aaronkantrowitz commited on
Commit
a6661e0
·
verified ·
1 Parent(s): 196a16e

Add model card with attribution

Browse files
Files changed (1) hide show
  1. README.md +108 -155
README.md CHANGED
@@ -1,199 +1,152 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
 
 
 
 
13
 
14
- ### Model Description
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
43
 
44
- [More Information Needed]
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
69
 
70
- ## How to Get Started with the Model
 
 
 
71
 
72
- Use the code below to get started with the model.
 
 
 
73
 
74
- [More Information Needed]
75
 
76
- ## Training Details
 
 
 
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
 
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
 
 
 
 
 
 
 
 
 
89
 
90
- [More Information Needed]
91
 
 
92
 
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: dima806/ai_vs_real_image_detection
4
+ tags:
5
+ - image-classification
6
+ - vision
7
+ - ai-detection
8
+ - deepfake-detection
9
+ - vit
10
+ datasets:
11
+ - CIFAKE
12
+ metrics:
13
+ - accuracy
14
+ - f1
15
+ pipeline_tag: image-classification
16
  ---
17
 
18
+ # CapCheck AI Image Detection
19
 
20
+ Vision Transformer (ViT) fine-tuned for detecting AI-generated images.
21
 
22
+ ## Model Lineage & Attribution
23
 
24
+ This model builds on the work of others:
25
 
26
+ | Layer | Model | Author | License |
27
+ |-------|-------|--------|---------|
28
+ | Base Architecture | [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) | Google | Apache 2.0 |
29
+ | AI Detection Fine-tune | [dima806/ai_vs_real_image_detection](https://huggingface.co/dima806/ai_vs_real_image_detection) | dima806 | Apache 2.0 |
30
+ | This Model | capcheck/ai-image-detection | CapCheck | Apache 2.0 |
31
 
32
+ **Special thanks to:**
33
+ - **Google** for the Vision Transformer (ViT) architecture
34
+ - **dima806** for fine-tuning on the CIFAKE dataset for AI image detection
35
 
36
+ ## Model Description
37
 
38
+ - **Architecture**: ViT-Base (86M parameters)
39
+ - **Input Size**: 224x224 pixels
40
+ - **Training Data**: CIFAKE dataset (AI-generated vs real images)
41
+ - **Task**: Binary classification (Real vs Fake/AI-generated)
42
 
43
+ ## Usage
 
 
 
 
 
 
44
 
45
+ ```python
46
+ from transformers import pipeline
47
 
48
+ detector = pipeline("image-classification", model="capcheck/ai-image-detection")
49
+ result = detector("path/to/image.jpg")
50
 
51
+ # Output:
52
+ # [{"label": "Fake", "score": 0.95}, {"label": "Real", "score": 0.05}]
53
+ ```
54
 
55
+ ## Labels
56
 
57
+ | Label | Description |
58
+ |-------|-------------|
59
+ | `Real` | Authentic photograph or real-world image |
60
+ | `Fake` | AI-generated or synthetically created image |
61
 
62
+ ## Performance
63
 
64
+ This model was trained on the CIFAKE dataset. Performance on modern AI generators
65
+ (Flux, Midjourney v6, DALL-E 3, Stable Diffusion 3) may vary.
66
 
67
+ See [dima806's model card](https://huggingface.co/dima806/ai_vs_real_image_detection)
68
+ for detailed training metrics.
69
 
70
+ ## Limitations
71
 
72
+ - Trained primarily on older AI generators (pre-2024)
73
+ - May have reduced accuracy on:
74
+ - Very new AI generators not in training data
75
+ - Heavily compressed images (low JPEG quality)
76
+ - Images smaller than 224x224 pixels
77
+ - Works best on images with clear subjects
78
 
79
+ ## Intended Use
80
 
81
+ - Content moderation and authenticity verification
82
+ - Research into AI-generated content detection
83
+ - Educational purposes
84
 
85
+ **Not intended for**:
86
+ - Making consequential decisions without human review
87
+ - Law enforcement evidence without corroborating sources
88
 
89
+ ## Ethical Considerations
90
 
91
+ - This tool is not 100% accurate - false positives harm legitimate creators
92
+ - False negatives can allow misinformation to spread
93
+ - Use in conjunction with other verification methods
94
+ - Human review is recommended for high-stakes decisions
95
 
96
+ ## Roadmap
97
 
98
+ ### Current Version (v1.0.0)
99
 
100
+ Base model from dima806's CIFAKE-trained ViT. Solid foundation for AI detection.
101
 
102
+ ### Planned Improvements
103
 
104
+ **Phase 1: Modern Generator Training**
105
+ - Fine-tune on images from Flux, Midjourney v6, DALL-E 3, Stable Diffusion 3
106
+ - Target: Reduce false negatives on 2024+ AI generators
107
 
108
+ **Phase 2: False Positive Reduction**
109
+ - Curate dataset of real images commonly flagged as AI
110
+ - Photography edge cases: HDR, heavy editing, digital art
111
+ - Target: <5% false positive rate
112
 
113
+ **Phase 3: Continuous Updates**
114
+ - Quarterly re-training as new generators emerge
115
+ - Community feedback integration
116
+ - Benchmark against latest AI generators
117
 
118
+ ### Contributing
119
 
120
+ We welcome:
121
+ - Dataset contributions (properly licensed images)
122
+ - Bug reports and false positive/negative examples
123
+ - Benchmark results on new generators
124
 
125
+ Join the discussion: https://huggingface.co/capcheck/ai-image-detection/discussions
126
 
127
+ ## License
128
 
129
+ Apache 2.0 (inherited from Google ViT and dima806's fine-tuned model)
130
 
131
+ ## Citation
132
 
133
+ If you use this model, please cite:
134
 
135
+ ```bibtex
136
+ @misc{capcheck-ai-detection,
137
+ author = {CapCheck},
138
+ title = {AI Image Detection Model},
139
+ year = {2024},
140
+ publisher = {HuggingFace},
141
+ url = {https://huggingface.co/capcheck/ai-image-detection},
142
+ note = {Based on dima806/ai_vs_real_image_detection, fine-tuned from google/vit-base-patch16-224-in21k}
143
+ }
144
+ ```
145
 
146
+ ## Changelog
147
 
148
+ ### v1.0.0 (Initial Release)
149
 
150
+ - Published base model from dima806/ai_vs_real_image_detection
151
+ - Added proper attribution and documentation
152
+ - Established as CapCheck's source of truth for AI image detection