Commit
·
0f0e50a
1
Parent(s):
8f3bc4f
Remove local test files
Browse files- HuggingFaceFW_fineweb-edu_summary.json +0 -58
- basic-stats.py +0 -338
- stats_output/detailed_stats.parquet +0 -3
- stats_output/dump_stats.parquet +0 -3
- stats_output/extractor_stats.parquet +0 -3
- stats_output/global_stats.parquet +0 -3
- stats_output/language_stats.parquet +0 -3
- stats_output/temporal_stats.parquet +0 -3
HuggingFaceFW_fineweb-edu_summary.json
DELETED
|
@@ -1,58 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"dataset": "HuggingFaceFW/fineweb-edu",
|
| 3 |
-
"split": "train",
|
| 4 |
-
"text_column": "text",
|
| 5 |
-
"total_samples": 10,
|
| 6 |
-
"statistics": {
|
| 7 |
-
"character_count": {
|
| 8 |
-
"count": 10,
|
| 9 |
-
"mean": 3761.2,
|
| 10 |
-
"std": 2456.61,
|
| 11 |
-
"min": 396,
|
| 12 |
-
"max": 7966
|
| 13 |
-
},
|
| 14 |
-
"word_count": {
|
| 15 |
-
"count": 10,
|
| 16 |
-
"mean": 591.2,
|
| 17 |
-
"std": 385.27,
|
| 18 |
-
"min": 56,
|
| 19 |
-
"max": 1272
|
| 20 |
-
},
|
| 21 |
-
"line_count": {
|
| 22 |
-
"count": 10,
|
| 23 |
-
"mean": 31.2,
|
| 24 |
-
"std": 27.54,
|
| 25 |
-
"min": 2,
|
| 26 |
-
"max": 93
|
| 27 |
-
},
|
| 28 |
-
"sentence_count": {
|
| 29 |
-
"count": 10,
|
| 30 |
-
"mean": 25.7,
|
| 31 |
-
"std": 18.8,
|
| 32 |
-
"min": 5,
|
| 33 |
-
"max": 71
|
| 34 |
-
},
|
| 35 |
-
"mean_word_length": {
|
| 36 |
-
"count": 10,
|
| 37 |
-
"mean": 5.45,
|
| 38 |
-
"std": 0.46,
|
| 39 |
-
"min": 4.7,
|
| 40 |
-
"max": 6.09
|
| 41 |
-
}
|
| 42 |
-
},
|
| 43 |
-
"character_type_distribution": {
|
| 44 |
-
"alphanumeric": 0.8164,
|
| 45 |
-
"alphabetic": 0.8093,
|
| 46 |
-
"digit": 0.0071,
|
| 47 |
-
"uppercase": 0.0293,
|
| 48 |
-
"lowercase": 0.78,
|
| 49 |
-
"whitespace": 0.1554,
|
| 50 |
-
"punctuation": 0.0276,
|
| 51 |
-
"special": 0.0006
|
| 52 |
-
},
|
| 53 |
-
"derived_metrics": {
|
| 54 |
-
"avg_words_per_line": 18.95,
|
| 55 |
-
"avg_chars_per_word": 6.36,
|
| 56 |
-
"avg_words_per_sentence": 23.0
|
| 57 |
-
}
|
| 58 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
basic-stats.py
DELETED
|
@@ -1,338 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
# /// script
|
| 3 |
-
# requires-python = ">=3.10"
|
| 4 |
-
# dependencies = [
|
| 5 |
-
# "datasets",
|
| 6 |
-
# "huggingface-hub",
|
| 7 |
-
# "tqdm",
|
| 8 |
-
# ]
|
| 9 |
-
# ///
|
| 10 |
-
|
| 11 |
-
"""Calculate basic text statistics for HuggingFace datasets.
|
| 12 |
-
|
| 13 |
-
This script computes essential text statistics using pure Python (no ML models).
|
| 14 |
-
It uses streaming mode by default, so it works on datasets of any size without
|
| 15 |
-
downloading the full dataset.
