eXrHRXbKvv9XpCAaQDCEplBBudBz502eV7LbusRVdGaCn3kba/3UNrdy8OA6aVZEffeePfrRUFK5ZA2YK4jE9ST2bgdTwgwJRvvW4nGvUDSnWz7OvEUL7X0dMbcRugts1DT6+fNKcxvNXC966xTg+gmXjURucQWjQhrG2I3eh8yPI9Oyg1zD5XsQivKIh1teqKwGqGe5u7AgEtg1cdy7jCfBb/h0/zsDeQDdfvsbeDXoM+RpIUkrqnlN/v58orr+Sb3/wmCxYM/Ae0cuVKvF4vZ5xxRvC8yspKFi5cyFtvvTVoUMrj8eDxhErDWltbg3/PP1hjahkxfr8f0zSjPtb1bR5M02qjdOTUQtbubqEiPyOm+TE+fBoD8M87f0Cj8dywf0Q5bqfmOwaxzNdoC0+RXnrKBZiP3oax/2P8DdugcGrE6+QGvvVu7e7F5/NFX4o3gh0NHcH6849r2vi/17Zw/KwSwPoHN7O078oqHZ7eYGPNggxXbM/V6tcxAHPqcZgj8Pgmw1zJ0DRPyUtzkxpGcp4uWFzJx/vaOG9xRdTbs5dPbzKzMXPKMNpr8dd+BJOOCO7TGfa/qqHNQ0ahg5bOQKZURpRjjv0bcZg+THceZnbZ4IukDCLYE6fHa/2NrFKM9ByMnnb8jdugZPawbm8kRZurTTVWllRVURbpTiPq42989Kx1bDf33GE/PhK7VH8PzEq3AhDtHm/f+5A3EQdQadSTnd73teh2Wa/trp7eIe93R1hLiLauvn/D7h+Xl5GGgYnfP3B1vgG6W3AEer/5yxfH/Ny258nO4Ozy+iKPPX8SDsBs2RU8zvQFxuU0iP6aq/vYes2VzB7x11x+WLVK2hCvfVtZnhXI2lTbhtdn4nQYHH3O5+HZZzk7bTXrDi3H53Rz7iEV/eY3FJSK9/M61V9PIyHW+57UQamf/OQnuFwubrjhhoiX19TUkJ6eTmFh3zKosrIyampqBr3d22+/ne9///sDzt+/fz/d3d0HN2gZkt/vp6WlBdM0cQySOrql3krpzM9wcdKUTN7YlMXpM3Koq6uLetuOtj1M2LsK03BQX7IUf7/9nWbon0lPRyt1dQP7VklfsczXaKvKtQ4YXA6DopxMeiYdi3v3G3S+/kval34z4nXsVGaf3+TZ97eydm87nz+6Yuga+oD3tjYDofLRn724iZ+9uCl4+aQCNxcvmcBnFpdiGAZ7W6znkttp0NbcQFukG+2neMurpAHNhYvwDPHcjkUyzJUMTfOUvDQ3qWEk56k8He48fyrgiXqM4em0ynLaO7vpyZ+Ou72Wtm3v0pU+ObhPU1t7cHvL7hrSvNk0dVr/G3q72qiri/xNfcaWdykAvAUzaNy/f9j3weG3jm1qG5qpq7M+uBXnVpHW8BEt21bh8RcM+zZHSrS5Wr3Verwn56dFfeyNnnYmVP8LgIbSZfhG4P+lRJbq74F+j9UHtKmts89zyuhxUwYUGB24uhv7XOZpt1637V09Q37OqGloDm7v299AXX7oA/euGut2MtOMIW/Hlrb3XYoBX04l+9t90B7b9ex58nZZgbCW9s6If9Ply6YE8DfuYH9dHaZpBhudNzU2YHQPnsFZUvshLqDJVYZ3hF9z6UYogN/e3ESdv2PI66QFypO9gfLDCTlp5E6cjy+7jIyOWq6v3Ihn6imAt+9j4bPeH/c3ht4f4yXVX08joa0tlk9ESRyUWrlyJb/4xS9YtWrVsDMcTNOMep1bb72Vm266Kfh7a2srVVVVlJaWkpd3kE2uZUh+vx/DMCgtLR30Bbq5tR6A0twMjl0wlX8smBrbjW/9s3U65VhKpgxMgZ9Q2AhYtz11YlnsvX/GsVjma7R99fQi8vNy+eSSSqsZ6rFfhT+9QfbGJ8j6xH+Da2CDVNPv4xLXcj5hvMUfnz+f57vms2RaGeccUsGOhg7q2kIByfK8DKqKsvpcv3aDlUH5iUUVeLw+1u9tDV7W3Olld7OHO17bxTFzJ3LY5EJqeloAKMpxM2HChKHvVEc9jkYryJV/yDmQXTLsx6W/ZJgrGZrmKXlpblJDIuapuDDQJ8qZRnr5IbDnbfK695Ib9n5vOkN9W8z0HEpLS2jrtgJR0yaWMWGQNgTGh9YHqLTKhbH9/+inMLcGaCYtIyt4faNsDjR8RL6vAQ7gNkdKtLmq7bICcPMnFUe/3x++jeHrwSyaTvGcZeN6NeLRlurvgZX1JrAdr+ns95yaQLsjlxx/G9MzO/pcVunLADbS42fI15/THQo8p2Xm9Nk/rcl6XhZkxXgcCLB1BwCOiYcO67UfnKe2HmA3psMV+fq51uccZ3cjEwqy8TpD70EVZRMG73XX04ERWHmvcPZSa1XwEVRZ3AxYr//K8tI+jckHU2qauF3rgr2hppbkMKGsHGPhhbDiPgr2voZ51KUDrpeXsw9oJj0z+4DeXw9Gqr+eRkJGRgyLWJDEQanXX3+duro6Jk8OfQPl8/m4+eab+fnPf8727dspLy+np6eHpqamPtlSdXV1HHPMMYPettvtxu0e+OR3OBzj9gkTb4ZhRH28GwPp7iU57uHNyUdWPylj/gUYEa4X3tw8Pytd8x2joeZrtOVlpnPtSTNDZ8w5G/KrMFp2YXz4NCy5rO8VWvbAn67gJ65VACz1f8SXHTexqW4mM2vbOfsXrw/4Gy/92wnMKgv1BtlUZ31rs3BiPteeOKPPvh2eXq5+6F3e297ERzXtHDG1ONg3pDDW59Wut63TCfNx5I7cP8lEz5XERvOUvDQ3qSHe82QvW+71+TECfZ+M/R/3OdYIX3K8uctLd28oK6Eo2vFM0zbr9opnRjx2GUpw9T2vP/Q3An2lHE3bIMHP5cHmast+6wP+7LLc6PMYaHBuzD0HQ4sYjbpUfg+0j/PbPb0Dxr/fMYEcfxslvro+l2UHVuDs6vENeZ87e0Kv8c7w1xvQEehjlZPhiv2xq7GanBuVhw77tW8YRrAfVne/sQRlFYI7DzytONr2YhaEjqXTXc7Bx9m4FTAhqwRHTumwxhWLgrCeUpnpsT9eFfkZbA+sij2pMMu63vxPwor7MDb+A8PvtXrzhskMvncnJlsplV9PIyHW+520j86VV17J2rVrWbNmTfCnsrKSb37zm7zwwgsAHH744aSlpfHSSy8Fr7dv3z7Wr18fNSglya8+sPJecc4wMpn2rYXd74HhgHnnRdzFbmiameYMNi2VFORwwuFXW9uv/z/oagpd1rQDHjob9q6ig0xW+WfiNrzcn3YHnh3v8eYWK1Mu1+1iekl2sEnkptr2Pn9iY42VGTWnbOAKKtluF4dNsQLh9spBTZ3DXHmvOhAY06p7IiJJLz1wzOD1+UPNyO1GwAHB1e+Axo6e4JcVaU4j+MEoIrvJefGMwfeJIrT6Xlh5YAqswLcl8OXPrLIoK+/5/bD5RWu734rKIv3Zq66F9yK11RhWcCXfW9vnfPv10+n1YZrR+0B1hjc67/c32gO/57iHsbq3vfLeATQ5h7BG54OtLGcYoWbnzbuCTc6BqIv3sH+jdToKK+/BgTU6h1CzcyBU4VB1NORWgqcVNr0w4DpqdJ4aEpop1d7ezpYtW4K/V1dXs2bNGoqKipg8eTLFxX1TBdPS0igvL2fOHOsFkp+fzzXXXMPNN99McXExRUVF3HLLLSxatCi4Gp+kpoZ2q7QqlnTOoDd/bp0uuBByyyPuYq+4kTvaK+/J6Dv88/Du/dCwGX5/MZx1O9SshVf+BzrroXAaNxr/xWt7ndyXdienOldzxd4f8cuchwD44vHT+cZps/jib9/j5Y/qaA1rXtnT62fbfutgeXZ55GV9ZweW+90YaNTa2BHIlIo1KLXdDkodN+y7LiIi8WU3FO7p9UPpfOvM1j3Q3QIZ+YCVaWFr7OgJNTnPTBu8rYRphgJHRQcWlMoMrr4X9qHLvq3GbQd0m4Opbe3u+3ewVvGaWJA5rHYbTR091AeO9WaURglKNWyB7mZwZcIkrUos0dlBqfYIQam9pvW5Mq97X5/zMwJBKdMET68/apCk3RN67nf2D0p1W7/H/BmjqxnqA71KKw+N7Tr92BmcnmgBl4IqqNsALTvprQwF3aJ+OW8H3EcpKFWQZQXuHAYx93oFK1PKVlUUCFA5HLDo0/DWXbD2TzD//D7XsefTM1jgTpJCQj+Zv//++5x88snB3+0+T1dddRUPP/xwTLdx55134nK5uPjii+nq6uLUU0/l4Ycfxqn03pTWEMiUKok1U6phK2x40to+7t8G3c3+RxF1aWZJDdnFcOWT8NAnYPe78JtTQ5dNmA9XPI7nr7vxsp+bvF/lRce/M5k9HLXtLv7E5SycaPWPywukerd2hYJS1fUd9PpNctwuKvMj10LPCQSrNtW2YZomTR2BTKmsGJ5b7XWBf/iGglIiIinADkp5ev2QWQC5FdC2z8ooqDoKsMrnbI0dPbR0hYJSg+psAI/Vk5CiaQc0NvtDdZ9gkZ111bIbvN2QFltfj2h+v2IH//Hk+oiXffmE6XznEwN7eQ7GLt2bWJAZDCREtOd967RyCTj1haJEZ3/53NHjG9BjeJvf+sI6p726z3XCsxi7enxRg1J9MqX6BWfbgplSMT5P91otJiiYAgdYImePNWoWUDBTamewnNgwYs2UmntA4xqKXb7ndjmHFcyuKAgLShWG9YJdfKkVlNr0AnQ2QlZR8CJlSqWGhNYvnXTSSZimOeBnsIDU9u3bufHGG/ucl5GRwd13301DQwOdnZ387W9/o6qqavQHL6PK/vasONZMqbfuBtMPM0+H8kWD7rZoUgE5bhfLpo9swz5JkLIFVmBq6vGQNwnyJ8NZP4GvLIe8SvICQcgWcviO71oALuz5O9ONvSyotL7ZtgOU4ZlSGwMlebPLcgb9ZzlzQg6GAU2dXurbe2gMlO/FlCm15WXrtHxRn3+cIiKSnOysgh67/MXOIKj7KLhP+Ieeho4eWgIrY0UNStlZUnmTIC1yI/ShZKWFyo9CZxaDOx8woak68hWHaeUOq1Q+3eUg1+0i1+0Klg+t3tkU7aoDbAsEpaaXZkffcXcgKDXx8OENVsalnMBxn89vDsiM+dBbAUBGc9+S1jSngzSndazXNUTgoiM8U6oncqZUTqyZUrtXWqeTjoht/wgyAgGXqOMuCJXv9fqtx2TI7KT60S3fm1SYicOAsrxhVMQA5ZHK98D6PFC2CPzeUJJCQCibTJlSyUxfOUhSqg9knRTH8gG/q9lK1wQ47saou04syGTVd08PfuMpY8DEw+DqZyNeZH8QmFSYSXPeiby090VOd67iuowXKMv7IhAKSrWEZUoF+0kNUroH1rdTU4qy2N7QyabatlCmVCzPWbvmffaZQ+8rIiIJZx83BHuylM6Dba+Fym/o+yG1KSxTKryp7wCNdj+p6Qc8NrvReXd45oZhWLe5d7UV+JoQexbTYOyM4tvOW8DlR1sLES3ftJ/PPfhun7KmWNS1Wl8+VuYPEYjb/Z51ehAf3GX8yArLcmrr7g1mEvX6/Kz3VoATXC3V0Ovp0xA7M82J19dLZ0/053H4a7z/c77dY70+Ys6UsrMAJx74czszmCkVJeBSEFg0rGUXvT4rU8oVrfl0rydU9lsyOkGpsrwM/vilpZTkDi8oZVcvpLsclPZPXFh8Cby4Dj74Ixx5TfBsdzDLVZlSyUyfzCUpNQwnU+qDx8DbaZVsTTl2yN0VkBo/7KDmUdOKmF2Ww696zwXgPPM1jA5rKVo7m6q1K3Sg8f526xvfhRPzo97+7LJQXym70XlhtA8fAD4vbH3V2p6loJSISCqwG5332NkXpbOtU7vMhQg9pWIp3zvIflJgrV4FEbIl7Nts2MJIsP9Pht+faI2lo2noiGFBm55OqN1gbR/EB3cZPxwOg+xAkDb8OdnR42M/BbSYWRimf8BrIrSK3RCZUmGv8QE9pTzD6CllmqEswIPJlIqpfC8QlGreFSzfczmjZEo1bLGqT9z5g/boHQlHTy+O3k8ugvmVeaQ5DQ6tKsDRP9tr0cXgcFmB7L1rgme7YwncScLp07kkHdM0g+V7A6LgA3eG935jbR95jfXNoEjAJUdN5qplU7j+lFnMmpDL++YcVvlnko4XVtwHDCzf6/b6WL2rGYClQ5R52plUm+vaaAo0Oh8yU2rXCqt/SFaxleUlIiJJr0+jc4CSQFCqPhSUCv/Q09jZQ3NnDEGpYKbUQQSl7PK9/lke9m02bmUkRAqy5URpLB1NQyzZxfs+ANMHOWWQP2mYo5XxKlKzcytAZbDVnGid0W/lTDvbcMhMqT6Brr7P+bbuYfSUatpuLcrjSIPyQ4befxDutFCvu0FXDrTL99r20dvTDQyjyXmSfa6qyM9k+b+fzMOfP2rghbllMP8Ca/u9XwfPzlCmVEpQUEqSTkuXN3hgN2GoWuPq5dbqa+k5cMglcRidpJKJBZl8/4KFTCvJDiw5bfCr3vOsC9/9NXQ1DWh0vmZXMz29fkpz3Uwvid7rYlZYplRjrJlSdunezNPBoQUZRERSwYBMKbuspXkX9HTS6/OH+k0BzZ3eYAbtaGdK2UvaD8iWKJ4Z+BsjswKfHZTKywx96Lb75ww3KNXYEcMqy+HlTUn24ViSV06E7D37+bnDEQjQhGU4QnhgN/rzODxo1T+A1T6cRud7Av2kyhcd1CIE4U3ZB11dLrsUXBmAaa0YylBNzgMlyaPUT+pgVeRnBoOIAxz1Fet03V+thucoUypVKCglSWdfixXFL8pOj7oCBgDr/mKdLvoMuAfv/yNil9q96D+cnuJ54GmFt+8NHly3Br7hemdbA2BlSQ21Isic8PK9WL71NU3Y9Ly1Pev0A74vIiISX6GeUoFshOwSyCwETGjYErHRcHV9BxAlKGWaod4tB5EplTFYplTRyGZK2RnFfTKlAmVPPb3+UMAuBvYqy1H/ZwbLm9TkXGJnB0o7egYGpXa7AqVsg2RKDVW+1x4h0BX8fTiNzkegdA9CWUAQZeyGEVyBz9m6G4C0qEEpO1NqdFbeG1VVR1mZZ73d8K+fgmkGe0o5e1rAr8BUslJQSpJOTasVlCrLG+KbA78v9AHfTtcUGcSEXDdXLZvCpUdNJe3UW60z3/k/igxrBSD7G+BQUGroVfFmTshhQq6bjh5fsE6/ICvKN+I737Ga4royFZQSEUkh9gebHp8fn9+0PujZ2VL1m4JBKcMI/R8YMijVXgc97WA4oHDqAY/NzvIYEBizm6e37YOejgO+fbAavNtBr749pUJfHg6nr1R9eww9pexskklHDmOkMt5lp9vZe6HXg/3crHFPtc7olymVFWv5Xligq3NAo/NATyl3lONAm50FeJDPbVesKwcWTgHA2bI9eL1B7R/dlfdGlWHA8Tdb2yv+D56+jsPf/jrvur/Go/UXw1+uSuz4ZFAKSknSqQlkSlXkDxGU2v0+dOy3GvFNPS4OI5NUZhgG379gIbdftAhj7nlWynRPG5Xrrd5SrV1eur0+Vu1sBobuJwVW