add custom handler
Browse files- __pycache__/handler.cpython-38.pyc +0 -0
- handler.py +63 -0
- requirements.txt +3 -0
__pycache__/handler.cpython-38.pyc
ADDED
|
Binary file (2.31 kB). View file
|
|
|
handler.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Any
|
| 2 |
+
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
from keras_cv.models.generative.stable_diffusion.text_encoder import TextEncoder
|
| 5 |
+
from keras_cv.models.generative.stable_diffusion.clip_tokenizer import SimpleTokenizer
|
| 6 |
+
from keras_cv.models.generative.stable_diffusion.constants import _UNCONDITIONAL_TOKENS
|
| 7 |
+
|
| 8 |
+
class EndpointHandler():
|
| 9 |
+
def __init__(self, path=""):
|
| 10 |
+
self.MAX_PROMPT_LENGTH = 77
|
| 11 |
+
|
| 12 |
+
self.tokenizer = SimpleTokenizer()
|
| 13 |
+
self.text_encoder = TextEncoder(self.MAX_PROMPT_LENGTH)
|
| 14 |
+
self.pos_ids = tf.convert_to_tensor([list(range(self.MAX_PROMPT_LENGTH))], dtype=tf.int32)
|
| 15 |
+
|
| 16 |
+
def _get_unconditional_context(self):
|
| 17 |
+
unconditional_tokens = tf.convert_to_tensor(
|
| 18 |
+
[_UNCONDITIONAL_TOKENS], dtype=tf.int32
|
| 19 |
+
)
|
| 20 |
+
unconditional_context = self.text_encoder.predict_on_batch(
|
| 21 |
+
[unconditional_tokens, self.pos_ids]
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
return unconditional_context
|
| 25 |
+
|
| 26 |
+
def encode_text(self, prompt):
|
| 27 |
+
# Tokenize prompt (i.e. starting context)
|
| 28 |
+
inputs = self.tokenizer.encode(prompt)
|
| 29 |
+
if len(inputs) > self.MAX_PROMPT_LENGTH:
|
| 30 |
+
raise ValueError(
|
| 31 |
+
f"Prompt is too long (should be <= {self.MAX_PROMPT_LENGTH} tokens)"
|
| 32 |
+
)
|
| 33 |
+
phrase = inputs + [49407] * (self.MAX_PROMPT_LENGTH - len(inputs))
|
| 34 |
+
phrase = tf.convert_to_tensor([phrase], dtype=tf.int32)
|
| 35 |
+
|
| 36 |
+
context = self.text_encoder.predict_on_batch([phrase, self.pos_ids])
|
| 37 |
+
|
| 38 |
+
return context
|
| 39 |
+
|
| 40 |
+
def get_contexts(self, encoded_text, batch_size):
|
| 41 |
+
encoded_text = tf.squeeze(encoded_text)
|
| 42 |
+
if encoded_text.shape.rank == 2:
|
| 43 |
+
encoded_text = tf.repeat(
|
| 44 |
+
tf.expand_dims(encoded_text, axis=0), batch_size, axis=0
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
context = encoded_text
|
| 48 |
+
|
| 49 |
+
unconditional_context = tf.repeat(
|
| 50 |
+
_get_unconditional_context(), batch_size, axis=0
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
return context, unconditional_context
|
| 54 |
+
|
| 55 |
+
def __call__(self, data: Dict[str, Any]) -> str:
|
| 56 |
+
# get inputs
|
| 57 |
+
prompt = data.pop("inputs", data)
|
| 58 |
+
batch_size = data.pop("batch_size", 1)
|
| 59 |
+
|
| 60 |
+
encoded_text = encode_text(prompt)
|
| 61 |
+
context, unconditional_context = get_contexts(encoded_text, batch_size)
|
| 62 |
+
|
| 63 |
+
return context, unconditional_context
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
keras-cv
|
| 2 |
+
tensorflow
|
| 3 |
+
tensorflow_datasets
|