import sys,os import numpy as np from PIL import Image current_dir = os.path.dirname(__file__) sys.path.append(os.path.abspath(os.path.join(current_dir, '..'))) import argparse import logging import torch import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from tqdm.auto import tqdm import diffusers from diffusers import FluxPipeline import json from diffusers.image_processor import VaeImageProcessor from src.condition import Condition from diffusers.utils import check_min_version, is_wandb_available from src.dataloader import get_dataset,prepare_dataset,collate_fn from datetime import datetime if is_wandb_available(): pass import cv2 # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.32.0.dev0") logger = get_logger(__name__, log_level="INFO") os.environ["TOKENIZERS_PARALLELISM"] = "true" from src.SubjectGeniusTransformer2DModel import SubjectGeniusTransformer2DModel from src.SubjectGeniusPipeline import SubjectGeniusPipeline def encode_images(pixels: torch.Tensor, vae: torch.nn.Module, weight_dtype): pixel_latents = vae.encode(pixels.to(vae.dtype)).latent_dist.sample() pixel_latents = (pixel_latents - vae.config.shift_factor) * vae.config.scaling_factor return pixel_latents.to(weight_dtype) def parse_args(input_args=None): parser = argparse.ArgumentParser(description="testing script.") parser.add_argument("--pretrained_model_name_or_path", type=str,default="ckpt/FLUX.1-schnell",) parser.add_argument("--transformer",type=str,default="ckpt/FLUX.1-schnell/transformer",) parser.add_argument( "--dataset_name",type=str, default=[ "dataset/split_SubjectSpatial200K/test", "dataset/split_SubjectSpatial200K/Collection3/test" ], ) parser.add_argument("--image_column", type=str, default="image", ) parser.add_argument("--bbox_column", type=str, default="bbox", ) parser.add_argument("--canny_column", type=str, default="canny", ) parser.add_argument("--depth_column", type=str, default="depth", ) parser.add_argument("--condition_types", type=str, nargs='+', default=["canny", "depth"], ) parser.add_argument("--denoising_lora",type=str,default="ckpt/Denoising_LoRA/depth_canny_union",) parser.add_argument("--condition_lora_dir",type=str,default="ckpt/Condition_LoRA",) parser.add_argument("--max_sequence_length",type=int,default=512,help="Maximum sequence length to use with with the T5 text encoder") parser.add_argument("--work_dir",type=str,default="output/test_result") parser.add_argument("--cache_dir",type=str,default="cache") parser.add_argument("--seed", type=int, default=0) parser.add_argument("--resolution",type=int,default=512,) parser.add_argument("--batch_size", type=int, default=8) parser.add_argument("--dataloader_num_workers",type=int,default=0,) parser.add_argument("--mixed_precision",type=str,default="bf16",choices=["no", "fp16", "bf16"]) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed running: local_rank") args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank args.revision = None args.variant = None args.denoising_lora_name = os.path.basename(os.path.normpath(args.denoising_lora)) return args def main(args): accelerator = Accelerator( mixed_precision=args.mixed_precision, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_warning() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # 2. set seed if args.seed is not None: set_seed(args.seed) # 3. create the working directory if accelerator.is_main_process: if args.work_dir is not None: os.makedirs(args.work_dir, exist_ok=True) # 4. precision weight_dtype = torch.float32 if accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 # 5. Load pretrained single conditional LoRA modules onto the FLUX transformer transformer = SubjectGeniusTransformer2DModel.from_pretrained( pretrained_model_name_or_path=args.transformer, revision=args.revision, variant=args.variant ).to(accelerator.device, dtype=weight_dtype) lora_names = args.condition_types for condition_type in lora_names: transformer.load_lora_adapter(f"{args.condition_lora_dir}/{condition_type}.safetensors", adapter_name=condition_type) logger.info("You are working on the following condition types: {}".format(lora_names)) # 6. get the inference pipeline. pipe = SubjectGeniusPipeline.from_pretrained( args.pretrained_model_name_or_path, transformer=None, ).to(accelerator.device, dtype=weight_dtype) pipe.transformer = transformer # 7. get the VAE image processor to do the pre-process and post-process for images. # (vae_scale_factor is the scale of downsample.) vae_scale_factor = 2 ** (len(pipe.vae.config.block_out_channels) - 1) image_processor = VaeImageProcessor(vae_scale_factor=vae_scale_factor * 2 ,do_resize=True) # 8. get the dataset dataset = get_dataset(args) print("len:",len(dataset)) dataset = prepare_dataset(dataset, vae_scale_factor, accelerator, args) # 9. set the seed if args.seed is not None: set_seed(args.seed) # 10. get the dataloader dataloader = torch.utils.data.DataLoader( dataset, shuffle=False, collate_fn=collate_fn, batch_size=args.batch_size, num_workers=args.dataloader_num_workers, ) # 10. accelerator start initial_global_step = 0 pipe, dataloader = accelerator.prepare( pipe, dataloader ) logger.info("***** Running testing *****") logger.info(f" Num examples = {len(dataset)}") logger.info(f" Instantaneous batch size per device = {args.batch_size}") logger.info(f" Transformer Class = {transformer.