+vOFh04M/p6V7oye3Wf3PzvkM5ARvYm6iIgkj/Dsh2CGRMks63T/Rrp7rG/gM9Ocweyf2sAKc4N+WWFnMOVP6rMS2HDZH6i7+n+gziyEzMAXLI0HV8IXvkJtbkbo/ricDjICfW1iLeHz+81gaWNx9iD3u60WWnYBBlQeemCDlnEp2FOqOyyrKbDdkDnNOqNhq7XwTEBGhMDuzoZOLr7vbf747k7AygYMZkoysKdUzJlSvR7Yt9bannjwWYAZrhjK0wJZk+nN1QC4BsuU8nlDTeBTMSgFsOCTcOaPrO01v6dk90tMMJqt3z96JlSeKElFQSlJOnZQashMqY3PWaezTgNnDN9KiNgcDjjlvwDIXfMbphn78PT6eX97U8z9pGwXHRZqvhq1n1R7HXz4tLV9xDWD7yciIknH7XIGgy92D8Lgh7awTKnMNCdF/f4XDJopNQL9pCBUetTl9Q1sdhxsdn5wQSn7Pue6XQP60Qy32XlLl9fKNiNK+Z6dSTJhntozyLDkuAeuvmc/N7syK6w+tH4vNFYHL+8f2PX7TW75ywe8u72RB9+w9uvfb6qzJ/R68/tN2nti7ClVsx58HitgXDT9QO9mkDuWFfgC/eXSW6z3gUFX32usth6btGzIS+HFBZZdB+fdBTNOYd9hN3OR5zbecgQCgO8/kNixSUQKSknSiTlTyg5KzfnEKI9IxqTZZ8DM0zH8Xv7T9SgAH+xuBmBBZd6Q/aRsc8pzWTgxDxiiN8bK31r/6CceAZVLDmbkIiKSAPbCGMGsobDyPfsDa0ZYphTA9JJsFk4cJDN2BFbeg1BQyuc3+zRbB4K9ZGjZc1B/I9TkfGCALVJj6WjslfdyM1zBXl0D2D13RiCTRMaXwVffg5yMtFAwefd7wcvtEtgP97Xy6sY6/vfFjby73WqUvaOhE5/fpKNfJqLPbwabi3d6fdjx4NyhMqX2hD23R6CBvx0sjx6UsoJfGW3bAXA5Bnnd2auJls62vsBNZYdfBVc+SfORN7LKnM0fONs6f80fDrqcWUZeij/bZCzaF+gpVR4tU6phq9Wbx+FSbx45cGf+CBwuTnWu5izHu3xc0wZYK3sMx2cOtw76JxUOcr2Oenjrbmv7qC8f8HBFRCRx7ICM3fCb0tnWacMWujxWqV5mupNFgSDUOYdU8OR1xw5e1j1SmVJht2+XEQblB0rMW3Yf1N+wg1KRsr4iBQGiaWgfxsp7B9kIWsafYKPz8KBUIKCU43bBrDOtMzc8Gbzcfg4/sWoPn3/oPf7vtdDiAD0+P7ubOukM3F5eWNDJ/ht26Z7LYQT7zw0q2OR8ZHqlZcSyulwgUyqzbQcO/INnStlNzktStHQvAns+lvsXWplpntbQQlmSNBSUkqRTG8iUKo+WKbXtVet08jL15pEDVzobjrkBgNvTfkP9XitFe8gsvX6uWDqFn3xqEd/5xLzIO7z6I/C0WCuCLPr0QQ1ZREQSw/4w2toV+LCbX2Utte7rwWjeAVhlQF8/ZSZvffsU7rns0MFL92BEVt4DSIvW7NguwWk9uKCUvUKtvWJtuOGW7zUOtVqt3wd7VlnbExWUkuGxV4QM7/nUFnj+ZrtdsPAi68xtr0KHtbjNRYdN5KhpRSycmBf8uWrZlOAqy1v3twcDW7kZacFAsN0Yvd1jBW1zMlxDZ9oHA64jkwVoj6W7N0qmVH4VONNx+L1UGg2D95RK5SbngwgG7XqBJZ+1ztz8UuIGJBHFsGalSHzta+kChggMVC+3TqedGIcRyZh20q1sfvsZZvm2cF3LHbzNt4cdlHI6DC45cnLkC2s/hJUPWdtn3Q6OKI3QRUQkaeX3z5RyOKF4FtSuw9W4BSggI82JYRhUFgyRcWuaoaDUQWZKgfXBy+vrHdD3hvxAUGqEyvciBdmGW75X32E3OR8kKLV/o7UqYVq21VNKZBjsrKe27gjle26ntUBB+SFQsxY+ehqO+AILKvP581eWDbit636/io21bWzb3xFsKJ7tduLpddLl9QUDX/bfGrKfVGdj6HU/QqWpwfK9KCsH1rZ7yc6qIqdtq9VH1TlI0MnOlCqdOyJjSwbBlVN7/fgnH2tl5Ox+z3oPHoHySRkZypSSpNLZ0xv8Nq5ssMCA3w/Vr1vb006I08hkzHKlc2/xt/CYaRznWMehxpahP0zEyjThxf8A0w9zz9UqkSIiKSxYvhe2Ep1dwuduslasyoy2Amu4tn3g7QTDGVyu/WBkhTU772OEyvdaYyrfi5KpEaaxPRCUyhmiyXnlofoiR4YtUpDU3rafqyz8lHW69s/W54qd78AzN8D2N/vc1vRSa9Gbrfs7gpmAWekusuxsLI+dKRVjUMou3Sueaa2OOQIyYsiUOvpH/+Tt5gIApho1kTOl/D6o32xtj8FMKYCeskPAkQbttRDIbpXkoKCUJBW7yXl2upPcwd7Y6zZAV6P1DdrEw+I4OhmrOnKm8ze/9Q3ZFa6Xh50pNajNL8HWV6x/gGf898jcpoiIJITd6LxPUCrQeyWrdZhBKbufVMHkEVlB2P67Xf2zJezyvfZa6O054Nu377P9GISze/i0d8eWKdXQYfWUKs4epKfUrnetU/WTkgMQ6ikVei20BRud20GpiwADdr4N9xwOD54Fq34LD38CnvwqeK2qDTsotW1/e7BUL9vtDAa3+veUGrLJ+a4V1ukI9ZMCa2VQGLyn1Id7WwHYZpYDMN3Yh8sZIQTQvBN6u8HphsKpIza+RAvv8dVtpoUWG7LfZyQpKCglSaUm0OS8LD9j8Jpsu3RvyjEjciAnkpeZxqO9pwFwruMdKtK7D/5Gez3wwnes7aXXjsiyvyIikjih8r2w4EvJLABy262ehHbG0pBGaOU9m50NMCBTKrvE+pCJaWVnHaCYyvf6lw4OomGonlL2qmhVRw9zlCJDrL5nf+FdMBnO+wW48wLldCZULQUM+OAP8OS14PczvSQHgG31HcHnd1a6i+x0u6dUoHwv1kypnW9bp5MHlgoeqKFW3/vLyl0AbA8EpaYaNaRFypSy+0mVzBpTGYoupwNn4P56ev2h9xU7QChJQUEpSSp2plRs/aSOj8OIZDzIy0hjjTmD9f6puA0vmRseO/gbfeE70LAZskrghG8e/O2JiEhC2U2++5bvWZlSBR3VgElGrEGpEVp5z5aV3rfxcpBhhEr4Wg+8r1QwKJU1eFCqLdZMqcDqexHL97qaQn1tqo46gJHKeJfjtl4L4UHSYPleeljQ6PCr4IY1cMp34cqn4JoX4Monrez2D5+CV34QzJTa3+YJLsSU43aR5e5Xvmf3lIqQSRjU6wmV70055iDvZUhmlNX3enr9PLXaet1XmxUATDNqIq++F+wnNXZK92wZgWwpj9cfel9RUCqpKCglSWVf4A2/LG+QoJSvN1TvrX5SMkKsb34Nfu871Tpjxa8OvMzBNGHVI/Deb6zfL7xPK0SKiIwBdulaS3hQqmgGGA7cvnZKaY69fG+EVt6zZabbH0wjZEvkHXxfKbu5e6Tyvf6lTENpDDY6j1C+Z39oL5puZXmJDFMwUyosSDqgfC+4czGccAvMONn6fcbJcME91vYbd5K742VKc63n6bo9LYAVAO6fKRVTT6m9a8Dnsb6sLJ55wPevv0GzJIF/flRLU6f12q32W5lSk4z9uI0I7xPBlffGTpNzmzu879akQFCqdgN42hI4Kgmn1fckYT6uaeOtrQ19zvvXpv1AlEypfR9AT5v1Ib/8kNEeoowT9rffT/iO51sZT1LQshM++KP1LVo0fj+s/h2sfxx2roCCKqtxpV16cPwtMOv0UR69iIjEQ17/1fcA0jKgYAo0VTPTsZfMtBh7xYxwplRmmvV/bEBPKQhbge/Ag1LRy/cCmSmeXn703Ee8vrmev1y7bNAP6A3RGp3bfV5UuicHyM6Gilq+F83iS2HfWnjnl/DU1zii6G7+0Wawbo/Vmynb7QpmJbX3a3QetafUzres08lLR3TVN7t8zxMhKPXH93YFt2sppNN0k2V4KPPVDLyh8ZIpVVZhlW8274Q9K2H6SYkdnAAKSkkCXfvoSnY2dkW8bGJBVuQrVf/LOp16/Jiqd5bEsr/59ZDOW2Wf5RN774bXfwZLLh+8b5mnzeo58PGzofMarEa3ONPh6K/ASbeO8shFRCRegj2luvplBJXOgaZqZhh7gxlLUfl9YZlSI9NvMHOw8j0IZUqNQPleXsSglHVem6eXP723i5YuL2t3N3PMjIGZTj6/SVOnnSkVKSg18o2gZXyxA0OeXj+9Pj8upyNYZpcdS1AK4LTvwfbXoWYttzjv4Hn+jfpA2WlWuhOPu19Pqe4Ygl47Av2kRrB0DwbPlNrR0MHyTfsxDPj0YZP4y8rdbDfLmW/soKx3b98bMU2o32Rtj+FMKY+9QmHloVZQat9aBaWShIJSkhA+v8muJisgdc6iCtLDVkYozErnvMUVka8Y7Cel0j0ZOeEH2bumXwItj1n/rN5/CI7+8sAr1G+Bxy6H+o1WAOrEb8Gcs6Fpu/Uz73wra0pERMaM4Op74ZlSACWzYdPzzDT24I+lfK95h1XG43RbWVYjICtKCc9IZErZgbj8zIEfHbIDH9BrW7uDwav69h46e3q599Ut7KlvISOzDsMw8Pb68ZvW9Qr7B6X8PitzAZQpJQcsPPDU4fGRm2EEM5ns5+qQXG749IPwqxOY0b6Srzif5T7f+dZtpLushtmE9ZQaKhPL74dd71jbI9jkHEItT/72wV6+dPx0qoqsL/b/8O5OAE6YVcrcijzAWoFvPjso9+7qeyNN26Gn3TqmLZw2ouNLBvYKfMG+W+WL4MOnoXZ9Akcl4RSUkoRo7e7FDByU/PzSJaRFWpq0v14P7Ay8oSsoJSMoLyzdurSo0GpM/o9/hxf/EyYfDRWLrQtNE9b+GZ77JnhaILcCLn4EqgLf6JYtSMDoRUQkHuxS7z49pSBY7jLT2MOuWDKl6jdbpyO4ypWdKRW9fO/AMqX8fjPUUypCppSdmbKzsTN4XkO7h+fW1XDPq1sj3mZFfsbAY7+atdYH4/RcmDDvgMYqkuZ0kO5y0NPrp72nF2dYU+9c9zBW7S6ZBWf/FJ75Ojen/YW3/AtYa84gy+3E09uvp1Tg9TGgZ5Vtz0roboH0nBFvP/Lpwyfx5/d3sXZ3C1c9+C7HzrQyFP+21sqG+uzRk4N93OwV+Eq9/d4L9q62TssWgmuQVTFT2IBMqbJF1mnNugSNSPpTUEoSojn4jVtabAEpsJpf9nZBdumYTC2VxAlfTagiPxOmfQm2vgKbnofHroCl11oBqQ+fht12v4ulcPHvILcsQaMWEZF4sjOlOnt8eH3+0PFLyWwAZjr2Uh9LplT40usjJFqz41D53oFlSrV5Ql8kRmt0bu8DUN/uCQbv5pdlccbCSgwjdLx30pzSgX9o80vW6bQT1KJBDkqO20Vjbw8dnl5cDiso5TBC/ZdidugVsPWfpG14kv9Oe4hP9vzAypQK9pTq2+g8d7BMqbWBVZ3nngPOkf34nZHm5P4rj+C8e95gW30H2+o7gpdV5mdwytwJPLfe6iFV7bcqUUp7+mVK2UGpykNHdGzJImKmFFgli95uqzegJJSCUpIQTYGgVMQml4MJL90bwQaBIuEH2ZUFGeBwwCf/D+4/0Srje+E7oZ3TsuD4m+GYG8bkt0kiIhJZeBPjtu5eiuzys0CmVLnRRC7tQ9+Q3bslEMwaCVnRekrZmVJdTdDTAenZw7rt1kBwye1yBINf4ezG0uEa2nswAsdqy6bmc8Ops3A4hggIbHrBOp19xrDGJ9JftttJY4f1OnUGglLZblfwORkzw4Czf0rvxhdZ3LuNTzlfx+06IlgG+Prmej71f2/x0T6rCXrETKlej7UgDlhN1EdBeX4GT3z1GJ5eswevzwwO/fT5ZbicjuBqgdWBTKliT78A9TgJSgUzpfIqrYWJupqsBu+VSxI3OAEUlJIEsTOlIja5HIz6SckoKcpOJyPNgdMwKLdXfswqgi++Yn27Vb0cDIfVnHLhpyF/YmIHLCIicedyOshxu2j39NLS5Q0FpTLyqXVMoMxfR0n7ZmCI1auC5XsjF5TKtJc8j5QplZEH7jzwtFolfKXD+7vRVt6DyCuO2U2hAUpzYiiZ6qgP9ZOapaCUHByr+X4Xr3xcS1YgaDpoFtOQNzYB46Rvwcv/xbdcj7HZ+VWKiq0eTS1dXlbuaAKsINCUoggB380vWsGP3AqYduKBjSEGVUVZfP2UyNmXdjajHZTK76mFnk5Iz7L6Xe37wNpxjAalMoLle4FMKcOwsqWql1t9pRSUSjgFpSQhGjutA5yiWINSPZ2w+z1rW0EpGWEZaU5+/8WjcTocuF1h3wLnlMIx11s/IiIy7uVlWEGp1n59pbYYUymjjoL2TdFvwDStRTJgZINS6X173AyQNxH2t1olfMMMSrUOEZSKtKJZfXsPvkBH8+LsGIJSm18CTOuDYl7lsMYn0p/dK/SXYT3NIvVDi5Vz6VfpXvEgpW3bKal/Ao6/iSe+dgx1raHg6+SiLCYXR1g9/INA6d6izySsLNXOZmwilxYzi3yjE5qqrV6ojdusgLUrY8y2RwmV74UF7csCQSn1lUoKCkpJQtiZUkXZ7tiusOsd8Hshb9KYXBVCEu/wKUWJHoKIiCS5vMw09rZ0D1iBb6M5mWN5l9zmjdFvoLPByprAgOKZIzauzGBPKX/kHfInwv6PDqjZuZ0pNdiH+jSnA7fLEcpCABo6PMG+O6UxBaUCpXuzzhz2+ET6+9rJM0l3bQsGRh2GwRVLJx/4DbrSyTjtO/DklzHevgeO/gqHTS4c+nqdjaGy1MWXHfjfP0hZwVUHDarNCpYYW6FhixWUskv3yg8Z8X5XyWJAphSE+krVaAW+ZDA2n3mS9IZdvqd+UiIiIpJgdmCmtatvRtIGv/WBN6vp4+g3YPeTKqiySmdGiN1TqjtSTykIW4Fv+M3OmwLZ7YVZgweXctwuPL09wd/3t3noCXwAHDJTqnlXWD+ps4Y9PpH+TpxdyomzIzTTPxgLPwX/+gk0boV3/g9OuGXozyTrH7e+VC9fBGXzR3Y8wxDe963aLGcJW6EhkEW2d5V1OkZL92CQTKnyhdZpzTorg1WfLxNqmEsQiIyMpk47U+oAglIiIiIiCWAvjNHSr3xvndcK+qQ3bgT/IIEhGJUm5wAZdvmed7DyvUBQ6gBW4GvqtIJNhVmDH7P1L+Hr9vrxm9aKZ9GCWQD841vg7YTJx8CkI4Y9PpG4cLqsQBTAqz+En06HN+/qu+xkf3bpXgKzpCA8Uyq0Ah+NgaDUzret0zHcV8luzdEnU6pkDjjSwNMCLbsGuabEi4JSkhDNw1l9r7sllFo67fhRHJWIiIjI4PIyreBLePler8/PFt8Eusx0HL1dVo+WwewfnaBUll2+N2imVGCBjgMo32u2g1JRvkjMCQSlcjNcwVJCgOIcN67A6mf0eqB9P/jCAmdr/ggb/w4OF5