|
| 16 |
-
|
| 17 |
-
Statistics calculated:
|
| 18 |
-
- Character, word, line, sentence counts (per sample and total)
|
| 19 |
-
- Streaming mean and standard deviation (Welford's algorithm)
|
| 20 |
-
- Character type distributions (alphanumeric, digits, punctuation, whitespace, special)
|
| 21 |
-
- Length statistics (min, max, approximate percentiles)
|
| 22 |
-
|
| 23 |
-
Examples:
|
| 24 |
-
# Quick test on 10k samples
|
| 25 |
-
uv run basic-stats.py HuggingFaceFW/fineweb-edu --max-samples 10000
|
| 26 |
-
|
| 27 |
-
# Full dataset statistics
|
| 28 |
-
uv run basic-stats.py allenai/c4 --split train
|
| 29 |
-
|
| 30 |
-
# Save per-sample statistics to CSV
|
| 31 |
-
uv run basic-stats.py username/dataset --per-sample --output-file stats.csv
|
| 32 |
-
|
| 33 |
-
# Use with HF Jobs (GPU not needed)
|
| 34 |
-
hf jobs uv run \
|
| 35 |
-
-e HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \
|
| 36 |
-
https://huggingface.co/datasets/uv-scripts/dataset-stats/raw/main/basic-stats.py \
|
| 37 |
-
username/large-dataset --max-samples 100000
|
| 38 |
-
|
| 39 |
-
Performance:
|
| 40 |
-
~10,000-50,000 samples/sec on CPU (depending on text length)
|
| 41 |
-
Pure Python, minimal memory usage (constant O(1) for streaming stats)
|
| 42 |
-
"""
|
| 43 |
-
|
| 44 |
-
import argparse
|
| 45 |
-
import json
|
| 46 |
-
import re
|
| 47 |
-
import string
|
| 48 |
-
import sys
|
| 49 |
-
from collections import defaultdict
|
| 50 |
-
from dataclasses import asdict, dataclass
|
| 51 |
-
from pathlib import Path
|
| 52 |
-
from typing import Optional
|
| 53 |
-
|
| 54 |
-
from datasets import load_dataset
|
| 55 |
-
from tqdm import tqdm
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
@dataclass
|
| 59 |
-
class StreamingStats:
|
| 60 |
-
"""Track streaming statistics using Welford's algorithm for numerical stability."""
|
| 61 |
-
|
| 62 |
-
count: int = 0
|
| 63 |
-
mean: float = 0.0
|
| 64 |
-
m2: float = 0.0 # Sum of squared differences from mean
|
| 65 |
-
min_val: float = float('inf')
|
| 66 |
-
max_val: float = float('-inf')
|
| 67 |
-
|
| 68 |
-
def update(self, value: float):
|
| 69 |
-
"""Update statistics with new value."""
|
| 70 |
-
self.count += 1
|
| 71 |
-
delta = value - self.mean
|
| 72 |
-
self.mean += delta / self.count
|
| 73 |
-
delta2 = value - self.mean
|
| 74 |
-
self.m2 += delta * delta2
|
| 75 |
-
self.min_val = min(self.min_val, value)
|
| 76 |
-
self.max_val = max(self.max_val, value)
|
| 77 |
-
|
| 78 |
-
@property
|
| 79 |
-
def variance(self) -> float:
|
| 80 |
-
"""Calculate variance."""
|
| 81 |
-
return self.m2 / self.count if self.count > 1 else 0.0
|
| 82 |
-
|
| 83 |
-
@property
|
| 84 |
-
def std(self) -> float:
|
| 85 |
-
"""Calculate standard deviation."""
|
| 86 |
-
return self.variance ** 0.5
|
| 87 |
-
|
| 88 |
-
def to_dict(self) -> dict:
|
| 89 |
-
"""Convert to dictionary for JSON output."""
|
| 90 |
-
return {
|
| 91 |
-
"count": self.count,
|
| 92 |
-
"mean": round(self.mean, 2),
|
| 93 |
-
"std": round(self.std, 2),
|
| 94 |
-
"min": round(self.min_val, 2),
|
| 95 |
-
"max": round(self.max_val, 2),
|
| 96 |
-
}
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
def count_sentences(text: str) -> int:
|
| 100 |
-
"""Count sentences using simple heuristic (. ! ?)."""
|
| 101 |
-
# Simple sentence boundary detection
|
| 102 |
-
sentence_endings = re.findall(r'[.!?]+', text)
|
| 103 |
-
return max(1, len(sentence_endings)) # At least 1 sentence
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
def calculate_char_type_distribution(text: str) -> dict:
|
| 107 |
-
"""Calculate distribution of character types."""