__class__.__name__}") logger.info(f" Num of GPU processes = {accelerator.num_processes}") progress_bar = tqdm( range(0, len(dataloader)), initial=initial_global_step, desc="Steps", # Only show the progress bar once on each machine. disable=not accelerator.is_local_main_process, ) output_dir = os.path.join(args.work_dir, f"{datetime.now().strftime("%y:%m:%d-%H:%M")}") logger.info(f"output dir: {output_dir}") os.makedirs(os.path.join(output_dir, "info"), exist_ok=True) # 11. start testing! for S, batch in enumerate(dataloader): prompts = batch["descriptions"] # 12.1 Get Conditions input tensors -> "condition_latents" # 12.2 Get Conditions positional id list. -> "condition_ids" # 12.3 Get Conditions types string list. -> "condition_types" # (bs, cond_num, c, h, w) -> [cond_num, (bs, c, h ,w)] condition_latents = list(torch.unbind(batch["condition_latents"], dim=1)) # [cond_num, (len ,3) ] condition_ids = [] # [cond_num] condition_types = batch["condition_types"][0] for i,images_per_condition in enumerate(condition_latents): # i means No.i. Conditional Branch # images_per_condition = (bs, c, h ,w) images_per_condition = encode_images(pixels=images_per_condition,vae=pipe.vae,weight_dtype=weight_dtype) condition_latents[i] = FluxPipeline._pack_latents( images_per_condition, batch_size=images_per_condition.shape[0], num_channels_latents=images_per_condition.shape[1], height=images_per_condition.shape[2], width=images_per_condition.shape[3], ) cond_ids = FluxPipeline._prepare_latent_image_ids( images_per_condition.shape[0], images_per_condition.shape[2] // 2, images_per_condition.shape[3] // 2, accelerator.device, weight_dtype, ) if condition_types[i] == "subject": cond_ids[:, 2] += images_per_condition.shape[2] // 2 condition_ids.append(cond_ids) # 13 prepare the input conditions=[Condition1, Condition2, ...] for all the conditional branches conditions = [] for i, condition_type in enumerate(condition_types): conditions.append(Condition(condition_type,condition=condition_latents[i],condition_ids=condition_ids[i])) # 14.1 inference of training-based SubjectGenius pipe.transformer.load_lora_adapter(args.denoising_lora,adapter_name=args.denoising_lora_name ,use_safetensors=True) pipe.transformer.set_adapters([i for i in lora_names] + [args.denoising_lora_name ]) if args.seed is not None: set_seed(args.seed) result_img_list = pipe( prompt=prompts, conditions=conditions, height=args.resolution, width=args.resolution, num_inference_steps=8, max_sequence_length=512, model_config = { }, accelerator=accelerator ).images pipe.transformer.delete_adapters(args.denoising_lora_name) # 14.2 inference of training-free SubjectGenius pipe.transformer.set_adapters([i for i in lora_names]) if args.seed is not None: set_seed(args.seed) origin_result_img_list = pipe( prompt=prompts, conditions=conditions, height=args.resolution, width=args.resolution, num_inference_steps=8, max_sequence_length=512, model_config = { }, accelerator = accelerator ).images # 15. save the output to the output_dir = "work_dir/datetime" for i,(result_img,origin_result_img) in enumerate(zip(result_img_list,origin_result_img_list)): target_img = image_processor.postprocess(batch["pixel_values"][i].unsqueeze(0),output_type="pil")[0] cond_images = image_processor.postprocess(batch["condition_latents"][i],output_type="pil") concat_image = Image.new("RGB", (1536+len(cond_images)*512, 512)) for j,(cond_image,cond_type) in enumerate(zip(cond_images,condition_types)): if cond_type == "fill": cond_image = cv2.rectangle(np.array(cond_image), tuple(batch['bboxes'][i][:2]),tuple(batch['bboxes'][i][2:]), color=(128, 128, 128), thickness=-1) cond_image = Image.fromarray(cv2.rectangle(cond_image, tuple(batch['bboxes'][i][:2]), tuple(batch['bboxes'][i][2:]),color=(255, 215, 0), thickness=2)) concat_image.paste(cond_image,(j*512,0)) concat_image.paste(result_img,(j*512+512,0)) concat_image.paste(origin_result_img,(j*512+1024,0)) concat_image.paste(target_img,(j*512+1536,0)) concat_image.save(os.path.join(output_dir,f"{S*args.batch_size+i}_{batch['items'][i]}.jpg")) with open(os.path.join(output_dir,"info",f"{S*args.batch_size+i}_rank{accelerator.local_process_index}_{batch['items'][i]}.json"), "w", encoding="utf-8") as file: meta_data = { "description": prompts[i], "bbox": batch["bboxes"][i] } json.dump(meta_data,file, ensure_ascii=False, indent=4) progress_bar.update(1) if __name__ == "__main__": args = parse_args() with torch.no_grad(): main(args)