File size: 4,717 Bytes
c68b3e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6da3ce
c68b3e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6da3ce
c68b3e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import json
import datetime
import pandas as pd
from difflib import SequenceMatcher

def string_similarity(str1, str2):
    # 规则1: 一个为空另一个不为空,相似度为0
    if (str1 is None or str1 == "") and (str2 is not None and str2 != ""):
        return 0.0
    if (str2 is None or str2 == "") and (str1 is not None and str1 != ""):
        return 0.0

    # 规则2: 二者完全相同(包括全为空),相似度为1
    if (str1 or "") == (str2 or ""):
        return 1.0


    # 规则3: 忽略大小写进行比较
    s1_lower = str1.lower()
    s2_lower = str2.lower()

    # 如果忽略大小写后相同,直接返回1
    if s1_lower == s2_lower:
        return 1.0

    # 使用SequenceMatcher计算相似度
    matcher = SequenceMatcher(None, s1_lower, s2_lower)
    similarity = matcher.ratio()

    return similarity

def main(file_llm = '', file_bench = '', key_list = []):
    all_data = {}
    with open(file_llm, 'r', encoding='utf-8') as f:
        for line in f:
            j = json.loads(line).get('llm_response_dict')
            # print(j)
            all_data[j['sha256']] = {}
            all_data[j['sha256']]['llm_response_dict'] = j

    with open(file_bench, 'r', encoding='utf-8') as f:
        for line in f:
            j = json.loads(line)
            if j['sha256'] not in all_data:
                all_data[j['sha256']] = {}
            all_data[j['sha256']]['benchmark_dict'] = j

    sha256_to_remove = []
    for sha256, value in all_data.items():
        # 检查是否同时包含这两个键
        if 'llm_response_dict' not in value or 'benchmark_dict' not in value:
            sha256_to_remove.append(sha256)
    for sha256 in sha256_to_remove:
        all_data.pop(sha256)

    for sha256, value in all_data.items():
        all_data[sha256]['similarity'] = {}
        for key in key_list:
            # print(key)
            all_data[sha256]['similarity'][key] = string_similarity(all_data[sha256]['llm_response_dict'].get(key), all_data[sha256]['benchmark_dict'][key])

    # print(all_data)
    key_accuracy_tmp = {key: 0 for key in key_list}
    for sha256, value in all_data.items():
        for key in key_list:
            key_accuracy_tmp[key] += value['similarity'][key]

    # print(key_accuracy_tmp)
    key_accuracy = {k: v / len(all_data) for k,v in key_accuracy_tmp.items()}
    # print(key_accuracy)
    accuracy = sum(list(key_accuracy.values())) / len(list(key_accuracy.values()))
    return accuracy, key_accuracy, all_data

def write_similarity_data_to_excel(key_list, data_dict, output_file="similarity_analysis.xlsx"):
    """
    将相似度分析数据写入Excel文件

    Args:
        data_dict: 包含相似度分析数据的字典
        output_file: 输出Excel文件名
    """

    # 准备数据列表
    rows = []

    for sha256, data in data_dict.items():
        row = {
            'sha256': sha256
        }

        for field in key_list:
            # llm_response_dict 字段
            row[f'llm_{field}'] = data['llm_response_dict'].get(field)
            # benchmark_dict 字段
            row[f'benchmark_{field}'] = data['benchmark_dict'].get(field)
            # similarity 字段
            row[f'similarity_{field}'] = data['similarity'].get(field)
        rows.append(row)

    # 创建DataFrame
    df = pd.DataFrame(rows)

    # 定义列的顺序(可选,让Excel更易读)
    column_order = ['sha256']
    for field in key_list:
        column_order.extend([f'llm_{field}', f'benchmark_{field}', f'similarity_{field}'])

    # 重新排列列顺序
    df = df[column_order]

    # 写入Excel文件
    with pd.ExcelWriter(output_file, engine='openpyxl') as writer:
        df.to_excel(writer, sheet_name='相似度分析', index=False)

        # # 获取工作表并调整列宽
        # worksheet = writer.sheets['相似度分析']
        # worksheet.column_dimensions['A'].width = 70  # sha256列


    print(f"数据已成功写入 {output_file}")
    print(f"总共处理了 {len(rows)} 条记录")

    return df

if __name__ == '__main__':
    file_llm = 'data/llm-label_textbook.jsonl'
    file_bench = 'data/benchmark_textbook.jsonl'
    # key_list = ['doi', 'title', 'author', 'keyword', 'abstract', 'pub_time']
    key_list = ['isbn', 'title', 'author', 'abstract', 'category', 'pub_time', 'publisher']

    accuracy, key_accuracy, detail_data = main(file_llm, file_bench, key_list)
    # print(detail_data)
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    output_filename = f"similarity_analysis_{timestamp}.xlsx"
    write_similarity_data_to_excel(key_list, detail_data, output_filename)

    print(key_accuracy)
    print(accuracy)