File size: 4,717 Bytes
c68b3e2 f6da3ce c68b3e2 f6da3ce c68b3e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import json
import datetime
import pandas as pd
from difflib import SequenceMatcher
def string_similarity(str1, str2):
# 规则1: 一个为空另一个不为空,相似度为0
if (str1 is None or str1 == "") and (str2 is not None and str2 != ""):
return 0.0
if (str2 is None or str2 == "") and (str1 is not None and str1 != ""):
return 0.0
# 规则2: 二者完全相同(包括全为空),相似度为1
if (str1 or "") == (str2 or ""):
return 1.0
# 规则3: 忽略大小写进行比较
s1_lower = str1.lower()
s2_lower = str2.lower()
# 如果忽略大小写后相同,直接返回1
if s1_lower == s2_lower:
return 1.0
# 使用SequenceMatcher计算相似度
matcher = SequenceMatcher(None, s1_lower, s2_lower)
similarity = matcher.ratio()
return similarity
def main(file_llm = '', file_bench = '', key_list = []):
all_data = {}
with open(file_llm, 'r', encoding='utf-8') as f:
for line in f:
j = json.loads(line).get('llm_response_dict')
# print(j)
all_data[j['sha256']] = {}
all_data[j['sha256']]['llm_response_dict'] = j
with open(file_bench, 'r', encoding='utf-8') as f:
for line in f:
j = json.loads(line)
if j['sha256'] not in all_data:
all_data[j['sha256']] = {}
all_data[j['sha256']]['benchmark_dict'] = j
sha256_to_remove = []
for sha256, value in all_data.items():
# 检查是否同时包含这两个键
if 'llm_response_dict' not in value or 'benchmark_dict' not in value:
sha256_to_remove.append(sha256)
for sha256 in sha256_to_remove:
all_data.pop(sha256)
for sha256, value in all_data.items():
all_data[sha256]['similarity'] = {}
for key in key_list:
# print(key)
all_data[sha256]['similarity'][key] = string_similarity(all_data[sha256]['llm_response_dict'].get(key), all_data[sha256]['benchmark_dict'][key])
# print(all_data)
key_accuracy_tmp = {key: 0 for key in key_list}
for sha256, value in all_data.items():
for key in key_list:
key_accuracy_tmp[key] += value['similarity'][key]
# print(key_accuracy_tmp)
key_accuracy = {k: v / len(all_data) for k,v in key_accuracy_tmp.items()}
# print(key_accuracy)
accuracy = sum(list(key_accuracy.values())) / len(list(key_accuracy.values()))
return accuracy, key_accuracy, all_data
def write_similarity_data_to_excel(key_list, data_dict, output_file="similarity_analysis.xlsx"):
"""
将相似度分析数据写入Excel文件
Args:
data_dict: 包含相似度分析数据的字典
output_file: 输出Excel文件名
"""
# 准备数据列表
rows = []
for sha256, data in data_dict.items():
row = {
'sha256': sha256
}
for field in key_list:
# llm_response_dict 字段
row[f'llm_{field}'] = data['llm_response_dict'].get(field)
# benchmark_dict 字段
row[f'benchmark_{field}'] = data['benchmark_dict'].get(field)
# similarity 字段
row[f'similarity_{field}'] = data['similarity'].get(field)
rows.append(row)
# 创建DataFrame
df = pd.DataFrame(rows)
# 定义列的顺序(可选,让Excel更易读)
column_order = ['sha256']
for field in key_list:
column_order.extend([f'llm_{field}', f'benchmark_{field}', f'similarity_{field}'])
# 重新排列列顺序
df = df[column_order]
# 写入Excel文件
with pd.ExcelWriter(output_file, engine='openpyxl') as writer:
df.to_excel(writer, sheet_name='相似度分析', index=False)
# # 获取工作表并调整列宽
# worksheet = writer.sheets['相似度分析']
# worksheet.column_dimensions['A'].width = 70 # sha256列
print(f"数据已成功写入 {output_file}")
print(f"总共处理了 {len(rows)} 条记录")
return df
if __name__ == '__main__':
file_llm = 'data/llm-label_textbook.jsonl'
file_bench = 'data/benchmark_textbook.jsonl'
# key_list = ['doi', 'title', 'author', 'keyword', 'abstract', 'pub_time']
key_list = ['isbn', 'title', 'author', 'abstract', 'category', 'pub_time', 'publisher']
accuracy, key_accuracy, detail_data = main(file_llm, file_bench, key_list)
# print(detail_data)
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
output_filename = f"similarity_analysis_{timestamp}.xlsx"
write_similarity_data_to_excel(key_list, detail_data, output_filename)
print(key_accuracy)
print(accuracy)
|