davanstrien HF Staff commited on
Commit
9701750
·
1 Parent(s): 789f1a5

Add long-context PDF extraction script

Browse files
Files changed (1) hide show
  1. long-context-pdfs.py +136 -0
long-context-pdfs.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # /// script
2
+ # requires-python = ">=3.10"
3
+ # dependencies = [
4
+ # "polars",
5
+ # "datasets",
6
+ # ]
7
+ # ///
8
+ """
9
+ Extract long-context, high-quality PDFs from finepdfs.
10
+
11
+ Creates a curated subset of long documents with high OCR quality -
12
+ useful for long-context model training.
13
+
14
+ Examples:
15
+ # Quick test (Welsh)
16
+ uv run long-context-pdfs.py --lang cym_Latn --limit 100
17
+
18
+ # English long docs
19
+ uv run long-context-pdfs.py --lang eng_Latn --output user/finepdfs-eng-long
20
+
21
+ # All Latin scripts
22
+ uv run long-context-pdfs.py --lang "*_Latn" --output user/finepdfs-long-context
23
+
24
+ # HF Jobs
25
+ hf jobs run uv --flavor cpu-basic -- run \\
26
+ https://huggingface.co/.../long-context-pdfs.py \\
27
+ --lang eng_Latn --output user/finepdfs-eng-long
28
+ """
29
+
30
+ import argparse
31
+ import polars as pl
32
+ from datasets import Dataset
33
+
34
+
35
+ def polars_to_generator(lf: pl.LazyFrame):
36
+ """Stream LazyFrame as row generator."""
37
+ for batch_df in lf.collect_batches():
38
+ yield from batch_df.iter_rows(named=True)
39
+
40
+
41
+ def main():
42
+ parser = argparse.ArgumentParser(description="Extract long-context high-quality PDFs")
43
+ parser.add_argument("--lang", type=str, default="cym_Latn",
44
+ help="Language code or glob pattern (default: cym_Latn, use '*_Latn' for all Latin)")
45
+ parser.add_argument("--min-tokens", type=int, default=10000,
46
+ help="Minimum token count (default: 10000)")
47
+ parser.add_argument("--min-lid-score", type=float, default=0.8,
48
+ help="Minimum language ID score (default: 0.8)")
49
+ parser.add_argument("--limit", type=int, help="Limit rows")
50
+ parser.add_argument("--output", type=str, help="Output dataset repo")
51
+ parser.add_argument("--private", action="store_true")
52
+
53
+ args = parser.parse_args()
54
+
55
+ source = f"hf://datasets/HuggingFaceFW/finepdfs/data/{args.lang}/train/*.parquet"
56
+
57
+ print("=" * 60)
58
+ print("Long-Context High-Quality PDF Extraction")
59
+ print("=" * 60)
60
+ print(f"Source: {source}")
61
+ print(f"Filters:")
62
+ print(f" - token_count >= {args.min_tokens}")
63
+ print(f" - page_average_lid_score >= {args.min_lid_score}")
64
+ print(f" - extractor == 'docling'")
65
+ if args.limit:
66
+ print(f" - limit: {args.limit}")
67
+ print("=" * 60)
68
+
69
+ # Build query - simpler filters first, OCR quality filter can be tricky
70
+ lf = (
71
+ pl.scan_parquet(source)
72
+ .filter(
73
+ (pl.col("token_count") >= args.min_tokens)
74
+ & (pl.col("page_average_lid_score") >= args.min_lid_score)
75
+ & (pl.col("extractor") == "docling")
76
+ )
77
+ .select([
78
+ "id",
79
+ "url",
80
+ "text",
81
+ "language",
82
+ "token_count",
83
+ "dump",
84
+ "page_average_lid_score",
85
+ ])
86
+ )
87
+
88
+ if args.limit:
89
+ lf = lf.limit(args.limit)
90
+
91
+ # Preview
92
+ print("\nPreviewing...")
93
+ preview = lf.limit(5).collect()
94
+ print(f"Sample rows: {len(preview)}")
95
+ if len(preview) > 0:
96
+ print(preview.select(["language", "token_count", "page_average_lid_score"]))
97
+ else:
98
+ print("No rows matched! Try lowering thresholds.")
99
+ return
100
+
101
+ if not args.output:
102
+ print("\nNo --output specified. Use --output to push to Hub.")
103
+ return
104
+
105
+ # Rebuild query for streaming
106
+ lf = (
107
+ pl.scan_parquet(source)
108
+ .filter(
109
+ (pl.col("token_count") >= args.min_tokens)
110
+ & (pl.col("page_average_lid_score") >= args.min_lid_score)
111
+ & (pl.col("extractor") == "docling")
112
+ )
113
+ .select([
114
+ "id",
115
+ "url",
116
+ "text",
117
+ "language",
118
+ "token_count",
119
+ "dump",
120
+ "page_average_lid_score",
121
+ ])
122
+ )
123
+ if args.limit:
124
+ lf = lf.limit(args.limit)
125
+
126
+ print(f"\nStreaming to dataset...")
127
+ ds = Dataset.from_generator(lambda: polars_to_generator(lf))
128
+ print(f"Created dataset with {len(ds)} rows")
129
+
130
+ print(f"\nPushing to {args.output}...")
131
+ ds.push_to_hub(args.output, private=args.private)
132
+ print(f"\nDone! https://huggingface.co/datasets/{args.output}")
133
+
134
+
135
+ if __name__ == "__main__":
136
+ main()