import json import datetime import pandas as pd from difflib import SequenceMatcher def string_similarity(str1, str2): # 规则1: 一个为空另一个不为空,相似度为0 if (str1 is None or str1 == "") and (str2 is not None and str2 != ""): return 0.0 if (str2 is None or str2 == "") and (str1 is not None and str1 != ""): return 0.0 # 规则2: 二者完全相同(包括全为空),相似度为1 if (str1 or "") == (str2 or ""): return 1.0 # 规则3: 忽略大小写进行比较 s1_lower = str1.lower() s2_lower = str2.lower() # 如果忽略大小写后相同,直接返回1 if s1_lower == s2_lower: return 1.0 # 使用SequenceMatcher计算相似度 matcher = SequenceMatcher(None, s1_lower, s2_lower) similarity = matcher.ratio() return similarity def main(file_llm = '', file_bench = '', key_list = []): all_data = {} with open(file_llm, 'r', encoding='utf-8') as f: for line in f: j = json.loads(line).get('llm_response_dict') # print(j) all_data[j['sha256']] = {} all_data[j['sha256']]['llm_response_dict'] = j with open(file_bench, 'r', encoding='utf-8') as f: for line in f: j = json.loads(line) if j['sha256'] not in all_data: all_data[j['sha256']] = {} all_data[j['sha256']]['benchmark_dict'] = j sha256_to_remove = [] for sha256, value in all_data.items(): # 检查是否同时包含这两个键 if 'llm_response_dict' not in value or 'benchmark_dict' not in value: sha256_to_remove.append(sha256) for sha256 in sha256_to_remove: all_data.pop(sha256) for sha256, value in all_data.items(): all_data[sha256]['similarity'] = {} for key in key_list: # print(key) all_data[sha256]['similarity'][key] = string_similarity(all_data[sha256]['llm_response_dict'].get(key), all_data[sha256]['benchmark_dict'][key]) # print(all_data) key_accuracy_tmp = {key: 0 for key in key_list} for sha256, value in all_data.items(): for key in key_list: key_accuracy_tmp[key] += value['similarity'][key] # print(key_accuracy_tmp) key_accuracy = {k: v / len(all_data) for k,v in key_accuracy_tmp.items()} # print(key_accuracy) accuracy = sum(list(key_accuracy.values())) / len(list(key_accuracy.values())) return accuracy, key_accuracy, all_data def write_similarity_data_to_excel(key_list, data_dict, output_file="similarity_analysis.xlsx"): """ 将相似度分析数据写入Excel文件 Args: data_dict: 包含相似度分析数据的字典 output_file: 输出Excel文件名 """ # 准备数据列表 rows = [] for sha256, data in data_dict.items(): row = { 'sha256': sha256 } for field in key_list: # llm_response_dict 字段 row[f'llm_{field}'] = data['llm_response_dict'].get(field) # benchmark_dict 字段 row[f'benchmark_{field}'] = data['benchmark_dict'].get(field) # similarity 字段 row[f'similarity_{field}'] = data['similarity'].get(field) rows.append(row) # 创建DataFrame df = pd.DataFrame(rows) # 定义列的顺序(可选,让Excel更易读) column_order = ['sha256'] for field in key_list: column_order.extend([f'llm_{field}', f'benchmark_{field}', f'similarity_{field}']) # 重新排列列顺序 df = df[column_order] # 写入Excel文件 with pd.ExcelWriter(output_file, engine='openpyxl') as writer: df.to_excel(writer, sheet_name='相似度分析', index=False) # # 获取工作表并调整列宽 # worksheet = writer.sheets['相似度分析'] # worksheet.column_dimensions['A'].width = 70 # sha256列 print(f"数据已成功写入 {output_file}") print(f"总共处理了 {len(rows)} 条记录") return df if __name__ == '__main__': file_llm = 'data/llm-label_textbook.jsonl' file_bench = 'data/benchmark_textbook.jsonl' # key_list = ['doi', 'title', 'author', 'keyword', 'abstract', 'pub_time'] key_list = ['isbn', 'title', 'author', 'abstract', 'category', 'pub_time', 'publisher'] accuracy, key_accuracy, detail_data = main(file_llm, file_bench, key_list) # print(detail_data) timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") output_filename = f"similarity_analysis_{timestamp}.xlsx" write_similarity_data_to_excel(key_list, detail_data, output_filename) print(key_accuracy) print(accuracy)