Update README.md
Browse files
README.md
CHANGED
|
@@ -41,4 +41,121 @@ This is an INT4 quantized version of [SmolLM3-3B](https://huggingface.co/Hugging
|
|
| 41 |
### Quantization Process
|
| 42 |
```python
|
| 43 |
# Quantized using OpenVINO NNCF
|
| 44 |
-
# INT4 symmetric quantization
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
### Quantization Process
|
| 42 |
```python
|
| 43 |
# Quantized using OpenVINO NNCF
|
| 44 |
+
# INT4 symmetric quantization
|
| 45 |
+
# Calibration dataset: [specify if used]
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
### Model Architecture
|
| 49 |
+
- Same architecture as SmolLM3-3B
|
| 50 |
+
- GQA and NoPE preserved
|
| 51 |
+
- 64k context support (128k with YARN)
|
| 52 |
+
- Multilingual capabilities maintained
|
| 53 |
+
|
| 54 |
+
## 📊 Performance (Experimental)
|
| 55 |
+
|
| 56 |
+
> ⚠️ **Note:** This is an experimental quantization. Formal benchmarks pending.
|
| 57 |
+
|
| 58 |
+
Expected characteristics:
|
| 59 |
+
- **Model Size:** ~1GB (vs ~6GB fp16)
|
| 60 |
+
- **Inference Speed:** 2-4x faster on CPU
|
| 61 |
+
- **Quality Trade-off:** Minor degradation expected
|
| 62 |
+
|
| 63 |
+
## 🛠️ How to Use
|
| 64 |
+
|
| 65 |
+
### Installation
|
| 66 |
+
```bash
|
| 67 |
+
pip install optimum[openvino] transformers
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
### Basic Usage
|
| 71 |
+
```python
|
| 72 |
+
from optimum.intel import OVModelForCausalLM
|
| 73 |
+
from transformers import AutoTokenizer
|
| 74 |
+
|
| 75 |
+
model_id = "dev-bjoern/smollm3-int4-ov"
|
| 76 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 77 |
+
model = OVModelForCausalLM.from_pretrained(model_id)
|
| 78 |
+
|
| 79 |
+
# Generate text
|
| 80 |
+
prompt = "Explain quantum computing in simple terms"
|
| 81 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 82 |
+
outputs = model.generate(**inputs, max_new_tokens=100)
|
| 83 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
### With Extended Thinking
|
| 87 |
+
```python
|
| 88 |
+
messages = [
|
| 89 |
+
{"role": "system", "content": "/think"},
|
| 90 |
+
{"role": "user", "content": "Solve this step by step: 25 * 16"}
|
| 91 |
+
]
|
| 92 |
+
|
| 93 |
+
text = tokenizer.apply_chat_template(
|
| 94 |
+
messages,
|
| 95 |
+
tokenize=False,
|
| 96 |
+
add_generation_prompt=True
|
| 97 |
+
)
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
## 🎯 Intended Use
|
| 101 |
+
|
| 102 |
+
- **Edge AI applications**
|
| 103 |
+
- **Local LLM deployment**
|
| 104 |
+
- **Resource-constrained environments**
|
| 105 |
+
- **Privacy-focused applications**
|
| 106 |
+
- **Offline AI assistants**
|
| 107 |
+
|
| 108 |
+
## ⚡ Optimization Tips
|
| 109 |
+
|
| 110 |
+
1. **CPU Inference:** Use OpenVINO runtime for best performance
|
| 111 |
+
2. **Batch Processing:** Leverage dynamic batching when possible
|
| 112 |
+
3. **Memory:** Requires ~2GB RAM for comfortable operation
|
| 113 |
+
|
| 114 |
+
## 🧪 Experimental Status
|
| 115 |
+
|
| 116 |
+
This is my first experiment with OpenVINO INT4 quantization. Feedback and contributions are welcome!
|
| 117 |
+
|
| 118 |
+
### Known Limitations
|
| 119 |
+
- No formal benchmarks yet
|
| 120 |
+
- Quantization settings not fully optimized
|
| 121 |
+
- Some quality degradation vs full precision
|
| 122 |
+
|
| 123 |
+
### Future Improvements
|
| 124 |
+
- [ ] Comprehensive benchmarking
|
| 125 |
+
- [ ] Mixed precision experiments
|
| 126 |
+
- [ ] Model compression analysis
|
| 127 |
+
- [ ] Calibration dataset optimization
|
| 128 |
+
|
| 129 |
+
## 🤝 Contributing
|
| 130 |
+
|
| 131 |
+
Found issues or have suggestions? Please open a discussion or issue!
|
| 132 |
+
|
| 133 |
+
## 📚 Resources
|
| 134 |
+
|
| 135 |
+
- [Original SmolLM3 Model](https://huggingface.co/HuggingFaceTB/SmolLM3-3B)
|
| 136 |
+
- [OpenVINO Documentation](https://docs.openvino.ai/)
|
| 137 |
+
- [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
|
| 138 |
+
|
| 139 |
+
## 🙏 Acknowledgments
|
| 140 |
+
|
| 141 |
+
- HuggingFace team for SmolLM3
|
| 142 |
+
- Intel OpenVINO team for quantization tools
|
| 143 |
+
- Community for feedback and support
|
| 144 |
+
|
| 145 |
+
## 📝 Citation
|
| 146 |
+
|
| 147 |
+
If you use this model, please cite both the original and this work:
|
| 148 |
+
|
| 149 |
+
```bibtex
|
| 150 |
+
@misc{smollm3-int4-ov,
|
| 151 |
+
author = {Bjoern Bethge},
|
| 152 |
+
title = {SmolLM3 INT4 OpenVINO},
|
| 153 |
+
year = {2024},
|
| 154 |
+
publisher = {Hugging Face},
|
| 155 |
+
howpublished = {\url{https://huggingface.co/dev-bjoern/smollm3-int4-ov}}
|
| 156 |
+
}
|
| 157 |
+
```
|
| 158 |
+
|
| 159 |
+
---
|
| 160 |
+
|
| 161 |
+
**Status:** 🧪 Experimental | **Feedback:** Welcome | **License:** Apache 2.0
|