# /// script # requires-python = ">=3.12" # dependencies = [ # "polars>=1.31.0", # "huggingface-hub", # "datasets", # "ascii-graph", # ] # /// """ Analyze educational quality trends across CommonCrawl dumps using Polars streaming. Answers: "Is the web getting more educational over time?" Demonstrates Polars HF Hub integration - process 50M+ docs without downloading 300GB+. Example usage: # Analyze English PDFs (default) uv run finepdfs-stats.py # Analyze all 70+ languages uv run finepdfs-stats.py --all-languages # Quick test uv run finepdfs-stats.py --limit 10000 --show-plan # Save results to HF Hub uv run finepdfs-stats.py --output-repo username/finepdfs-temporal-stats # Run on HF Jobs hf jobs uv run \\ -s HF_TOKEN \\ -e HF_XET_HIGH_PERFORMANCE=1 \\ https://huggingface.co/datasets/uv-scripts/dataset-stats/raw/main/finepdfs-stats.py \\ -- --output-repo username/stats """ import argparse import logging import os import sys import time from pathlib import Path import polars as pl from ascii_graph import Pyasciigraph from datasets import Dataset from huggingface_hub import HfApi, create_repo, list_repo_tree, login logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" ) logger = logging.getLogger(__name__) # Common language+script codes for finepdfs-edu COMMON_LANGUAGES = { "eng_Latn": "English (Latin script)", "fra_Latn": "French (Latin script)", "deu_Latn": "German (Latin script)", "spa_Latn": "Spanish (Latin script)", "por_Latn": "Portuguese (Latin script)", "ita_Latn": "Italian (Latin script)", "nld_Latn": "Dutch (Latin script)", "pol_Latn": "Polish (Latin script)", "rus_Cyrl": "Russian (Cyrillic script)", "zho_Hans": "Chinese (Simplified)", "zho_Hant": "Chinese (Traditional)", "jpn_Jpan": "Japanese", "kor_Hang": "Korean", "ara_Arab": "Arabic", "hin_Deva": "Hindi (Devanagari)", } def list_available_languages(dataset_id: str) -> list[str]: """List available language subsets in the dataset.""" try: tree = list_repo_tree(dataset_id, path_in_repo="data", repo_type="dataset") languages = [ item.path.replace("data/", "") for item in tree if item.path.startswith("data/") and "/" not in item.path.replace("data/", "") ] return sorted(languages) except Exception as e: logger.warning(f"Could not list languages: {e}") return list(COMMON_LANGUAGES.keys()) def compute_temporal_stats(df: pl.LazyFrame, output_path: Path) -> pl.DataFrame: """Single scan: compute stats grouped by dump for temporal analysis.""" query = df.group_by("dump").agg( pl.len().alias("doc_count"), pl.col("token_count").sum().alias("total_tokens"), pl.col("fw_edu_scores").list.mean().mean().alias("avg_edu_score"), (pl.col("fw_edu_scores").list.mean() >= 3).sum().alias("high_edu_count"), ) query.sink_parquet(output_path, engine="streaming") return pl.read_parquet(output_path) def compute_global_stats(temporal: pl.DataFrame) -> pl.DataFrame: """Compute global stats from temporal breakdown.""" total = temporal["doc_count"].sum() return pl.DataFrame( { "total_docs": [total], "total_tokens": [temporal["total_tokens"].sum()], "avg_edu_score": [ (temporal["avg_edu_score"] * temporal["doc_count"]).sum() / total ], "high_edu_rate": [temporal["high_edu_count"].sum() / total], "num_dumps": [len(temporal)], } ) def format_temporal_stats(temporal: pl.DataFrame) -> pl.DataFrame: """Format temporal stats with high_edu_rate, sorted chronologically.""" return ( temporal.with_columns( (pl.col("high_edu_count") / pl.col("doc_count")).alias("high_edu_rate") ) .select(["dump", "doc_count", "avg_edu_score", "high_edu_rate"]) .sort( "dump" ) # Chronological order (CC-MAIN-2017-xx comes before