|
| 108 |
-
if not text:
|
| 109 |
-
return {
|
| 110 |
-
"alphanumeric": 0.0,
|
| 111 |
-
"alphabetic": 0.0,
|
| 112 |
-
"digit": 0.0,
|
| 113 |
-
"uppercase": 0.0,
|
| 114 |
-
"lowercase": 0.0,
|
| 115 |
-
"whitespace": 0.0,
|
| 116 |
-
"punctuation": 0.0,
|
| 117 |
-
"special": 0.0,
|
| 118 |
-
}
|
| 119 |
-
|
| 120 |
-
total_chars = len(text)
|
| 121 |
-
alpha_count = sum(1 for c in text if c.isalpha())
|
| 122 |
-
digit_count = sum(1 for c in text if c.isdigit())
|
| 123 |
-
upper_count = sum(1 for c in text if c.isupper())
|
| 124 |
-
lower_count = sum(1 for c in text if c.islower())
|
| 125 |
-
whitespace_count = sum(1 for c in text if c.isspace())
|
| 126 |
-
punct_count = sum(1 for c in text if c in string.punctuation)
|
| 127 |
-
|
| 128 |
-
return {
|
| 129 |
-
"alphanumeric": round((alpha_count + digit_count) / total_chars, 4),
|
| 130 |
-
"alphabetic": round(alpha_count / total_chars, 4),
|
| 131 |
-
"digit": round(digit_count / total_chars, 4),
|
| 132 |
-
"uppercase": round(upper_count / total_chars, 4) if alpha_count > 0 else 0.0,
|
| 133 |
-
"lowercase": round(lower_count / total_chars, 4) if alpha_count > 0 else 0.0,
|
| 134 |
-
"whitespace": round(whitespace_count / total_chars, 4),
|
| 135 |
-
"punctuation": round(punct_count / total_chars, 4),
|
| 136 |
-
"special": round((total_chars - alpha_count - digit_count - whitespace_count - punct_count) / total_chars, 4),
|
| 137 |
-
}
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
def calculate_basic_stats(text: str) -> dict:
|
| 141 |
-
"""Calculate basic statistics for a single text sample."""
|
| 142 |
-
if not text:
|
| 143 |
-
return {
|
| 144 |
-
"char_count": 0,
|
| 145 |
-
"word_count": 0,
|
| 146 |
-
"line_count": 0,
|
| 147 |
-
"sentence_count": 0,
|
| 148 |
-
"mean_word_length": 0.0,
|
| 149 |
-
}
|
| 150 |
-
|
| 151 |
-
char_count = len(text)
|
| 152 |
-
words = text.split()
|
| 153 |
-
word_count = len(words)
|
| 154 |
-
line_count = len(text.splitlines())
|
| 155 |
-
sentence_count = count_sentences(text)
|
| 156 |
-
mean_word_length = sum(len(w) for w in words) / word_count if word_count > 0 else 0.0
|
| 157 |
-
|
| 158 |
-
return {
|
| 159 |
-
"char_count": char_count,
|
| 160 |
-
"word_count": word_count,
|
| 161 |
-
"line_count": line_count,
|
| 162 |
-
"sentence_count": sentence_count,
|
| 163 |
-
"mean_word_length": round(mean_word_length, 2),
|
| 164 |
-
}
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
def main():
|
| 168 |
-
parser = argparse.ArgumentParser(
|
| 169 |
-
description="Calculate basic text statistics for HuggingFace datasets",
|
| 170 |
-
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 171 |
-
epilog=__doc__,
|
| 172 |
-
)
|
| 173 |
-
parser.add_argument(
|
| 174 |
-
"dataset",
|
| 175 |
-
help="Dataset name (e.g., 'HuggingFaceFW/fineweb-edu') or local path",
|
| 176 |
-
)
|
| 177 |
-
parser.add_argument(
|
| 178 |
-
"--split",
|
| 179 |
-
default="train",
|
| 180 |
-
help="Dataset split to process (default: train)",
|
| 181 |
-
)
|
| 182 |
-
parser.add_argument(
|
| 183 |
-
"--text-column",
|
| 184 |
-
default="text",
|
| 185 |
-
help="Name of the text column (default: text)",
|
| 186 |
-
)
|
| 187 |
-
parser.add_argument(
|
| 188 |
-
"--max-samples",
|
| 189 |
-
type=int,
|
| 190 |
-
