Natural Language Summarization Enables Multi-Repository Bug Localization by LLMs in Microservice Architectures
Abstract
Engineering natural language representations for bug localization in microservice architectures outperforms traditional retrieval methods by enabling interpretable search paths from repository to file levels.
Bug localization in multi-repository microservice architectures is challenging due to the semantic gap between natural language bug reports and code, LLM context limitations, and the need to first identify the correct repository. We propose reframing this as a natural language reasoning task by transforming codebases into hierarchical NL summaries and performing NL-to-NL search instead of cross-modal retrieval. Our approach builds context-aware summaries at file, directory, and repository levels, then uses a two-phase search: first routing bug reports to relevant repositories, then performing top-down localization within those repositories. Evaluated on DNext, an industrial system with 46 repositories and 1.1M lines of code, our method achieves Pass@10 of 0.82 and MRR of 0.50, significantly outperforming retrieval baselines and agentic RAG systems like GitHub Copilot and Cursor. This work demonstrates that engineered natural language representations can be more effective than raw source code for scalable bug localization, providing an interpretable repository -> directory -> file search path, which is vital for building trust in enterprise AI tools by providing essential transparency.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper