# /// script # requires-python = ">=3.10" # dependencies = [ # "polars>=1.0", # "datasets", # ] # /// """ Extract long-context, high-quality PDFs from finepdfs. Creates a curated subset of long documents with high OCR quality - useful for long-context model training. Examples: # Quick test (Welsh) uv run long-context-pdfs.py --lang cym_Latn --limit 100 # English long docs uv run long-context-pdfs.py --lang eng_Latn --output user/finepdfs-eng-long # All Latin scripts uv run long-context-pdfs.py --lang "*_Latn" --output user/finepdfs-long-context # HF Jobs (memory-efficient with small chunk size) hf jobs uv run \\ -s HF_TOKEN \\ https://huggingface.co/datasets/uv-scripts/dataset-stats/raw/main/long-context-pdfs.py \\ -- --lang eng_Latn --output user/finepdfs-eng-long """ import argparse import tempfile from pathlib import Path import polars as pl from datasets import Dataset def main(): parser = argparse.ArgumentParser( description="Extract long-context high-quality PDFs" ) parser.add_argument( "--lang", type=str, default="cym_Latn", help="Language code or glob pattern (default: cym_Latn, use '*_Latn' for all Latin)", ) parser.add_argument( "--min-tokens", type=int, default=10000, help="Minimum token count (default: 10000)", ) parser.add_argument( "--min-lid-score", type=float, default=0.8, help="Minimum language ID score (default: 0.8)", ) parser.add_argument("--limit", type=int, help="Limit rows") parser.add_argument("--output", type=str, help="Output dataset repo") parser.add_argument("--private", action="store_true") args = parser.parse_args() source = f"hf://datasets/HuggingFaceFW/finepdfs/data/{args.lang}/train/*.parquet" print("=" * 60) print("Long-Context High-Quality PDF Extraction") print("=" * 60) print(f"Source: {source}") print("Filters:") print(f" - token_count >= {args.min_tokens}") print(f" - page_average_lid_score >= {args.min_lid_score}") print(" - extractor == 'docling'") if args.limit: print(f" - limit: {args.limit}") print("=" * 60) # Build query - simpler filters first, OCR quality filter can be tricky lf = ( pl.scan_parquet(source) .filter( (pl.col("token_count") >= args.min_tokens) & (pl.col("page_average_lid_score") >= args.min_lid_score) & (pl.col("extractor") == "docling") ) .select( [ "id", "url", "text", "language", "token_count", "dump", "page_average_lid_score", ] ) ) if args.limit: lf = lf.limit(args.limit) # Preview print("\nPreviewing...") preview = lf.limit(5).collect() print(f"Sample rows: {len(preview)}") if len(preview) > 0: print(preview.select(["language", "token_count", "page_average_lid_score"])) else: print("No rows matched! Try lowering thresholds.") return if not args.output: print("\nNo --output specified. Use --output to push to Hub.") return # Rebuild query for streaming to parquet lf = ( pl.scan_parquet(source) .filter( (pl.col("token_count") >= args.min_tokens) & (pl.col("page_average_lid_score") >= args.min_lid_score) & (pl.col("extractor") == "docling") ) .select( [ "id", "url", "text", "language", "token_count", "dump", "page_average_lid_score", ] ) ) if args.limit: lf = lf.limit(args.limit) # Use sink_parquet for true streaming (minimal memory) with tempfile.TemporaryDirectory() as tmpdir: output_path = Path(tmpdir) / "data.parquet" print("\nStreaming to parquet (sink_parquet)...") lf.sink_parquet(output_path) print(f"\nLoading parquet and pushing to {args.output}...") ds = Dataset.from_parquet(str(output_path)) print(f"Dataset: {len(ds)} rows") ds.push_to_hub(args.output, private=args.private) print(f"\nDone! https://huggingface.co/datasets/{args.output}") if __name__ == "__main__": main()