help="Maximum number of samples to process (for testing)",
|
| 191 |
-
)
|
| 192 |
-
parser.add_argument(
|
| 193 |
-
"--per-sample",
|
| 194 |
-
action="store_true",
|
| 195 |
-
help="Save per-sample statistics to CSV file",
|
| 196 |
-
)
|
| 197 |
-
parser.add_argument(
|
| 198 |
-
"--output-file",
|
| 199 |
-
help="Output file for per-sample stats (default: dataset-stats.csv)",
|
| 200 |
-
)
|
| 201 |
-
parser.add_argument(
|
| 202 |
-
"--streaming",
|
| 203 |
-
action="store_true",
|
| 204 |
-
default=True,
|
| 205 |
-
help="Use streaming mode (default: True)",
|
| 206 |
-
)
|
| 207 |
-
|
| 208 |
-
args = parser.parse_args()
|
| 209 |
-
|
| 210 |
-
# Load dataset in streaming mode
|
| 211 |
-
print(f"Loading dataset: {args.dataset} (split: {args.split})")
|
| 212 |
-
print(f"Streaming mode: {args.streaming}")
|
| 213 |
-
|
| 214 |
-
try:
|
| 215 |
-
dataset = load_dataset(
|
| 216 |
-
args.dataset,
|
| 217 |
-
split=args.split,
|
| 218 |
-
streaming=args.streaming,
|
| 219 |
-
)
|
| 220 |
-
except Exception as e:
|
| 221 |
-
print(f"Error loading dataset: {e}")
|
| 222 |
-
sys.exit(1)
|
| 223 |
-
|
| 224 |
-
# Check if text column exists
|
| 225 |
-
if args.text_column not in dataset.column_names:
|
| 226 |
-
print(f"Error: Column '{args.text_column}' not found in dataset.")
|
| 227 |
-
print(f"Available columns: {dataset.column_names}")
|
| 228 |
-
sys.exit(1)
|
| 229 |
-
|
| 230 |
-
# Initialize streaming statistics
|
| 231 |
-
char_stats = StreamingStats()
|
| 232 |
-
word_stats = StreamingStats()
|
| 233 |
-
line_stats = StreamingStats()
|
| 234 |
-
sentence_stats = StreamingStats()
|
| 235 |
-
word_length_stats = StreamingStats()
|
| 236 |
-
|
| 237 |
-
# Character type distribution accumulator
|
| 238 |
-
char_type_totals = defaultdict(float)
|
| 239 |
-
|
| 240 |
-
# For per-sample output
|
| 241 |
-
per_sample_data = []
|
| 242 |
-
|
| 243 |
-
# Process dataset
|
| 244 |
-
total_samples = args.max_samples if args.max_samples else "unknown"
|
| 245 |
-
with tqdm(total=args.max_samples, desc="Processing samples") as pbar:
|
| 246 |
-
for i, sample in enumerate(dataset):
|
| 247 |
-
if args.max_samples and i >= args.max_samples:
|
| 248 |
-
break
|
| 249 |
-
|
| 250 |
-
text = sample[args.text_column]
|
| 251 |
-
|
| 252 |
-
# Calculate stats for this sample
|
| 253 |
-
stats = calculate_basic_stats(text)
|
| 254 |
-
char_dist = calculate_char_type_distribution(text)
|
| 255 |
-
|
| 256 |
-
# Update streaming statistics
|
| 257 |
-
char_stats.update(stats["char_count"])
|
| 258 |
-
word_stats.update(stats["word_count"])
|
| 259 |
-
line_stats.update(stats["line_count"])
|
| 260 |
-
sentence_stats.update(stats["sentence_count"])
|
| 261 |
-
word_length_stats.update(stats["mean_word_length"])
|
| 262 |
-
|
| 263 |
-
# Accumulate character type distributions
|
| 264 |
-
for key, value in char_dist.items():
|
| 265 |
-
char_type_totals[key] += value
|
| 266 |
-
|
| 267 |
-
# Store per-sample data if requested
|
| 268 |
-
if args.per_sample:
|
| 269 |
-
sample_data = {**stats, **char_dist}
|
| 270 |
-
per_sample_data.append(sample_data)
|
| 271 |
-
|
| 272 |
-
pbar.update(1)
|
| 273 |
-
|
| 274 |
-
# Calculate final statistics
|
| 275 |
-
num_samples = char_stats.count
|
| 276 |
-
|
| 277 |
-
if num_samples == 0:
|
| 278 |
-
print("No samples processed!")