x7p7IVJLktutj6caRBVyO89F14+bbIgan6zbDnfTCc1iI5CZQV9prcHmh2zr61VpbQ3tXW62/GKQka3ejLSAusvhde3uxKD/XQUl+phFP5niREc+AbxuJYekrteAtMPxTNCKWfi4iIiMRZfrB8z4vPb2KaJh0eH34cbDSrrF4tNeugJPIqWNQGPvyUDrFC3zDZjc4HDUrl2UGp4WdKNXZYx2wFQ5TvAUwqzKKt28vupi4AKnJcZG74I8ZTj0PdR+APBKSKZ1rHdNtes34/5nqYMDabLMsY4nTBp34NF9wDK35lBaXe/Dm43HDyd/ruu+b31umMUyC3LO5DDedyOshIc9Dt9fOOfx4+RzrOmrXwxJetHeadB7nlCR3jaLIzpbp7+70/li+y3pNr1sPccxIwMrEpKCUJ0dQ1jPK97W9Yp8qSEhERkQSyy/fufW0rD7xR3acc5GNzstWrpXYDLLxo4JX9ftgTyPyeePiIjivU6HyInlKte4bdP8XOlCqKUr6XE1jtbGJBJvXtDnY3dVFl1HJ3xy/Jf33LwCs0bLF+DAcs/Rqc/B8xj0ck4VxuOPYGSMuE526xek2VzIZFgYyo9jpYcb+1ffhViRtnmOx0F93eHuoo5KOpV7Jw2wNQ96F14ZFfTOzgRlnETCmw+kp9ANSsjf+gpA8FpSTu/H6TluGU7+18xzqdfMwojkpEREQkuvAV6Pr0JwE8xfOh+VXY/W7kKzdshp42SMuC0nkjOi47U6pzqEwpb6e1+l9W7CvO2j2lCmLoKTWpMBMwmWrs4w/p/0NlTyP+9Dw46ds45p8PuRXWCoR7VkLdBphxKkw8LOaxiCSVo74EzTvhrbvgqa9BwRSoOhKW/y94O6DyMJh7bqJHCVh9pRo6rO2NM7/IwtpnoGO/VcI25djEDm6UBRudR8qUAqjVCnyJpqCUxF1LtxdfoPQ6WtNMAHo6Yd8H1vbko0d3YCIiIiJR5GaEDp1vOGUm1xw3Pfh7Xvd8uOuX1uIsjdVQNK3vlXe/b51WLBnxpdczw5Y89/tNHI5+mVBpGZBVAp31VgnfsIJSQ6++N7M0B4AlVQX4u9v4Qfr/UGk0Up85Df+nf0vJtEXgCLSyzS2DuZ+wfkRS3Wm3WVl/G5+Dxy6D42+B9x+0Ljv9+0nTJy18BT7TnQef+F945htW2WGSjHG0uO33x/6ZUmWBFfiatkN3K2TkxXdgEqRG5xJ3je3WN265GS7SXUM8BfeuspZSza2wvn0QERERSZBjZ5YwvSSbr500g387fTb5WWnBH6NoGkw/2dpx1W8HXnnPSut0FDKDssI+cP7+3Z386b2dPPPBXjp7wpqK283OW4fX7NzOlIrWcuH6U2byz5tP5IIllRzV8w6VRiN7zGJePfoB/NmJ7acjMqocTrjo11C2yMo8ev5bVu+02Wcl1arhWemhZudpTgMWXAi37oT5FyRwVPERLN/rnymVVRRambR2Q5xHJeEUlJK4a+gY+uAmyF6mdPLSMR/FFxERkeQ2sSCTV245iX8/ay5GpOOSIz5vna5+FHp7+l5mB6UmHTHi43K7HNYHTeC7T63nW4+v44Y/rub+5WErAeZXWafDaHbu85u0dNmNzgc/bnM4DGaU5mAYBoc0vwLAX30nUFBaOcx7IpKC3Dlw+WNQOBUKJsPpP4BPP5joUfVhl9gCuBzjKwRgNzofkCkFVl8p0Ap8CabyPYm7xkBQqjimoNQK63TyslEckYiIiMgImPMJyCmD9lrY8CQsvsQ639sV6lsywk3OwQoK3Xb+Al75qA6A7Q0dbN3fwd7mrtBOecPPlGrp8gZXu4+2+l5QVxOTGt4C4G++ZZyYmwF4Yv57IikrfxLcsCZpv0QPL99zOZNzjKNl0EwpsPpKbXo+tDKqJMT4CpNKUmiMNVPK74NdgWahVeonJSIiIknOmQZHfsnafum7VlNxsL6F9/dC9oRQxtII++zRU3jg6iN54OojuWKp1fKgT+Nzu3xvGJlSduleboaLNGcMHxs+ehaH6eUjfxVbzEmU5blj/lsiKS9JA1JgNTq3ufr3nBvjMtOsgFybp3fghWXKlEoGCkpJ3MWcKVW7ATwtkJ4TesMQERERSWbHXA/Fs6xsqRf/E0wTlv/MuqzqqLh8cLX7x3SFB6XsTKmW2DOlmgLHbEMuTGPb8AQAz/qWYRgxZsWLyKjrmyk1vkIA5fkZANS0dGPaqZ+2sgXW6f6N4I9Q3idxMb6ekZIUYs6U2vKydTr1uBFfpUZERERkVKRlwPl3W9urH4X7jofNL4DTDSd9Oy5DyAisNtUnU6pwqnXatD3m2wmuvBdLcMnbBdvfAKB20ulcdtTkcffhVyRZhWdKpY2zTKnyPCso1dnjo7W7X7ZU4TTrvdnbCc07EjA6AQWlJM58fpM1u5sBKM4Z4gBn80vW6czTRndQIiIiIiNpyjKr2bHDFepVctbtVv+SOLBX4+vyhgWliqZbp217oaczptsJZUrF0E9q1wrw9UBuBT+79jP86ML43FcRGVp4ppRznAWlMtOdwfewmpbuvhc6XVAy29qu+yjOIxObglISV/f9aytrdrWQmebgjPlRlgjuarYObgBmnR6XsYmIiIiMmGO/Ade+YS25ftxNcMQX4vanI5bvZRVBRoG13bht4JUisHtKFcVSvlf9unU67YSk7q0jMh7Z7wkw/sr3AMrzMwHY29I18MIJ86zT/QpKJcr4e0ZKwny4t5U7X9oEwM0nVTGpMGvwnbe9CqYPSuaE0s1FREREUsmEeXDx7+C078U1UJMZ+ADa6e1XqlI8wzpt3BrT7djlewWxBKW2B4JSU4+P6bZFJH5y3KFMqbRxtvoeQEVYX6kB7KCUMqUSRkEpiZtHV+yg129y+rwJnDO/OPrOdumesqREREREhiUzLUKmFEBRICjVEGNQKtbyPU877FlpbU9TUEok2WS5x2/5HoSCUvsUlEpKCkpJXPT0+nlu3T4APrdsCka0bwv9fgWlRERERA6QXarT2T8oFWOm1K7GTv61aX+wfG/IRue73gF/L+RPVoa7SBLKDivfSxuH5XvBoFRzlPK9+k3UNbfz5pb6OI5MALSkmcTF8k37ae70MiHXzdLpxTTU7x985z3vQ0cduPNg8jHxG6SIiIjIGGCX73V5fZimGfoyMJgpFb2n1PV/XM2aXc3B3wuHKt8LrLqnLCmR5JQV1ujcNS4zpayeUjWtETKl8idDWhZ4O/nfP/6Dv+zI4pmvH8shkwriO8hxbPyFSSUhnv5gLwDnLa4cOmX042et01lngCuGHgYiIiIiEmR/ADVN8PT6QxcUB1bgG6LReXhACmIo36sJrDA48fDhDFNE4iTbHdbo3DH+QgBRy/ccDiidC0BG00YAdjTEtkKpjIzx94yUuOvs6eWlD2sAuGBJZfSdTRM+CgSl5p4zyiMTERERGXvsnlLQr4TPzpRqr7H6QMVoyPK9+s3WaemcmG9TROKnT6bUOGx0Xh5Wvmea5sAdJsy39uvZDkBLlzdeQxMUlJI4+LimjW6vnwm5bhZNzI++8/6NVp8DZ7r6SYmIiIgcAKfDIN1lHeZ39lgr8DV29HDqvWvochVYO0XJlrKva4tavufthuad1nbxrAMes4iMnvDV98ZjUMou3+vo8dHm6R24wwQrU2qqbwegoFS8KSglo257fQcAM0pzojc4h1Dp3vSTwJ07ugMTERERGaPsZufdXitT6t3qRrbu76DaLLN2GKTZudfnpyes5M9hQEG08r3GrYAJ7nzImTAiYxeRkZUVVr6XNg7L9zLTncH3sZooK/DNMXYDCkrFmxqdy6izg1JTS7KH3nnTC9bpnE+M4ohERERExrasNCfNeIPle40d1kp6O6lgPhuhIXJQqiMsi+D6U2ZSmJVORlg54AB26V7JTBjqy0cRSYjsdBeluW56ev1ku8dnCKA8L4PmTi97m7uYXdYv+SFQvjfVqCEdL82BlUclPsbnM1LianugUdzU4qzoO3Y1WyvvgUr3RERERA6CvQJfKCjlAQhlSjVVR7xeeyAo5XY5uPmMGHpEBYNSsw9itCIympwOg79ffxw+0xxQnjteVBZk8nFNW+RMqdwKetNzcfW0Md3YR0vXpPgPcBxTUEpG3faGGDOlqv8Fph9K5kC+3ghEREREDpQdlOoKBKUaAplS1b2lVgOPxu0Rr9fhsfbPiTWboiEQlCqeecBjFZHRNyEvI9FDSCi72fl/Pb2BH/79IwCWzSjm/isPxzAM2vNmU1C/ktnGLmo7lyRwpOPP+AyTStyYpkl1oHxv2lBBqS3/tE5nnDLKoxIREREZ27LSrKBSV6CnVEO7FZTa3Ftq7dC0PeL17EypmEt8lCklIilg6fRiAHp8fto9vbR7ennpw1r2t1tZpE051uqksx271VMqzpQpJaOqqdNLW7d1cDO5KEr5nmnC1let7ZmnxmFkIiIiImPXwPK9QE8pf6AZeese6PWAy93neh3DCUqZZlhQSivviUjyOn9xJUunF9EZyAb99H1vU9/uoa7Vw4TcDGrd05iG1ez89wpKxZUypWRU2VlSlfkZ0ZtkNmyBlp3gTIcpx8RpdCIiIiJjU1awfM8KMtnlew3kYaZlAyY07xxwPTsoleOOctxma6+FnjYwHFA0fWQGLiIySibkZjC1JJupJdlUBMr57B5Tu9OmAjDb2KVMqThTUEpGVcwr7219xTqdvAzSY1ilT0REREQGNVijczDozZ9ibTYObHbeNpxMqfpN1mnBlAEZVyIiyaws0GOrts0KSm0zJgNQZezH7Omgp9efsLGNNwpKyajaEWhyPqVY/aRERERE4iUzkKHe5fVhmmawfA/AkxsISkXoKzWs8j2V7olIiirLswLptYFMqX29OdSbeTgMk1nGHmVLxZGCUjKqqhs6AZhWEqWfVK8Htr9ubauflIiIiMhBywpbfa+1uxevzwxe1pVTZW00DcyUCpbvpQ8nKKUm5yKSWoKZUq1WFmlzZw8b/FMBONyxiZaunsGuKiNMQSkZVcHyvWiZUrtWgLcTsidA2cI4jUxERERk7MoMBJU6e3x9sqQAOrLsoNT2AddrDzQBzsmIISjVEAhKFc884HGKiCRCeb/yveYuL2/5FwBwjONDZUrFkYJSMqpiKt8LL90zjDiMSkRERGRsywrrKRXqJ2VpyZxobUToKXVg5XvKlBKR1DIhUL5nNzpv6QwFpY52fEhLe1fCxjbeKCglo6al00trt3VgM7koSvme3eRcpXsiIiIiIyLUU6qXhva+mVIt7kpro2k7mGafy2Jefc/bFVq9Tz2lRCTF2OV7dW2B8r0uLxvMqbSRRZ7RhVGzNpHDG1cUlJJRs7PR6idVmusOrgAzQPt+sF/w00+O08hERERExrbMsJ5S/cv3GtLKwHBAbxe01/a5rD3WTKnGbYAJGfmQXTpi4xYRiQe7fK+xo4dur4+WLi9+HHzsXgxAzr63Ezm8cUVBKRk1dlAqapbUlpes0/JDIEcHNCIiIiIjIbx8r6FfUKrT54S8SdYv/Ur4OnrsTKkhglL1m6zT4llqvyAiKacgK410pxUOqa7vwOe3skZ3Fx4FwIT6dxI2tvFGQSkZNTEFpTa/aJ3OPjMOIxIREREZH4Kr73l9A8r3unp8UDzd+qVxa5/L7Ebn2UOtvle/xTpV6Z6IpCDDMIJ9pTbVtgHgdjloKlsKQGXLGmuVeBl1CkrJsPX6/Dz6zo7gynqDsYNSVYMFpXxe2BLoJzVLQSkRERGRkZKZFr76Xt8PVl09vlBzcjvjKaC921pxasjyPXvlPQWlRCRF2SV8H9dYQamCrDR6i2az38wjzfTA7vcTObxxQ0EpGbaXPqzlP59az8W/epu6wBKakewaKlNq97vgaYGsYph42GgMVURERGRcCu8pZZfv5WemAdDpDQ9Kbe5zvY5AptSwyvdERFKQ3ex8kx2UykynIMvN24FV+KhenqihjSsKSsmwba5rB6yVCr7+h9V4ff6I++1otDKpBgtKGXbp3szTwDHECi8iIiIiErPw8j270fnEgkzrvB5fKMNp/8Y+1+sINjqPcmxmmmHle7NHcNQiIvFjB6U2Bsr38rPSyMtM4y0FpeJKQSkZNrssD+Dd6kZ++vzHA/bx+vzsbbayqKYURwhKmWaon9SsM0ZlnCIiIiLjVWaa3ei8N9hTalJheFBqjrVj0/Zg3xTTNEONzjOiZEq11UBPm7WCX9G00bkDIiKjrCzQU2p3UxcABZlpFGSFBaV2vwc90VvWyMFTUEqGzQ5KnXNIBQC/fr2av6/d12effc3d+PwmbpeD0hz3gNtIq1uLsf9jcGXAzFNHf9AiIiIi44idKdXt9dMQ6Ck1qdD6orDT64PcckjPBdMXXIGvy+sjsABV9PI9u59U4VRwDTzOExFJBXamlK0gK438zDR2mhPYSyn4vbDz7QSNbvxIaFBq+fLlnHfeeVRWVmIYBk899VSfy2+77Tbmzp1LdnY2hYWFnHbaaaxYsaLPPh6Ph+uvv56SkhKys7M5//zz2b17dxzvxfhj94r64nHT+MoJ1sot//7XD9i6vz24T3iTc4dj4DLBmR8+Zm0suBAyC0d5xCIiIiLjS1bY6nlen0ma02ByUVimlGGESvgC/aHaA6V7DiOUaRWR3YdK/aREJIUtqSoIBvABSnPdFGSlAQZv+uZbZ6qEb9QlNCjV0dHB4sWLueeeeyJePnv2bO655x7WrVvHG2+8wdSpUznjjDPYv39/cJ8bb7yRJ598kscee4w33niD9vZ2zj33XHw+X7zuxrjS7fVR02qV5U0uyuKbZ85h6fQiOnp8XPf7VXR7rcd9Z7Qm513NZG59zto+4gtxGbeIiIjIeOJ29T3MP7SqkIKsdAC6vFbwidJACV8gKGU3Oc9Od2EYA79UDKrXynsikvqmlmTz1rdP4WefWcy1J87gqmVTKc52k5fh4k1foIRv66uJHeQ4MMSyGqPr7LPP5uyzzx708ssvv7zP73fccQcPPPAAa9eu5dRTT6WlpYUHHniARx55hNNOOw2ARx99lKqqKl5++WXOPPPMUR3/eLSnuQvThOx0J0XZ6RiGwS8uPZRP/OJ1Pq5p4+JfvU1ZXgbbAllTEYNSa/+E0duNOWE+xqQj43wPRERERMY+h8MgM81JV+ALw6XTi8hIC63IBwzIlAo1OR/iI0KDglIiMjYUZKXz6cMn9Tnv306fzT1/a8CPgaNmLbTuhbzKBI1w7EtoUGo4enp6uP/++8nPz2fx4sUArFy5Eq/XyxlnhBplV1ZWsnDhQt56661Bg1IejwePxxP8vbW1FQC/34/fH3klObHsbLAavVUVZWGaJqZpUpqTzv/7zCFc/fD7rN3dArQE959TntP3MTX9GO/9GgD/YVdhmKbV9FySlt/vxzRNvTZSgOYqNWiekpfmJjVonmKXlR4KSh01rQhf4DHr7PFZj1/xLByAWb8J0++nrctqiJ7tdkZ9fI36TRiAv2gGRNlPc5VaNF+pQfM0+j57VBWPvbeLDxpncKhjC//5v3fwFzPUB/m0eRO4+7JDo96G5omY73vSB6WeffZZLr30Ujo7O6moqOCll16ipKQEgJqaGtLT0yks7NuTqKysjJqamkFv8/bbb+f73//+gPP3799Pd3f3yN6BMWbDjjoAJmQ5qKurC54/twB+e/k8PqoNrU6Q63Zx/MT0Pvu5d7xKYeNWfGk51FWcihF2mSQnv99PS0sLpmnicGhthGSmuUoNmqfkpblJDZqn2DV09AS3J2V6+bjWaq/Q3t1DXV0dTqOYUsDcv5G62lr21FlfLLodZp/jtz56uylr3gVAPUX4oxzLaa5Si+YrNWie4uOmEyp59YlDOdSxhRNYxaO9Jwcv+/u6Gm46bh/Z7sF772meoK2tLab9kj4odfLJJ7NmzRrq6+v59a9/zcUXX8yKFSuYMGHCoNcxTTNqHfytt97KTTfdFPy9tbWVqqoqSktLycvLG9HxjzXN3kYAZlYUDpiDCRPg+IXRr288/wcAuuZdTOnEaeP2BZpK/H4/hmFQWlqq+UpymqvUoHlKXpqb1KB5OjCTK8tpC2Sz9/iwjuOKCzGd6Ti8nUxwe3Bm5ACQn505+LF27XoMTMyMfEomz7Uapg9Cc5VaNF+pQfMUH6dPmMAxBdfC7/7Cae4Pef3rS8GVwbn3vElLl5eetBymTcgd9PqaJ8jIyBh6J1IgKJWdnc3MmTOZOXMmS5cuZdasWTzwwAPceuutlJeX09PTQ1NTU59sqbq6Oo455phBb9PtduN2D1y+1uFwjNsnTKx2NVnfsE0pzh7+Y1WzDrYvxzScdC66kiw93inDMAy9PlKE5io1aJ6Sl+YmNWiehmfhxDwcDgdZ7jQAurw+67FzuKF0LtSsxVG7jk7vIQDkZLgGf2wbtwJglMzGcEZZoS9Ac5VaNF+pQfMUH7nTDofcChxt+6hqWw0zT2NSYSYtXV72tXYzrzI/6vXH+zzFer9T7tExTTPYD+rwww8nLS2Nl156KXj5vn37WL9+fdSglBy4nY1dwCANzIfyyg+t0/nn489VozgRERGR0XTVsim4HAY/vsgKNtlLnwcbnQNUWJexb22w0XlutEbn9Vus02I1OReRMc4wYHagT/VHfwOgsiATgD1NXYka1ZiT0Eyp9vZ2tmzZEvy9urqaNWvWUFRURHFxMf/zP//D+eefT0VFBQ0NDdx7773s3r2bz3zmMwDk5+dzzTXXcPPNN1NcXExRURG33HILixYtCq7GJyPHNE12NVqZUlXDDUpVvw6bngfDiXnirTB++72JiIiIxMVt5y/gm2fNJScQZMoMrL7X6zfZ0dDB8s31zO6axNHArg/f5u3s04EhVt8LrNSnlfdEZFxYcCGsfBg+fBrO/l8mBoJSu5sVlBopCQ1Kvf/++5x8cqhhmN3n6aqrruK+++7j448/5re//S319fUUFxdz5JFH8vrrr7NgwYLgde68805cLhcXX3wxXV1dnHrqqTz88MM4Y0gnluFp6vTSHvgGbVJhZuxX9Pvgxf+0to/4vHUQowbnIiIiIqPKMIxgQAogMz10fHzdH1axfk8rhxtuHndD2v71vLp7PwAFWWmD32jDZutUQSkRGQ+mHg85ZdBeC1tfYVLhbECZUiMpoUGpk046CdM0B738iSeeGPI2MjIyuPvuu7n77rtHcmgSgf3CK811k5E2jKDfi9+FfWsgPRdO/PboDE5EREREokp3OnAY4Ddhw95WAEpnHo5/l0G50cQl8zIws0u49KjJkW/A74O6j63t0rlxGrWISAI5nLDwU/DOvbDuL0ycY7Wk2atMqRGTcj2lJHH2NFule3bKYkzefxDe+aW1ff5dkFM6CiMTERERkaEYhkFWuvWdtP298M8/dxyO4hkA/ORYk59+evHgx3qN26C3C1yZUDQ9HkMWEUm8RZ+2Tjc+R1WO1Ydmj4JSI0ZBKRlg2/52djZ0Djh/dyBTamIspXumCW/eBc/+m/X7Sd+BhReN5DBFREREZJjCS/gq8zOs7PfyULPzqGrXW6dl863sARGR8aDyMCiaAd5Opu79OwB1bR56etUoeSQoKCV9dPX4uOCeN/nkvW/i9fV9kdnR4EmxZEot/xm89F1re+nX4MR/H+mhioiIiMgwZYa1YJhWmm1t2Cvw1QwRlKqxg1ILR2FkIiJJyjDgyC8CkL3612SmWTkY+1qULTUSFJSSPqrrO2jz9NLY0cP2+o4+l+2JNVNq04vwqlVry+k/gLNut17IIiIiIpJQWWGZUtNK7KDUEut09/vRr1yroJSIjFOHXgHuPIz6TXwy5yNAJXwjRUEp6WNnYygQtam2vc9l9osuak+p5l3wxJes7SO/CMd+Y8THKCIiIiIHJnyxmqnFgaDUpCPB4YKWXdC0Y/Ar126wTssVlBKRcSYjDw77HABX+P8GaAW+kaKglPSxszHUS2pzXVufy4JBqWiZUi98B7qbrbrbM380GkMUERERkQMUnik13S7fc+dA5aHW9o43I1+xq8kKWgGULRjFEYqIJKmjrwWHiwWeNZzkWK1MqRGioJT0sSOswfnmsEypDk8vzZ1eIEqmVPVy+OgZMBxwwT3gco/qWEVERERkePr0lCrJCV0w5VjrdPsgQSk7Syp/MmTkj9LoRESSWEEVLP0qAN93/ZbahuY+F/v8ZgIGlfoUlJI+wjOlNtWGMqXsKHBehovcjLSBV/T74B/ftraPuEbfoImIiIgkIXv1PafDYFJ49vvU463T7a9HvqJK90RE4MRv0ZlRxhRHHUfs+V3wbL/f5KoH3+X/vbhRq/INk4JS0kd4plR1fUfwBWUHpSoHy5L6+Fmo22B9c3byd0Z9nCIiIiIyfHam1OSiLNKcYR8FJh8NhhOad0DL7oFX3PWudVq+KA6jFBFJUu5cth56KwDntP4ZWvcB8NBb23ljSz0PvFFNbWt3IkeYchSUkqBenz8YfHIY0Os32dFgNT63m7hNitRPyjThzV9Y20d9BbKK4jJeERERERkeu6fU1OKsvhe4c6FisbXdv4Svtwc2v2htzzxtlEcoIpLcOmeex0r/LDLwwGs/YnNtGz95/mMAvvOJeVQVZQ1xCxJOQSkJ2tvcjc9vku5ysGii1SvAXoEv6sp7O96CPSvBlQFHfTlu4xURERGR4SnJsXp+zinPG3jhtBOs003P9z2/ejl4WiGnHCYeMcojFBFJbrmZ6fzIe7n1y+pHeeDJ5+jp9XPC7FI+e/TkxA4uBSkoNc75w5qx7Wi0sqImF2UxuywXCPWVsjOlIq6899Zd1umSyyGndBRHKyIiIiIH43PLpvLDTy7k2hOnD7xw/vnW6abnoacjdP7H1vLnzP0EOPTxQUTGt9wMFyvNObxsHgmmn0PrngLgptNnYxhGYgeXgvRfZRzb3dTJ4T98if9+9kMg1E9qSlhQ6v7l21j6o3/y/IYaACYW9EtFbKyGTS9Y28u+Hp+Bi4iIiMgByc9K44qlUyjISh94YeVhUDgVvJ2h4zu/Dz5+ztqee27cxikikqxy3C4AHvNa2aXH+d4FTIqzI7yvypAUlBrH1uxqpqnTy5/f20Wvz8+uwMp7VUVZLJtRjGFAl9dHTWs3Pb1+XA6DQyb1WwJ45UOACTNOheIZ8b8TIiIiIjIyDAMWXGhtb3jCOt34HHTUgTs/tEKfiMg4lh0ISr3hX4jpymSiUc98Ywd5kVaplyG5Ej0ASZzmTi8AbZ5e1u5pCWVKFWexcGI+b337FBrae4L7T8hzMyE3I3QD3m5Y9Yi1feQX4zZuERERERklCy6CN+6ETS/Cyt/C89YqUyy5HFzKAhARSXc5cLscdPe6aZ14PPk7XuR0x0pyMhReORB61Maxli5vcHv5pv2s29MCWEEpgIr8TCryI/SQsn34FHQ1Qt4kmH3maA5VREREROKhfBGUzIH6jfC3G6zzpp8Ep/8gocMSEUkmuRkuPO097Cw9kUU7XuRM1yqcDvWTOhAq3xvHmjpCWVAPvFHNnuYu8jPTWDq9OLYbeO831ukRV4PDOfIDFBEREZH4Mgy4+HdwxDWQPxmmHAsXP6IsKRGRMHZfqQ8yl+IzDeYb1dC0I8GjSk3KlBrHmsMypdq6ewG49KgqstJjeFrs+wB2vweONDj0c6M1RBERERGJtwlz4dw7Ej0KEZGklRvoH7WtM4sV/nkc4/wQVj8Cp/xngkeWepQpNY7ZPaVsTofB55ZNje3K7z1gnc47D3LLRnZgIiIiIiIiIknKzpTa29zFo77TrDNX/hZ6e6JcSyJRUGoca+myXjBFgaUrz1pQzsSCKD2kbN0tsO4v1rYanIuIiIiIiMg4Yjc139fSxYv+I2hyFlsrlX70DD6/j67ergSPMHUoKDWO2ZlS3z13HteeOIPvnT8/tiu+cx94O6F0Hkw5ZhRHKCIiIiIiIpJccgOZUnuau+nFxYrC8wF46b27OOfJc3how0OJHF5KUVBqHGsKBKXmlOXx7bPnMiE3Y+grte6DN39ubZ/4TasZpoiIiIiIiMg4YWdK1bd7AFhX/klwuPA1bmVP+x7+vPHP9PhUyhcLBaXGKdM0g+V7BVlpsV/x1R9aWVKTjoQFF43S6ERERERERESSk91TyubIq4BP/YbTvriCiuwKmjxN/HPfPxM0utSioNQ41dnjw+szgWEEpXa+A6t/b22f+SNlSYmIiIiIiMi4Y2dK2fIy0mDBhbgKJnH53MsBeGLHE5immYjhpRQFpcap5i6rdC/d6SAzzTn0Fbxd8PR1gAmLL4eqo0Z3gCIiIiIiIiJJKLdfplReZuj3i2ZfRKYrk+3t23l739vxHlrKUVBqnGrutEr38rPSMGLJeHr1R9CwBXIr4KwfjfLoRERERERERJJTbkbfaqO8sN/z0vO4cOaFADy84eF4DislKSg1TrUEmpwXxlK617wLVtxnbZ97J2QWjuLIRERERERERJJX/55S/YNUV867EqfhZEXNCtbXr4/n0FKOglLjlL3yXkFm+tA7v/4z8PXA1ONhztmjPDIRERERERGR5DWgp1Rm398rcyo5peIUAB5Y90DcxpWKFJQap5q7QuV7UTVth9WPWtsn/8foDkpEREREREQkyfXPlMrLGPi5+pJplwDwz53/ZGvz1riMKxUpKDVONQczpYYISr15F/h7YcYpMGVZHEYmIiIiIiIikrxyB2RKDfxcPSVnCqdUnYKJya/W/ipeQ0s5CkqNUy2B1fcKomVKdbfCB49Z28f9WxxGJSIiIiIiIpLcBvaUckXc7yuHfAWA56ufZ1vLtlEfVypSUGqcslffK8iK0lNq7Z/A2wElc6x+UiIiIiIiIiLjXHhPqcw0J2nOyKGVuUVzQ9lSHyhbKhIFpcYpu9F5/mDle6YJ7wUash35RTCMOI1MREREREREJHm5XU7SXVY4pX+T8/6uXXwtAP+o/gdbmraM+thSjYJS41RLIChVOFim1M53YP9HkJYNiy+J48hEREREREREkltuoIQvUpPzcPOK53Ha5NMwMfnlml/GY2gpRUGpccpefW/QnlJr/2SdLrgQMvLjNCoRERERERGR5GeX8EVqct7fdUuuw8Dg5Z0vs6F+w2gPLaUoKDVONUcr3/N54cOnre1Fn47jqERERERERESSX04wUyp6+R7AzMKZnDv9XAB+seoXozquVDP0oydjQmu3l7++v5vOnl4AmjqjZEptew26GiF7Akw7IY6jFBEREREREUl+dlAqd4jyPdvXlnyNf2z/B2/ve5u39r7FMZXHjObwUoaCUuPEb16v5q5/bu5zntNhUJQdoafUur9apws+CQ7n6A9OREREREREJIXkBsv3YgurTMqdxKVzLuXRjx7l5yt/ztKKpTgMFa8pKDVGmabJPa9soddv8m+nz2bt7mYAlk0vZmpJFgBHTSsiK73fU6CnAz7+u7W9UKV7IiIiIiIiIv3lxNjoPNyXD/kyT215io8aP+Lv2/7OeTPOG63hpQwFpcaoVzfW8f9e2gTAhYdO5ON9bQDccuYcDp9SOPgV1/0FetqgcBpUHRWPoYqIiIiIiIiklPmVeTy1Zi8LKmNfGKwwo5BrFl3DL1b9gl+s+gWnTTmNTFfmKI4y+SlXbAzy+vz88O8fBX9/dWMdNa3dAMwpzx38iqYJ7/3G2j7yGjCM0RymiIiIiIiISEr60vHTWfGdUznnkIphXe/K+VdSmV1JbWctv9vwu1EaXepQUGoMevSdHWzb3xH8/bF3dwFQVZQZTDGMaNe7ULMOXBmw5LOjPUwRERERERGRlGQYBmV5GcO+ntvp5sbDbwTggfUPUNdZN8IjSy0KSo1Bf1ixE4BjZhQDsLHWKt2bW54X/Yrv/do6XfRpyCoatfGJiIiIiIiIjFdnTT2LxaWL6ert4s6VdyZ6OAmloNQYU9vazea6dgwDvvOJeX0umxetdK91L2x40to+8kujOEIRERERERGR8cswDG496lYMDJ7d9iyr61YnekgJo6DUGPPmlnoAFk3MZ0FlHiU57uBlcyuiZEq9ez/4e2HKcVC5ZJRHKSIiIiIiIjJ+LShZwIWzLgTg9hW34/P7EjyixFBQaox5c0sDAMfOLMEwDA6dXBC8bO5gmVKednj/QWt72XWjPEIRERERERERueHQG8hNy+Wjxo/4y6a/JHo4CaGg1BhimmYwU+rYGSUAwaBURpqDKcXZka/4wR+huwWKpsPss+IxVBEREREREZFxrTizmK8f+nUA7lp9Fw1dDQkeUfwpKDWGbN3fQU1rN+kuB0dMLQTghFmlOAw4aloxTocx8Ep+H7xzr7W99Gvg0FNCREREREREJB4umXMJ84rm0dbTxh0r70j0cOJOEYgxxM6SOmJKIRlpTgAWTsznuW8czy8uWRL5Spueh8ZtkFEASy6Pz0BFREREREREBKfDyX8s/Q8MDJ7Z+gzv7ns30UOKKwWlxpCGdg/pTgfHzizpc/7c8jwKs9MjX+ntX1qnR3we0gcp7xMRERERERGRUbG4dDEXz7kYgP9+57/p8fUkeETxo6DUGHLTGXP44HtncOWyKbFdYesrsONNcLjgqC+P7uBEREREREREJKIbDruBkswStrdu54F1DyR6OHGjoNQYk5nuJC8jbegdG6vhr1+wtg+7CvIqR3dgIiIiIiIiIhJRXnoe3zrqWywuXcypU05N9HDixpXoAUgCeNrgscuhqwkqD4Mzf5ToEYmIiIiIiIiMa2dOOZMzppyBwxg/+UMKSo03fj88eS3UfQg5ZXDp7yEtI9GjEhERERERERnXDMPAwEj0MOJq/ITfxLL8p/Dxs+BMh0seVdmeiIiIiIiIiCSEglLjyUd/g9dut7bPvROqjkrseERERERERERk3FJQaryoWQ9PfMXaPvpaOPSKxI5HRERERERERMY1BaXGg/ot8MiF4O2AaSfAGT9M9IhEREREREREZJxTUGqsa6uB350PHXVQtggu/h040xI9KhEREREREREZ5xSUGsv8PnjiS9C6B0