""" Generate seenable_obj_dict.json for all scenes. Example: python code/generate_seenable_object_dict.py /home/xwang378/scratch/2025/Taxonomy/Data/simulationImage/ --scene-workers 8 --camera-workers 8 """ import os import json import argparse import numpy as np from PIL import Image from concurrent.futures import ProcessPoolExecutor, as_completed from multiprocessing import cpu_count def process_camera(save_path, camera): """处理单个相机的数据""" image_dir = os.path.join(save_path, camera) seg_file = os.path.join(image_dir, "seg.png") obj_anno_file = os.path.join(image_dir, "object_annots.json") if not os.path.exists(seg_file) or not os.path.exists(obj_anno_file): return f"[Warning] Missing files in {camera}, skipped.", False if os.path.exists(os.path.join(save_path, camera, "seenable_obj_dict.json")): return f"[Warning] seenable_obj_dict.json already exists for {save_path.split('/')[-1]}/{camera}, skipped.", False # 读取 segmentation 图像和标注 with open(obj_anno_file, "r") as f: obj_anno = json.load(f) obj_annos = obj_anno.get("outputs", []) seg = np.array(Image.open(seg_file)) rgb_mask = seg[:, :, :3] # ⚡ 只获取唯一颜色,不计数 unique_colors = np.unique(rgb_mask.reshape(-1, 3), axis=0) color_set = set(map(tuple, unique_colors)) obj_dict = { obj_anno["object_id"]: tuple(obj_anno["color"][0:3]) for obj_anno in obj_annos if tuple(obj_anno["color"][0:3]) in color_set } output_file = os.path.join(save_path, camera, "seenable_obj_dict.json") with open(output_file, "w") as f: json.dump(obj_dict, f, indent=4) return f"[Saved] {output_file}", True def process_scene(image_dir, scene_name, max_workers=None): save_path = os.path.join(image_dir, scene_name) if not os.path.exists(save_path): print(f"[Error] Scene path not found: {save_path}") return camera_list = [x for x in os.listdir(save_path) if not x.endswith(".json")] print(f"Processing scene: {scene_name}") print(f"Found {len(camera_list)} camera folders.") if not camera_list: print(f"✅ Done processing scene: {scene_name} (no cameras found)\n") return # 并行处理所有相机 success_count = 0 with ProcessPoolExecutor(max_workers=max_workers) as executor: # 提交所有任务 futures = { executor.submit(process_camera, save_path, camera): camera for camera in camera_list } # 收集结果 for future in as_completed(futures): camera = futures[future] try: message, success = future.result() print(message) if success: success_count += 1 except Exception as exc: print(f"[Error] {camera} generated an exception: {exc}") print(f"✅ Done processing scene: {scene_name} ({success_count}/{len(camera_list)} cameras processed)\n") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Generate seenable_obj_dict.json for all scenes.") parser.add_argument("image_dir", type=str, help="Directory containing the image folders") parser.add_argument("--scene-workers", type=int, default=None, help="Number of parallel workers for scene-level processing (default: CPU count)") parser.add_argument("--camera-workers", type=int, default=None, help="Number of parallel workers for camera-level processing (default: CPU count)") args = parser.parse_args() # 获取所有场景 batch_dir = ['zehan', 'placement', 'jiawei', 'luoxin', 'additional'] scenes = [] for batch in batch_dir: for scene in os.listdir(os.path.join(args.image_dir, batch)): if os.path.isdir(os.path.join(args.image_dir, batch, scene)): scenes.append(os.path.join(batch, scene)) print(f"Found {len(scenes)} scenes to process.") print(f"Scene-level workers: {args.scene_workers or cpu_count()}") print(f"Camera-level workers: {args.camera_workers or cpu_count()}\n") # 并行处理所有场景 with ProcessPoolExecutor(max_workers=args.scene_workers) as executor: futures = { executor.submit(process_scene, args.image_dir, scene, args.camera_workers): scene for scene in scenes } for future in as_completed(futures): scene = futures[future] try: future.result() except Exception as exc: print(f"[Error] Scene {scene} generated an exception: {exc}") print("\n🎉 All scenes processed!")