|
| 279 |
-
sys.exit(1)
|
| 280 |
-
|
| 281 |
-
# Average character type distributions
|
| 282 |
-
char_type_means = {
|
| 283 |
-
key: round(value / num_samples, 4)
|
| 284 |
-
for key, value in char_type_totals.items()
|
| 285 |
-
}
|
| 286 |
-
|
| 287 |
-
# Create summary report
|
| 288 |
-
summary = {
|
| 289 |
-
"dataset": args.dataset,
|
| 290 |
-
"split": args.split,
|
| 291 |
-
"text_column": args.text_column,
|
| 292 |
-
"total_samples": num_samples,
|
| 293 |
-
"statistics": {
|
| 294 |
-
"character_count": char_stats.to_dict(),
|
| 295 |
-
"word_count": word_stats.to_dict(),
|
| 296 |
-
"line_count": line_stats.to_dict(),
|
| 297 |
-
"sentence_count": sentence_stats.to_dict(),
|
| 298 |
-
"mean_word_length": word_length_stats.to_dict(),
|
| 299 |
-
},
|
| 300 |
-
"character_type_distribution": char_type_means,
|
| 301 |
-
"derived_metrics": {
|
| 302 |
-
"avg_words_per_line": round(word_stats.mean / line_stats.mean, 2) if line_stats.mean > 0 else 0.0,
|
| 303 |
-
"avg_chars_per_word": round(char_stats.mean / word_stats.mean, 2) if word_stats.mean > 0 else 0.0,
|
| 304 |
-
"avg_words_per_sentence": round(word_stats.mean / sentence_stats.mean, 2) if sentence_stats.mean > 0 else 0.0,
|
| 305 |
-
}
|
| 306 |
-
}
|
| 307 |
-
|
| 308 |
-
# Print summary
|
| 309 |
-
print("\n" + "="*60)
|
| 310 |
-
print("BASIC TEXT STATISTICS SUMMARY")
|
| 311 |
-
print("="*60)
|
| 312 |
-
print(json.dumps(summary, indent=2))
|
| 313 |
-
|
| 314 |
-
# Save per-sample data if requested
|
| 315 |
-
if args.per_sample:
|
| 316 |
-
output_file = args.output_file or f"{args.dataset.replace('/', '_')}_stats.csv"
|
| 317 |
-
|
| 318 |
-
# Save as CSV
|
| 319 |
-
import csv
|
| 320 |
-
|
| 321 |
-
if per_sample_data:
|
| 322 |
-
with open(output_file, 'w', newline='') as f:
|
| 323 |
-
writer = csv.DictWriter(f, fieldnames=per_sample_data[0].keys())
|
| 324 |
-
writer.writeheader()
|
| 325 |
-
writer.writerows(per_sample_data)
|
| 326 |
-
|
| 327 |
-
print(f"\nPer-sample statistics saved to: {output_file}")
|
| 328 |
-
|
| 329 |
-
# Save summary as JSON
|
| 330 |
-
summary_file = f"{args.dataset.replace('/', '_')}_summary.json"
|
| 331 |
-
with open(summary_file, 'w') as f:
|
| 332 |
-
json.dump(summary, f, indent=2)
|
| 333 |
-
|
| 334 |
-
print(f"Summary saved to: {summary_file}")
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
if __name__ == "__main__":
|
| 338 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stats_output/detailed_stats.parquet
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:40d8da68fd7af8ed27f28a7c2c7ff218e818dfd217a7c13ac99abcb032090a1d
|
| 3 |
-
size 9770
|
|
|
|
|
|
|
|
|
|
|
|
stats_output/dump_stats.parquet
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:a14fac91a0776f89c406e662aede9fc73535df26c9de0dbe3edbec16895f4db7
|
| 3 |
-
size 3879
|
|
|
|
|
|
|
|
|
|
|
|
stats_output/extractor_stats.parquet
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:7c26882ae83e18b22cd4538962a938216d90d49a85b5aad9f7a70dc12844c1b6
|
| 3 |
-
size 2770
|
|
|
|
|
|
|
|
|
|
|
|
stats_output/global_stats.parquet
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:278ea6044f2d1d39fffb5a20afc248227d4870d5c397b97dcee0e4e14443c0da
|
| 3 |
-
size 1936
|
|
|
|
|
|
|
|
|
|
|
|
stats_output/language_stats.parquet
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:619cc9e3e61a5b37a17b7b5cd3f073af1c7c781e1a591a67e85b0513e8caf3c4
|
| 3 |
-
size 4021
|
|
|
|
|
|
|
|
|
|
|
|
stats_output/temporal_stats.parquet
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:f1c643f4eff59c20344fd68c8a53b7f87f6d5df828f1eb7635c4943f8420df06
|
| 3 |
-
size 3994
|
|
|
|
|
|
|
|
|
|
|
|