pmw5VPQmZhokclIiIiIiIiIqKg1Jj2xh1QvRzSsuHSP0BOaaJHJCIiIiIiIiICKCg1dq1/HF75H2v7nJ9ByazEjkdEREREREREJIyCUmPRx88FVtoz4cgvwuLLEj0iEREREREREZE+XIkegIygXg/88wfw9j3W7ws/BWf/LxhGYsclIiIiIiIiItKPglJjyZNfgQ1PWttHfhHOvB0cSoYTERERERERkeSjoNRYcuyNsPMdOOcOmPuJRI9GRERERERERGRQCkqNJZVL4BsfgMud6JGIiIiIiIiIiESl2q6xRgEpEREREREREUkBCkqJiIiIiIiIiEjcJTQotXz5cs477zwqKysxDIOnnnoqeJnX6+Vb3/oWixYtIjs7m8rKSj73uc+xd+/ePrfh8Xi4/vrrKSkpITs7m/PPP5/du3fH+Z6IiIiIiIiIiMhwJDQo1dHRweLFi7nnnnsGXNbZ2cmqVav47ne/y6pVq3jiiSfYtGkT559/fp/9brzxRp588kkee+wx3njjDdrb2zn33HPx+XzxuhsiIiIiIiIiIjJMCW10fvbZZ3P22WdHvCw/P5+XXnqpz3l33303Rx11FDt37mTy5Mm0tLTwwAMP8Mgjj3DaaacB8Oijj1JVVcXLL7/MmWeeOer3QUREREREREREhi+lekq1tLRgGAYFBQUArFy5Eq/XyxlnnBHcp7KykoULF/LWW28laJQiIiIiIiIiIjKUhGZKDUd3dzff/va3ufzyy8nLywOgpqaG9PR0CgsL++xbVlZGTU3NoLfl8XjweDzB31tbWwHw+/34/f5RGL2E8/v9mKapxzpFaL5Sh+YqNWiekpfmJjVonlKH5iq1aL5Sg+YpNWieiPm+p0RQyuv1cumll+L3+7n33nuH3N80TQzDGPTy22+/ne9///sDzt+/fz/d3d0HNVYZmt/vp6WlBdM0cThSKllvXNJ8pQ7NVWrQPCUvzU1q0DylDs1VatF8pQbNU2rQPEFbW1tM+yV9UMrr9XLxxRdTXV3NK6+8EsySAigvL6enp4empqY+2VJ1dXUcc8wxg97mrbfeyk033RT8vbW1laqqKkpLS/vcvowOv9+PYRiUlpaO2xdoKtF8pQ7NVWrQPCUvzU1q0DylDs1VatF8pQbNU2rQPEFGRkZM+yV1UMoOSG3evJlXX32V4uLiPpcffvjhpKWl8dJLL3HxxRcDsG/fPtavX89Pf/rTQW/X7XbjdrsHnO9wOMbtEybeDMPQ451CNF+pQ3OVGjRPyUtzkxo0T6lDc5VaNF+pQfOUGsb7PMV6vxMalGpvb2fLli3B36urq1mzZg1FRUVUVlby6U9/mlWrVvHss8/i8/mCfaKKiopIT08nPz+fa665hptvvpni4mKKioq45ZZbWLRoUXA1PhERERERERERST4JDUq9//77nHzyycHf7ZK6q666ittuu41nnnkGgCVLlvS53quvvspJJ50EwJ133onL5eLiiy+mq6uLU089lYcffhin0xmX+yAiIiIiIiIiIsOX0KDUSSedhGmag14e7TJbRkYGd999N3ffffdIDk1EREREREREREbR+CxuFBERERERERGRhFJQSkRERERERERE4k5BKRERERERERERiTsFpUREREREREREJO4UlBIRERERERERkbhTUEpEREREREREROJOQSkREREREREREYk7V6IHkAxM0wSgtbU1wSMZH/x+P21tbWRkZOBwKC6a7DRfqUNzlRo0T8lLc5MaNE+pQ3OVWjRfqUHzlBo0T6H4ih1vGYyCUkBbWxsAVVVVCR6JiIiIiIiIiMjY0NbWRn5+/qCXG+ZQYatxwO/3s3fvXnJzczEMI9HDGfNaW1upqqpi165d5OXlJXo4MgTNV+rQXKUGzVPy0tykBs1T6tBcpRbNV2rQPKUGzZOVIdXW1kZlZWXUbDFlSgEOh4NJkyYlehjjTl5e3rh9gaYizVfq0FylBs1T8tLcpAbNU+rQXKUWzVdq0DylhvE+T9EypGzjs7hRREREREREREQSSkEpERERERERERGJOwWlJO7cbjff+973cLvdiR6KxEDzlTo0V6lB85S8NDepQfOUOjRXqUXzlRo0T6lB8xQ7NToXEREREREREZG4U6aUiIiIiIiIiIjEnYJSIiIiIiIiIiISdwpKiYiIiIiIiIhI3CkoJQDcfvvtHHnkkeTm5jJhwgQ++clPsnHjxj77mKbJbbfdRmVlJZmZmZx00kls2LAheHljYyPXX389c+bMISsri8mTJ3PDDTfQ0tLS53b+53/+h2OOOYasrCwKCgpiHuO6des48cQTyczMZOLEifzgBz8gvCXa1VdfjWEYA34WLFhwYA9KEhsL8wXwy1/+knnz5pGZmcmcOXP43e9+N/wHI8kl+1x1d3dz9dVXs2jRIlwuF5/85CcH7LNv3z4uv/xy5syZg8Ph4MYbbxzuw5D04jVP27dv55prrmHatGlkZmYyY8YMvve979HT0zPkGId6TY3VeRoLc/PGG29w7LHHUlxcTGZmJnPnzuXOO+8cgUcneYyFeXrttdciHkd8/PHHI/AIJY+xMFc65kut+YKxf8yX7POk4z1LPI/Lzz//fCZPnkxGRgYVFRVceeWV7N27d8gxjsvjPVPENM0zzzzTfOihh8z169eba9asMc855xxz8uTJZnt7e3CfH//4x2Zubq75+OOPm+vWrTMvueQSs6KiwmxtbTVN0zTXrVtnXnTRReYzzzxjbtmyxfznP/9pzpo1y/zUpz7V52/913/9l3nHHXeYN910k5mfnx/T+FpaWsyysjLz0ksvNdetW2c+/vjjZm5urvmzn/0suE9zc7O5b9++4M+uXbvMoqIi83vf+95BPz7JZizM17333mvm5uaajz32mLl161bzj3/8o5mTk2M+88wzB/8AJZFkn6v29nbz2muvNe+//37zzDPPNC+44IIB+1RXV5s33HCD+dvf/tZcsmSJ+Y1vfONAH46kFa95+sc//mFeffXV5gsvvGBu3brVfPrpp80JEyaYN998c9TxxfKaGqvzNBbmZtWqVeYf/vAHc/369WZ1dbX5yCOPmFlZWeavfvWrEX60EmcszNOrr75qAubGjRv7HE/09vaO8KOVWGNhrnTMl1rzNR6O+ZJ9nnS8Z4nncfkdd9xhvv322+b27dvNN99801y2bJm5bNmyqOMbr8d7CkpJRHV1dSZg/utf/zJN0zT9fr9ZXl5u/vjHPw7u093dbebn55v33XffoLfz5z//2UxPTze9Xu+Ayx566KGYPzjfe++9Zn5+vtnd3R087/bbbzcrKytNv98f8TpPPvmkaRiGuX379pj+RipLxflatmyZecstt/S53je+8Q3z2GOPjelvpKpkm6twV111VcSDlHAnnnjimPjnN5R4zJPtpz/9qTlt2rSo4xnue+BYnqdUnxvbhRdeaF5xxRVRbzuVpeI82UGppqamWO7imJGKc9WfjvmSe77G4zFfss1TOB3vhcRznp5++mnTMAyzp6dn0H3G6/GeyvckIjv9sKioCIDq6mpqamo444wzgvu43W5OPPFE3nrrrai3k5eXh8vlOqjxvP3225x44om43e7geWeeeSZ79+5l+/btEa/zwAMPcNpppzFlypSD+tupIBXny+PxkJGR0ed6mZmZvPvuu3i93oP6+8ks2eZKIovnPLW0tAT/zmAO5D1wrBoLc7N69WreeustTjzxxKi3ncpSeZ4OPfRQKioqOPXUU3n11Vej3u5YkMpzZdMxX3LP13g85ku2eZLI4jVPjY2N/P73v+eYY44hLS1t0NsZr8d7CkrJAKZpctNNN3HcccexcOFCAGpqagAoKyvrs29ZWVnwsv4aGhr47//+b77yla8c9Jhqamoi/u3wsYXbt28f//jHP/jiF7940H872aXqfJ155pn85je/YeXKlZimyfvvv8+DDz6I1+ulvr7+oMeQjJJxrmSgeM7T1q1bufvuu7n22mujjmm474FjVarPzaRJk3C73RxxxBFcd911Y/Z/VKrOU0VFBffffz+PP/44TzzxBHPmzOHUU09l+fLlUW87laXqXIXTMV/yz9d4O+ZLxnmSgeIxT9/61rfIzs6muLiYnTt38vTTT0cd03g93lNQSgb4+te/ztq1a/njH/844DLDMPr8bprmgPMAWltbOeecc5g/fz7f+973hvX3FyxYQE5ODjk5OZx99tlR/3ak8wEefvhhCgoKIjbxG2tSdb6++93vcvbZZ7N06VLS0tK44IILuPrqqwFwOp3DGkOqSNa5kr7iNU979+7lrLPO4jOf+UyfD1Mj8R44VqX63Lz++uu8//773Hffffz85z+PeD/GglSdpzlz5vClL32Jww47jGXLlnHvvfdyzjnn8LOf/SzGe556UnWuwumYz5LM8zXejvmSdZ6kr3jM0ze/+U1Wr17Niy++iNPp5HOf+1zw9aHjvRDVfUgf119/Pc888wzLly9n0qRJwfPLy8sBK0JbUVERPL+urm5ANLetrY2zzjqLnJwcnnzyyagpipE899xzwVTezMzM4N/vHx2uq6sDBkayTdPkwQcf5MorryQ9PX1YfzvVpPJ8ZWZm8uCDD/KrX/2K2tra4DfUubm5lJSUDGsMqSBZ50r6itc87d27l5NPPplly5Zx//3397nsYN8Dx6qxMDfTpk0DYNGiRdTW1nLbbbdx2WWXxf4gpICxME/hli5dyqOPPjrk/U5FY2GudMyXGvM1no75knWepK94zVNJSQklJSXMnj2befPmUVVVxTvvvMOyZct0vBdu1LtWSUrw+/3mddddZ1ZWVpqbNm2KeHl5ebn5k5/8JHiex+MZ0PStpaXFXLp0qXniiSeaHR0dUf/mcBtnFxQUmB6PJ3jej3/844hN3+xGpevWrYvptlPRWJqvcCeccIJ52WWXxfQ3UkWyz1W48dz4Mp7ztHv3bnPWrFnmpZdeGvOqXsN9TY2leRprc2P7wQ9+YE6ZMiWmv5EKxuo8fepTnzJPPvnkmP5GqhhLc6VjvtSar3Bj7Zgv2ecpnI734ntcbtu5c6cJmK+++uqg+4zX4z0FpcQ0TdP86le/aubn55uvvfZanyV2Ozs7g/v8+Mc/NvPz880nnnjCXLdunXnZZZf1WR6ztbXVPProo81FixaZW7ZsGXQ55R07dpirV682v//975s5OTnm6tWrzdWrV5ttbW2Djq+5udksKyszL7vsMnPdunXmE088Yebl5fVZHtN2xRVXmEcfffQIPjrJZyzM18aNG81HHnnE3LRpk7lixQrzkksuMYuKiszq6uqRf8ASKNnnyjRNc8OGDebq1avN8847zzzppJOC1wtnn3f44Yebl19+ubl69Wpzw4YNI/dAJVi85mnPnj3mzJkzzVNOOcXcvXt3n32iifU9cCzO01iYm3vuucd85plnzE2bNpmbNm0yH3zwQTMvL8/8j//4j1F4xBJjLMzTnXfeaT755JPmpk2bzPXr15vf/va3TcB8/PHHR+ERS5yxMFc2HfNZkn2+xsMxX7LPk2nqeM804zdPK1asMO+++25z9erV5vbt281XXnnFPO6448wZM2b0WVmvv/F6vKeglJimaZpAxJ+HHnoouI/f7ze/973vmeXl5abb7TZPOOGEPt9M2d9WRfoJ/6dz1VVXRdwnWtTYNE1z7dq15vHHH2+63W6zvLzcvO222wZEjJubm83MzEzz/vvvH4mHJWmNhfn68MMPzSVLlpiZmZlmXl6eecEFF5gff/zxSD1ESSMV5mrKlCkRrzfU/RhLWR7xmqeHHnpo0H2GEst74Ficp7EwN3fddZe5YMECMysry8zLyzMPPfRQ89577zV9Pt+IPU6JNhbm6Sc/+Yk5Y8YMMyMjwywsLDSPO+448+9///uIPUbJYizMlWnqmC+V5ms8HPOlwjzpeC9+87R27Vrz5JNPNouKiky3221OnTrVvPbaa83du3cPOcbxeLxnmGagc5aIiIiIiIiIiEicaPU9ERERERERERGJOwWlREREREREREQk7hSUEhERERERERGRuFNQSkRERERERERE4k5BKRERERERERERiTsFpUREREREREREJO4UlBIRERERERERkbhTUEpEREREREREROJOQSkRERGRJHLbbbexZMmSRA9DREREZNQZpmmaiR6EiIiIyHhgGEbUy6+66iruuecePB4PxcXFcRqViIiISGIoKCUiIiISJzU1NcHtP/3pT/zXf/0XGzduDJ6XmZlJfn5+IoYmIiIiEncq3xMRERGJk/Ly8uBPfn4+hmEMOK9/+d7VV1/NJz/5SX70ox9RVlZGQUEB3//+9+nt7eWb3/wmRUVFTJo0iQcffLDP39qzZw+XXHIJhYWFFBcXc8EFF7B9+/b43mERERGRKBSUEhEREUlyr7zyCnv37mX58uXccccd3HbbbZx77rkUFhayYsUKrr32Wq699lp27doFQGdnJyeffDI5OTksX76cN954g5ycHM466yx6enoSfG9ERERELApKiYiIiCS5oqIi7rrrLubMmcMXvvAF5syZQ2dnJ9/5zneYNWsWt956K+np6bz55psAPPbYYzgcDn7zm9+waNEi5s2bx0MPPcTOnTt57bXXEntnRERERAJciR6AiIiIiES3YMECHI7Qd4llZWUsXLgw+LvT6aS4uJi6ujoAVq5cyZYtW8jNze1zO93d3WzdujU+gxYREREZgoJSIiIiIkkuLS2tz++GYUQ8z+/3A+D3+zn88MP5/e9/P+C2SktLR2+gIiIiIsOgoJSIiIjIGHPYYYfxpz/9iQkTJpCXl5fo4YiIiIhEpJ5SIiIiImPMZz/7WUpKSrjgggt4/fXXqa6u5l//+hff+MY32L17d6KHJyIiIgIoKCUiIiIy5mRlZbF8+XImT57MRRddxLx58/jCF75AV1eXMqdEREQkaRimaZqJHoSIiIiIiIiIiIwvypQSEREREREREZG4U1BKRERERERERETiTkEpERERERERERGJOwWlREREREREREQk7hSUEhERERERERGRuFNQSkRERERERERE4k5BKRERERERERERiTsFpUREREREREREJO4UlBIRERERERERkbhTUEpEREREREREROJOQSkREREREREREYk7BaVERERERERERCTu/j/9ACEh5KT1bwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "\n", "y_test_inv = scaler.inverse_transform(y_test)\n", "\n", "N = len(scaled) - seq_len \n", "start_test_y_idx = seq_len + split\n", "end_test_y_idx = start_test_y_idx + len(y_test)\n", "\n", "if isinstance(df.index, pd.DatetimeIndex):\n", " y_test_index = df.index[start_test_y_idx:end_test_y_idx]\n", "else:\n", " y_test_index = np.arange(start_test_y_idx, end_test_y_idx)\n", "\n", "actual_test_series = pd.Series(y_test_inv.ravel(), index=y_test_index)\n", "pred_test_series = pd.Series(pred.ravel(), index=y_test_index)\n", "\n", "if isinstance(df.index, pd.DatetimeIndex):\n", " last_date = y_test_index[-1]\n", " freq = df.index.freq if df.index.freq is not None else (df.index.inferred_freq or 'D')\n", " future_index = pd.date_range(start=last_date, periods=len(future_preds) + 1, freq=freq)[1:]\n", "else:\n", " last_idx = y_test_index[-1]\n", " future_index = np.arange(last_idx + 1, last_idx + 1 + len(future_preds))\n", "\n", "future_series = pd.Series(future_preds.ravel(), index=future_index)\n", "\n", "plt.figure(figsize=(12, 6))\n", "plt.plot(actual_test_series.index, actual_test_series.values, label='Actual (Test)')\n", "plt.plot(pred_test_series.index, pred_test_series.values, label='Predicted (Test)')\n", "plt.plot(future_series.index, future_series.values, label=f'Forecast (+{len(future_preds)})')\n", "plt.title('LSTM Close Price: Test Predictions and Future Forecast')\n", "plt.xlabel('Time')\n", "plt.ylabel('Close')\n", "plt.legend()\n", "plt.grid(True, alpha=0.3)\n", "plt.tight_layout()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "id": "sqjLrn3MKbwv" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ARIMA RMSE: 12.955494218221505\n", "ARIMA MAPE: 0.08013550160453459\n" ] } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from statsmodels.tsa.arima.model import ARIMA\n", "from sklearn.metrics import mean_squared_error\n", "\n", "def safe_metrics(y_true, y_pred, eps=1e-8):\n", " y_true = np.asarray(y_true, dtype=float).ravel()\n", " y_pred = np.asarray(y_pred, dtype=float).ravel()\n", "\n", " n = min(len(y_true), len(y_pred))\n", " y_true, y_pred = y_true[:n], y_pred[:n]\n", "\n", " m = np.isfinite(y_true) & np.isfinite(y_pred)\n", " y_true, y_pred = y_true[m], y_pred[m]\n", " if y_true.size == 0:\n", " return np.nan, np.nan\n", "\n", " rmse = np.sqrt(mean_squared_error(y_true, y_pred))\n", " mape = np.mean(np.abs((y_true - y_pred) / np.maximum(np.abs(y_true), eps)))\n", " return float(rmse), float(mape)\n", "\n", "if \"Close\" not in df.columns:\n", " raise ValueError(\"'Close' column not found.\")\n", "\n", "y = df[\"Close\"].astype(float)\n", "\n", "test_size = 60\n", "train, test = y.iloc[:-test_size], y.iloc[-test_size:]\n", "\n", "model = ARIMA(train, order=(5,1,0), enforce_stationarity=False, enforce_invertibility=False)\n", "res = model.fit(method_kwargs={\"warn_convergence\": False})\n", "\n", "forecast = res.forecast(steps=len(test)) \n", "\n", "arima_rmse, arima_mape = safe_metrics(test.values, forecast.values)\n", "\n", "print(\"ARIMA RMSE:\", arima_rmse)\n", "print(\"ARIMA MAPE:\", arima_mape)\n" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "id": "5BpmMJkaMf1G" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "LSTM RMSE: 5.368768560001166\n", "LSTM MAPE: 0.027944501482564454\n" ] } ], "source": [ "from sklearn.metrics import mean_squared_error, mean_absolute_percentage_error\n", "import numpy as np\n", "\n", "y_test_inv = scaler.inverse_transform(y_test.reshape(-1, 1))\n", "\n", "y_test_aligned = y_test_inv[-len(pred):]\n", "\n", "lstm_rmse = np.sqrt(mean_squared_error(y_test_aligned, pred))\n", "lstm_mape = mean_absolute_percentage_error(y_test_aligned, pred)\n", "\n", "print(\"LSTM RMSE:\", lstm_rmse)\n", "print(\"LSTM MAPE:\", lstm_mape)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "id": "v3cNcUXsMuJG" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Hp\\anaconda3\\Lib\\site-packages\\statsmodels\\base\\model.py:607: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals\n", " warnings.warn(\"Maximum Likelihood optimization failed to \"\n", "C:\\Users\\Hp\\anaconda3\\Lib\\site-packages\\statsmodels\\base\\model.py:607: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals\n", " warnings.warn(\"Maximum Likelihood optimization failed to \"\n", "C:\\Users\\Hp\\anaconda3\\Lib\\site-packages\\statsmodels\\base\\model.py:607: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals\n", " warnings.warn(\"Maximum Likelihood optimization failed to \"\n", "C:\\Users\\Hp\\anaconda3\\Lib\\site-packages\\statsmodels\\base\\model.py:607: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals\n", " warnings.warn(\"Maximum Likelihood optimization failed to \"\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "ARIMA Rolling RMSE: 0.7900705786191281\n", "ARIMA Rolling MAPE: 0.009881837288304923\n" ] } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from statsmodels.tsa.arima.model import ARIMA\n", "from sklearn.metrics import mean_squared_error, mean_absolute_percentage_error\n", "\n", "def rolling_window_arima(series, window_size=200, forecast_horizon=1):\n", " errors_rmse, errors_mape = [], []\n", "\n", " series = np.array(series)\n", "\n", " for i in range(window_size, len(series) - forecast_horizon):\n", " train = series[i-window_size:i]\n", " test = series[i:i+forecast_horizon]\n", "\n", " try:\n", " model = ARIMA(train, order=(5,1,0))\n", " model_fit = model.fit()\n", " forecast = model_fit.forecast(steps=forecast_horizon)\n", "\n", " rmse = np.sqrt(mean_squared_error(test, forecast))\n", " mape = mean_absolute_percentage_error(test, forecast)\n", "\n", " errors_rmse.append(rmse)\n", " errors_mape.append(mape)\n", " except Exception as e:\n", " continue\n", "\n", " \n", " if len(errors_rmse) == 0:\n", " return np.nan, np.nan\n", "\n", " return np.mean(errors_rmse), np.mean(errors_mape)\n", "\n", "arima_rmse_roll, arima_mape_roll = rolling_window_arima(df['Close'], window_size=200)\n", "print(\"ARIMA Rolling RMSE:\", arima_rmse_roll)\n", "print(\"ARIMA Rolling MAPE:\", arima_mape_roll)\n", "\n" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "id": "5rfxUys8nYqw" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Processed window 1/2719\n", "Processed window 20/2719\n", "Processed window 40/2719\n", "Processed window 60/2719\n", "Processed window 80/2719\n", "Processed window 100/2719\n", "Processed window 120/2719\n", "Processed window 140/2719\n", "Processed window 160/2719\n", "Processed window 180/2719\n", "Processed window 200/2719\n", "Processed window 220/2719\n", "Processed window 240/2719\n", "Processed window 260/2719\n", "Processed window 280/2719\n", "Processed window 300/2719\n", "Processed window 320/2719\n", "Processed window 340/2719\n", "Processed window 360/2719\n", "Processed window 380/2719\n", "Processed window 400/2719\n", "Processed window 420/2719\n", "Processed window 440/2719\n", "Processed window 460/2719\n", "Processed window 480/2719\n", "Processed window 500/2719\n", "Processed window 520/2719\n", "Processed window 540/2719\n", "Processed window 560/2719\n", "Processed window 580/2719\n", "Processed window 600/2719\n", "Processed window 620/2719\n", "Processed window 640/2719\n", "Processed window 660/2719\n", "Processed window 680/2719\n", "Processed window 700/2719\n", "Processed window 720/2719\n", "Processed window 740/2719\n", "Processed window 760/2719\n", "Processed window 780/2719\n", "Processed window 800/2719\n", "Processed window 820/2719\n", "Processed window 840/2719\n", "Processed window 860/2719\n", "Processed window 880/2719\n", "Processed window 900/2719\n", "Processed window 920/2719\n", "Processed window 940/2719\n", "Processed window 960/2719\n", "Processed window 980/2719\n", "Processed window 1000/2719\n", "Processed