CC-MAIN-2024-xx) ) def create_ascii_charts(temporal_stats: pl.DataFrame) -> str: """Create ASCII bar charts showing temporal trends.""" # Extract year from dump name (CC-MAIN-2024-42 -> 2024) # Group by year and average the values for cleaner display yearly = ( temporal_stats.with_columns( pl.col("dump").str.extract(r"CC-MAIN-(\d{4})", 1).alias("year") ) .group_by("year") .agg( pl.col("doc_count").sum(), pl.col("avg_edu_score").mean(), pl.col("high_edu_rate").mean(), ) .sort("year") ) lines = [] # High edu rate chart (more dramatic differences) data_rate = [ (row["year"], row["high_edu_rate"] * 100) for row in yearly.iter_rows(named=True) ] graph = Pyasciigraph(line_length=60, float_format="{0:.1f}%") lines.extend(graph.graph("High Educational Content (edu >= 3)", data_rate)) lines.append("") # Avg edu score chart data_score = [ (row["year"], row["avg_edu_score"]) for row in yearly.iter_rows(named=True) ] graph2 = Pyasciigraph(line_length=60, float_format="{0:.2f}") lines.extend(graph2.graph("Average Educational Score", data_score)) return "\n".join(lines) def create_readme( args, global_stats: pl.DataFrame, temporal_stats: pl.DataFrame, scan_time: float, ascii_charts: str, ) -> str: """Create README content for the stats dataset.""" stats = global_stats.to_dicts()[0] total_docs = stats.get("total_docs", 0) docs_per_sec = total_docs / scan_time if scan_time > 0 else 0 # Get first and last year averages for trend (more representative than single dumps) yearly = ( temporal_stats.with_columns( pl.col("dump").str.extract(r"CC-MAIN-(\d{4})", 1).alias("year") ) .group_by("year") .agg( pl.col("doc_count").sum(), pl.col("avg_edu_score").mean(), pl.col("high_edu_rate").mean(), ) .sort("year") ) first_year = yearly.head(1).to_dicts()[0] last_year = yearly.tail(1).to_dicts()[0] scope = ( "all languages" if args.all_languages else COMMON_LANGUAGES.get(args.lang, args.lang) ) return f"""--- tags: - uv-script - statistics - polars - finepdfs-edu - temporal-analysis license: odc-by configs: - config_name: global_stats data_files: global_stats/train-*.parquet - config_name: temporal_stats data_files: temporal_stats/train-*.parquet default_viewer_config: temporal_stats --- # Is the Web Getting More Educational? Temporal analysis of educational quality in **{scope}** across {stats.get("num_dumps", 0)} CommonCrawl dumps. ## Trend ``` {ascii_charts} ``` ## Key Finding | Year | Avg Edu Score | High Edu Rate | |------|---------------|---------------| | {first_year["year"]} | {first_year["avg_edu_score"]:.2f} | {first_year["high_edu_rate"] * 100:.1f}% | | {last_year["year"]} | {last_year["avg_edu_score"]:.2f} | {last_year["high_edu_rate"] * 100:.1f}% | ## Performance - **{total_docs:,} documents** processed in **{scan_time:.0f} seconds** - **{docs_per_sec:,.0f} docs/sec** using Polars streaming - Single scan, no full dataset download required ## Summary | Metric | Value | |--------|-------| | Scope | {scope} | | Total Documents | {total_docs:,} | | Total Tokens | {stats.get("total_tokens", 0):,} | | Avg Edu Score | {stats.get("avg_edu_score", 0):.3f} | | High Edu Rate | {stats.get("high_edu_rate", 0) * 100:.1f}% | | CommonCrawl Dumps | {stats.get("num_dumps", 0)} | ## Files - `global_stats` - Overall summary - `temporal_stats` - Per-dump breakdown (sorted chronologically) ## Reproduce ```bash uv run https://huggingface.co/datasets/uv-scripts/dataset-stats/raw/main/finepdfs-stats.py \\ {"--all-languages" if args.all_languages else f"--lang {args.lang}"} --output-repo your-username/stats ``` ## Source - **Dataset**: [{args.source_dataset}](https://huggingface.co/datasets/{args.source_dataset}) - **Script**: [uv-scripts/dataset-stats](https://huggingface.co/datasets/uv-scripts/dataset-stats) """ def main(): parser = argparse.ArgumentParser( description="Analyze educational quality trends across CommonCrawl dumps", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=__doc__, ) parser.add_argument( "--source-dataset", type=str, default="HuggingFaceFW/finepdfs-edu", help="Source dataset (default: HuggingFaceFW/finepdfs-edu)", ) parser.add_argument( "--lang", type=str, default="eng_Latn", help="Language+script code (default: eng_Latn)", ) parser.add_argument( "--all-languages", action="store_true", help="Analyze all languages (70+) instead of single language", ) parser.add_argument( "--show-plan", action="store_true", help="Show Polars query plan (demonstrates optimization)", ) parser.add_argument( "--list-languages", action="store_true", help="List available languages and exit", ) parser.add_argument( "--limit", type=int, help="Limit to first N rows (for testing)", ) parser.add_argument( "--output-repo", type=str, help="HuggingFace dataset repository to upload results", ) parser.add_argument( "--output-dir", type=str, default="./stats_output", help="Local directory for output files", ) parser.add_argument( "--hf-token", type=str, help="HuggingFace API token (or set HF_TOKEN env var)", ) parser.add_argument( "--private", action="store_true", help="Make the output dataset private", ) args = parser.parse_args() # Check for high-performance mode if os.environ.get("HF_XET_HIGH_PERFORMANCE"): logger.info("High-performance mode enabled (HF_XET_HIGH_PERFORMANCE=1)") # List languages mode if args.list_languages: print(f"Available language+script codes for {args.source_dataset}:\n") print("Common languages:") for code, name in COMMON_LANGUAGES.items(): print(f" {code:12} - {name}") print("\nFetching full list from HF Hub...") all_langs = list_available_languages(args.source_dataset) print(f"\nAll available ({len(all_langs)} total):") for lang in all_langs[:30]: # Show first 30 name = COMMON_LANGUAGES.get(lang, "") print(f" {lang:12} {name}") if len(all_langs) > 30: print(f" ... and {len(all_langs) - 30} more") sys.exit(0) # Build the parquet path if args.all_languages: source_path = f"hf://datasets/{args.source_dataset}/data/*/train/*.parquet" scope_desc = "all languages" else: source_path = ( f"hf://datasets/{args.source_dataset}/data/{args.lang}/train/*.parquet" ) scope_desc = f"{args.lang} ({COMMON_LANGUAGES.get(args.lang, 'unknown')})" logger.info(f"Scanning: {source_path}") logger.info(f"Scope: {scope_desc}") # Create lazy frame - this doesn't load any data yet! logger.info("Creating lazy query plan...") df = pl.scan_parquet(source_path) # Apply limit if specified if args.limit: logger.info(f"Limiting to first {args.limit:,} rows") df = df.head(args.limit) # Show query plan if requested if args.show_plan: # Build a sample query to show the plan sample_query = df.select( pl.len(), pl.col("token_count").sum(), pl.col("language").n_unique(), ) print("\nQuery Plan (showing Polars optimization):") print("=" * 60) print(sample_query.explain()) print("=" * 60) print("\nNote: Polars uses projection pushdown - only reads columns needed!") print("The 'text' column is never loaded, making this very fast.