patembed-base_long_4096 / config_sentence_transformers.json
datalyes's picture
Upload PatentTEB model: patembed-base_long_4096
4d012e1 verified
{
"__version__": {
"sentence_transformers": "2.2.2",
"transformers": "4.55.2",
"pytorch": "2.8.0+cu128"
},
"prompts": {
"retrieval_IN": {
"q_text": "encode query for same document retrieval: ",
"pos_text": "encode document for same retrieval: "
},
"retrieval_OUT": {
"q_text": "encode query for different document retrieval: ",
"pos_text": "encode document for different retrieval: "
},
"retrieval_MIXED": {
"q_text": "encode query for mixed document retrieval: ",
"pos_text": "encode document for mixed retrieval: "
},
"retrieval_inventor": {
"q_text": "encode query for same inventor document retrieval: ",
"pos_text": "encode document for same inventor retrieval: "
},
"title2full": {
"title": "encode title query for document retrieval: ",
"full_text": "encode document for retrieval: "
},
"problem2full": {
"problem": "encode problem query for document retrieval: ",
"full_text": "encode document for retrieval: "
},
"effect2full": {
"effect": "encode effect query for document retrieval: ",
"full_text": "encode document for retrieval: "
},
"effect2substance": {
"effect": "encode effect query for substance retrieval: ",
"substance": "encode substance for retrieval: "
},
"problem2solution": {
"problem": "encode problem query for solution retrieval: ",
"solution": "encode solution for retrieval: "
},
"para_problem": {
"text1": "encode problem for problem paraphrase: ",
"text2": "encode problem for problem paraphrase: "
},
"para_solution": {
"text1": "encode solution for solution paraphrase: ",
"text2": "encode solution for solution paraphrase: "
},
"class_text2ipc3": "encode document for ipc classification: ",
"class_bloom": "encode document for bloom prediction classification: ",
"class_nli_oldnew": {
"q_text": "encode citing document for pair classification: ",
"t_text": "encode cited document for pair classification: "
},
"clusters_ext_full_ipc": "encode document for same ipc clustering: ",
"clusters_inventor": "encode document for same inventors clustering: "
},
"default_prompt_name": null,
"similarity_fn_name": "cosine",
"model_type": "SentenceTransformer"
}