window 1020/2719\n", "Processed window 1040/2719\n", "Processed window 1060/2719\n", "Processed window 1080/2719\n", "Processed window 1100/2719\n", "Processed window 1120/2719\n", "Processed window 1140/2719\n", "Processed window 1160/2719\n", "Processed window 1180/2719\n", "Processed window 1200/2719\n", "Processed window 1220/2719\n", "Processed window 1240/2719\n", "Processed window 1260/2719\n", "Processed window 1280/2719\n", "Processed window 1300/2719\n", "Processed window 1320/2719\n", "Processed window 1340/2719\n", "Processed window 1360/2719\n", "Processed window 1380/2719\n", "Processed window 1400/2719\n", "Processed window 1420/2719\n", "Processed window 1440/2719\n", "Processed window 1460/2719\n", "Processed window 1480/2719\n", "Processed window 1500/2719\n", "Processed window 1520/2719\n", "Processed window 1540/2719\n", "Processed window 1560/2719\n", "Processed window 1580/2719\n", "Processed window 1600/2719\n", "Processed window 1620/2719\n", "Processed window 1640/2719\n", "Processed window 1660/2719\n", "Processed window 1680/2719\n", "Processed window 1700/2719\n", "Processed window 1720/2719\n", "Processed window 1740/2719\n", "Processed window 1760/2719\n", "Processed window 1780/2719\n", "Processed window 1800/2719\n", "Processed window 1820/2719\n", "Processed window 1840/2719\n", "Processed window 1860/2719\n", "Processed window 1880/2719\n", "Processed window 1900/2719\n", "Processed window 1920/2719\n", "Processed window 1940/2719\n", "Processed window 1960/2719\n", "Processed window 1980/2719\n", "Processed window 2000/2719\n", "Processed window 2020/2719\n", "Processed window 2040/2719\n", "Processed window 2060/2719\n", "Processed window 2080/2719\n", "Processed window 2100/2719\n", "Processed window 2120/2719\n", "Processed window 2140/2719\n", "Processed window 2160/2719\n", "Processed window 2180/2719\n", "Processed window 2200/2719\n", "Processed window 2220/2719\n", "Processed window 2240/2719\n", "Processed window 2260/2719\n", "Processed window 2280/2719\n", "Processed window 2300/2719\n", "Processed window 2320/2719\n", "Processed window 2340/2719\n", "Processed window 2360/2719\n", "Processed window 2380/2719\n", "Processed window 2400/2719\n", "Processed window 2420/2719\n", "Processed window 2440/2719\n", "Processed window 2460/2719\n", "Processed window 2480/2719\n", "Processed window 2500/2719\n", "Processed window 2520/2719\n", "Processed window 2540/2719\n", "Processed window 2560/2719\n", "Processed window 2580/2719\n", "Processed window 2600/2719\n", "Processed window 2620/2719\n", "Processed window 2640/2719\n", "Processed window 2660/2719\n", "Processed window 2680/2719\n", "Processed window 2700/2719\n", "Processed window 2719/2719\n", "Rolling LSTM RMSE: 1.8989828754409617\n", "Rolling LSTM MAPE: 0.02953039749887917\n" ] } ], "source": [ "import numpy as np\n", "from numpy.lib.stride_tricks import sliding_window_view \n", "from sklearn.preprocessing import MinMaxScaler\n", "import tensorflow as tf\n", "from tensorflow.keras import Sequential, Input \n", "\n", "\n", "def _make_seq_xy(arr_2d, seq_len, horizon=1):\n", " \"\"\"\n", " arr_2d: shape (N, 1)\n", " Returns X: (N-seq_len-horizon+1, seq_len, 1), y: (N-seq_len-horizon+1, 1)\n", " \"\"\"\n", " if arr_2d.ndim != 2 or arr_2d.shape[1] != 1:\n", " raise ValueError(\"arr_2d must have shape (N, 1)\")\n", " if len(arr_2d) <= seq_len + horizon -1: \n", " return np.empty((0, seq_len, 1)), np.empty((0, 1))\n", "\n", " X = sliding_window_view(arr_2d[:, 0], seq_len)\n", "\n", " \n", " y = arr_2d[seq_len:]\n", "\n", " \n", " if horizon > 0:\n", " X = X[:-horizon]\n", " y = y[horizon-1:-horizon+1]\n", "\n", " X = X[..., None] \n", "\n", " \n", " y = arr_2d[seq_len + horizon - 1: len(arr_2d) - (horizon - 1 if horizon > 1 else 0)]\n", " y = y[:len(X)] \n", "\n", " return X, y\n", "\n", "\n", "def _make_dataset(X, y, batch_size=64, shuffle=True):\n", " ds = tf.data.Dataset.from_tensor_slices((X.astype(np.float32), y.astype(np.float32)))\n", " if shuffle:\n", " ds = ds.shuffle(min(len(X), 2048), seed=42)\n", " ds = ds.batch(batch_size).prefetch(tf.data.AUTOTUNE)\n", " return ds\n", "\n", "def build_lstm(seq_len=60, units=32):\n", " model = Sequential([\n", " Input(shape=(seq_len, 1)),\n", " LSTM(units, return_sequences=True),\n", " LSTM(units),\n", " Dense(1)\n", " ])\n", " model.compile(optimizer=\"adam\", loss=\"mse\")\n", " return model\n", "\n", "def rolling_window_lstm_fast(\n", " data, \n", " seq_len=60,\n", " window_size=200,\n", " horizon=1,\n", " base_epochs=5, \n", " update_epochs=1, \n", " train_every=10, \n", " batch_size=64,\n", " units=32,\n", " use_global_scaler=True, \n", " verbose=False\n", "):\n", " \"\"\"\n", " Returns: (avg_RMSE, avg_MAPE) over all rolling steps\n", " Much faster than rebuilding a model per step.\n", " \"\"\"\n", "\n", " \n", " data = np.asarray(data)\n", " if data.ndim == 1:\n", " data = data.reshape(-1, 1)\n", " if data.shape[1] != 1:\n", " raise ValueError(\"data must be a single column array of shape (N,1)\")\n", "\n", " N = len(data)\n", " if N < window_size + seq_len + horizon:\n", " raise ValueError(\"Not enough data for the requested window_size/seq_len/horizon.\")\n", "\n", " \n", " global_scaler = MinMaxScaler()\n", " if use_global_scaler:\n", " scaled_all = global_scaler.fit_transform(data)\n", " else:\n", " scaled_all = None \n", "\n", " \n", " model = build_lstm(seq_len=seq_len, units=units)\n", "\n", " errors_rmse, errors_mape = [], []\n", "\n", " total_steps = (N - horizon) - window_size \n", " \n", " start = window_size\n", " end = start \n", " subset = data[start - window_size:start] \n", "\n", " if use_global_scaler:\n", " subset_scaled = scaled_all[start - window_size:start]\n", " else:\n", " scaler = MinMaxScaler()\n", " \n", " fit_end = len(subset) - horizon\n", " scaler.fit(subset[:fit_end])\n", " subset_scaled = scaler.transform(subset)\n", "\n", " X, y = _make_seq_xy(subset_scaled, seq_len, horizon=horizon)\n", " if len(X) == 0:\n", " return np.nan, np.nan\n", "\n", " \n", " X_train, y_train = X[:-horizon], y[:-horizon]\n", " X_test, y_test = X[-horizon:], y[-horizon:]\n", "\n", " \n", " ds_train = _make_dataset(X_train, y_train, batch_size=batch_size, shuffle=True)\n", " cb = [tf.keras.callbacks.EarlyStopping(monitor=\"loss\", patience=2, min_delta=1e-5, restore_best_weights=True)]\n", " model.fit(ds_train, epochs=base_epochs, verbose=0, callbacks=cb)\n", "\n", " \n", " pred = model.predict(X_test, verbose=0)\n", " \n", " if use_global_scaler:\n", " pred_inv = global_scaler.inverse_transform(pred)\n", " y_inv = global_scaler.inverse_transform(y_test)\n", " else:\n", " scaler.inverse_transform(pred) \n", " y_inv = scaler.inverse_transform(y_test)\n", "\n", " errors_rmse.append(np.sqrt(mean_squared_error(y_inv, pred_inv)))\n", " errors_mape.append(mean_absolute_percentage_error(y_inv, pred_inv))\n", "\n", " if verbose:\n", " print(f\"Processed window 1/{total_steps}\")\n", "\n", " \n", " for step, i in enumerate(range(window_size + 1, N - horizon), start=2):\n", " subset = data[i - window_size:i]\n", "\n", " if use_global_scaler:\n", " subset_scaled = scaled_all[i - window_size:i]\n", " else:\n", " scaler = MinMaxScaler()\n", " fit_end = len(subset) - horizon\n", " scaler.fit(subset[:fit_end])\n", " subset_scaled = scaler.transform(subset)\n", "\n", " X, y = _make_seq_xy(subset_scaled, seq_len, horizon=horizon)\n", " if len(X) == 0:\n", " continue\n", "\n", " X_train, y_train = X[:-horizon], y[:-horizon]\n", " X_test, y_test = X[-horizon:], y[-horizon:]\n", "\n", " \n", " if (step - 1) % train_every == 0:\n", " ds_train = _make_dataset(X_train, y_train, batch_size=batch_size, shuffle=True)\n", " model.fit(ds_train, epochs=update_epochs, verbose=0)\n", "\n", " pred = model.predict(X_test, verbose=0)\n", "\n", " if use_global_scaler:\n", " pred_inv = global_scaler.inverse_transform(pred)\n", " y_inv = global_scaler.inverse_transform(y_test)\n", " else:\n", " \n", " pred_inv = scaler.inverse_transform(pred)\n", " y_inv = scaler.inverse_transform(y_test)\n", "\n", "\n", " errors_rmse.append(np.sqrt(mean_squared_error(y_inv, pred_inv)))\n", " errors_mape.append(mean_absolute_percentage_error(y_inv, pred_inv))\n", "\n", " if verbose and (step % 20 == 0 or step == total_steps):\n", " print(f\"Processed window {step}/{total_steps}\")\n", "\n", " if step >= total_steps:\n", " break\n", "\n", "\n", " if not errors_rmse:\n", " return np.nan, np.nan\n", " return float(np.mean(errors_rmse)), float(np.mean(errors_mape))\n", "\n", "\n", "if \"Close\" in df.columns:\n", " lstm_rmse_roll, lstm_mape_roll = rolling_window_lstm_fast(\n", " df[['Close']].values,\n", " seq_len=60,\n", " window_size=200,\n", " horizon=1,\n", " base_epochs=5, \n", " update_epochs=1, \n", " train_every=10, \n", " batch_size=128, \n", " units=32, \n", " use_global_scaler=True, \n", " verbose=True\n", " )\n", " print(\"Rolling LSTM RMSE:\", lstm_rmse_roll)\n", " print(\"Rolling LSTM MAPE:\", lstm_mape_roll)\n", "else:\n", " print(\" Error: 'Close' column not found in data.\")" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "id": "ia9hsAicy4TW" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Model RMSE MAPE Rolling RMSE Rolling MAPE\n", "0 ARIMA 12.9555 0.0801 0.7913 0.0099\n", "1 LSTM 5.3688 0.0279 1.8990 0.0295\n" ] } ], "source": [ "import warnings\n", "warnings.filterwarnings(\"ignore\") \n", "\n", "import numpy as np\n", "import pandas as pd\n", "from sklearn.metrics import mean_squared_error, mean_absolute_percentage_error\n", "from statsmodels.tsa.arima.model import ARIMA\n", "\n", "def _get_if_defined(name, default=np.nan):\n", " try:\n", " return eval(name)\n", " except NameError:\n", " return default\n", "\n", "\n", "def rolling_window_arima(series, window_size=200, forecast_horizon=1, order=(5,1,0)):\n", " \"\"\"\n", " Walks forward one step at a time.\n", " For each position: fit ARIMA on the last `window_size` points; forecast `forecast_horizon`.\n", " Returns mean RMSE/MAPE across all steps (ignores steps that failed to fit).\n", " \"\"\"\n", " errors_rmse, errors_mape = [], []\n", "\n", " series = np.asarray(series, dtype=np.float64).ravel()\n", " if len(series) < window_size + forecast_horizon:\n", " return np.nan, np.nan\n", "\n", " for i in range(window_size, len(series) - forecast_horizon + 1):\n", " train = series[i-window_size:i]\n", " test = series[i:i+forecast_horizon]\n", " try:\n", " model = ARIMA(train, order=order, enforce_stationarity=False, enforce_invertibility=False)\n", " model_fit = model.fit(method_kwargs={\"warn_convergence\": False})\n", " forecast = model_fit.forecast(steps=forecast_horizon)\n", " rmse = np.sqrt(mean_squared_error(test, forecast))\n", " mape = mean_absolute_percentage_error(test, forecast)\n", " errors_rmse.append(rmse)\n", " errors_mape.append(mape)\n", " except Exception:\n", " \n", " continue\n", "\n", " if not errors_rmse:\n", " return np.nan, np.nan\n", " return float(np.mean(errors_rmse)), float(np.mean(errors_mape))\n", "\n", "\n", "def holdout_arima(series, test_size=60, order=(5,1,0)):\n", " \"\"\"\n", " Fit ARIMA on all but last `test_size` points; forecast next `test_size`.\n", " Returns RMSE, MAPE on the holdout.\n", " \"\"\"\n", " series = np.asarray(series, dtype=np.float64).ravel()\n", " if len(series) <= test_size + 5: \n", " return np.nan, np.nan\n", "\n", " train, test = series[:-test_size], series[-test_size:]\n", " try:\n", " model = ARIMA(train, order=order, enforce_stationarity=False, enforce_invertibility=False)\n", " model_fit = model.fit(method_kwargs={\"warn_convergence\": False})\n", " forecast = model_fit.forecast(steps=len(test))\n", " rmse = np.sqrt(mean_squared_error(test, forecast))\n", " mape = mean_absolute_percentage_error(test, forecast)\n", " return float(rmse), float(mape)\n", " except Exception:\n", " return np.nan, np.nan\n", "\n", "\n", "if \"Close\" not in df.columns:\n", " raise ValueError(\" Error: 'Close' column not found in data.\")\n", "\n", "close_series = df[\"Close\"].astype(float).values\n", "\n", "\n", "arima_rmse, arima_mape = holdout_arima(close_series, test_size=60, order=(5,1,0))\n", "arima_rmse_roll, arima_mape_roll = rolling_window_arima(close_series, window_size=200, forecast_horizon=1, order=(5,1,0))\n", "\n", "\n", "lstm_rmse = _get_if_defined(\"lstm_rmse\", np.nan)\n", "lstm_mape = _get_if_defined(\"lstm_mape\", np.nan)\n", "lstm_rmse_roll = _get_if_defined(\"lstm_rmse_roll\", np.nan)\n", "lstm_mape_roll = _get_if_defined(\"lstm_mape_roll\", np.nan)\n", "\n", "\n", "results = {\n", " \"Model\": [\"ARIMA\", \"LSTM\"],\n", " \"RMSE\": [arima_rmse, lstm_rmse],\n", " \"MAPE\": [arima_mape, lstm_mape],\n", " \"Rolling RMSE\": [arima_rmse_roll, lstm_rmse_roll],\n", " \"Rolling MAPE\": [arima_mape_roll, lstm_mape_roll],\n", "}\n", "\n", "df_results = pd.DataFrame(results)\n", "\n", "df_results_fmt = df_results.copy()\n", "for col in [\"RMSE\", \"MAPE\", \"Rolling RMSE\", \"Rolling MAPE\"]:\n", " df_results_fmt[col] = df_results_fmt[col].apply(lambda x: f\"{x:.4f}\" if pd.notnull(x) else \"NaN\")\n", "\n", "print(df_results_fmt)\n" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "id": "SUqnlUkYcTcA" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: huggingface_hub in c:\\users\\hp\\anaconda3\\lib\\site-packages (0.35.3)\n", "Requirement already satisfied: filelock in c:\\users\\hp\\anaconda3\\lib\\site-packages (from huggingface_hub) (3.13.1)\n", "Requirement already satisfied: fsspec>=2023.5.0 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from huggingface_hub) (2024.3.1)\n", "Requirement already satisfied: packaging>=20.9 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from huggingface_hub) (23.2)\n", "Requirement already satisfied: pyyaml>=5.1 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from huggingface_hub) (6.0.1)\n", "Requirement already satisfied: requests in c:\\users\\hp\\anaconda3\\lib\\site-packages (from huggingface_hub) (2.32.2)\n", "Requirement already satisfied: tqdm>=4.42.1 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from huggingface_hub) (4.66.4)\n", "Requirement already satisfied: typing-extensions>=3.7.4.3 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from huggingface_hub) (4.15.0)\n", "Requirement already satisfied: colorama in c:\\users\\hp\\anaconda3\\lib\\site-packages (from tqdm>=4.42.1->huggingface_hub) (0.4.6)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from requests->huggingface_hub) (2.0.4)\n", "Requirement already satisfied: idna<4,>=2.5 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from requests->huggingface_hub) (3.7)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from requests->huggingface_hub) (2.2.2)\n", "Requirement already satisfied: certifi>=2017.4.17 in c:\\users\\hp\\anaconda3\\lib\\site-packages (from requests->huggingface_hub) (2025.1.31)\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "9be01252cc3d4298b9a982c3d2c11b7d", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(HTML(value='