\n") # Create output directory output_dir = Path(args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) # Single scan: compute temporal stats logger.info("Computing temporal stats (single scan)...") start = time.perf_counter() temporal_path = output_dir / "temporal_stats.parquet" temporal_raw = compute_temporal_stats(df, temporal_path) scan_time = time.perf_counter() - start logger.info(f"Scan complete in {scan_time:.2f}s - {len(temporal_raw)} dumps") # Compute stats global_stats = compute_global_stats(temporal_raw) temporal_stats = format_temporal_stats(temporal_raw) # Save global_stats.write_parquet(output_dir / "global_stats.parquet") temporal_stats.write_parquet(output_dir / "temporal_stats.parquet") # Print results total_docs = global_stats["total_docs"][0] docs_per_sec = total_docs / scan_time if scan_time > 0 else 0 print("\n" + "=" * 70) print("IS THE WEB GETTING MORE EDUCATIONAL?") print("=" * 70) print(f"\nScope: {scope_desc}") print(f"Dataset: {args.source_dataset}") print("\n" + "-" * 70) print("GLOBAL STATS") print("-" * 70) print(global_stats) print("\n" + "-" * 70) print(f"TEMPORAL TREND ({len(temporal_stats)} CommonCrawl dumps)") print("-" * 70) # Show first 5 and last 5 if len(temporal_stats) > 10: print("Earliest dumps:") print(temporal_stats.head(5)) print("\n...") print("\nLatest dumps:") print(temporal_stats.tail(5)) else: print(temporal_stats) # Create ASCII charts ascii_charts = create_ascii_charts(temporal_stats) print("\n" + "-" * 70) print("TREND VISUALIZATION") print("-" * 70) print(ascii_charts) print("\n" + "-" * 70) print("PERFORMANCE") print("-" * 70) print(f"Scan time: {scan_time:.2f}s") print(f"Documents: {total_docs:,}") print(f"Throughput: {docs_per_sec:,.0f} docs/sec") logger.info(f"Results saved to: {output_dir}") # Upload to HF Hub if requested if args.output_repo: hf_token = args.hf_token or os.environ.get("HF_TOKEN") if hf_token: login(token=hf_token) api = HfApi(token=hf_token) logger.info(f"Creating/updating dataset repository: {args.output_repo}") create_repo( args.output_repo, repo_type="dataset", private=args.private, token=hf_token, exist_ok=True, ) # Upload each as a dataset config configs = [ ("global_stats", global_stats), ("temporal_stats", temporal_stats), ] for config_name, stats_df in configs: logger.info(f"Uploading {config_name}...") ds = Dataset.from_polars(stats_df) ds.push_to_hub( args.output_repo, config_name=config_name, token=hf_token, private=args.private, ) time.sleep(1) # Avoid 409 conflicts # Upload README readme_content = create_readme( args, global_stats, temporal_stats, scan_time, ascii_charts ) api.upload_file( path_or_fileobj=readme_content.encode(), path_in_repo="README.md", repo_id=args.output_repo, repo_type="dataset", token=hf_token, ) dataset_url = f"https://huggingface.co/datasets/{args.output_repo}" logger.info(f"Dataset uploaded: {dataset_url}") print(f"\nResults uploaded to: {dataset_url}") if __name__ == "__main__": if len(sys.argv) == 1: print("Is the Web Getting More Educational?") print("=" * 40) print("\nAnalyze educational quality trends across CommonCrawl dumps") print("using Polars streaming - no download needed!\n") print("Example commands:\n") print("# Quick test:") print("uv run finepdfs-stats.py --limit 10000\n") print("# Analyze English PDFs:") print("uv run finepdfs-stats.py\n") print("# Analyze ALL 70+ languages:") print("uv run finepdfs-stats.py --all-languages\n") print("# Show query plan (see Polars optimization):") print("uv run finepdfs-stats.py --show-plan --limit 1000\n") print("# Save results to HF Hub:") print("uv run finepdfs-stats.py --output-repo username/temporal-stats\n") print("# Run on HF Jobs:") print("hf jobs uv run \\") print(" -s HF_TOKEN \\") print(" -e HF_XET_HIGH_PERFORMANCE=1 \\") print( " https://huggingface.co/datasets/uv-scripts/dataset-stats/raw/main/finepdfs-stats.py \\" ) print(" -- --output-repo username/stats") sys.exit(0) main()