Papers
arxiv:2601.03786

Compact Example-Based Explanations for Language Models

Published on Jan 7
Authors:
,

Abstract

Training data influence estimation methods quantify document contributions to model outputs, with a novel selection relevance score improving explanation quality through balanced influence and representativeness strategies.

AI-generated summary

Training data influence estimation methods quantify the contribution of training documents to a model's output, making them a promising source of information for example-based explanations. As humans cannot interpret thousands of documents, only a small subset of the training data can be presented as an explanation. Although the choice of which documents to include directly affects explanation quality, previous evaluations of such systems have largely ignored any selection strategies. To address this, we propose a novel selection relevance score, a retraining-free metric that quantifies how useful a set of examples is for explaining a model's output. We validate this score through fine-tuning experiments, confirming that it can predict whether a set of examples supports or undermines the model's predictions. Using this metric, we further show that common selection strategies often underperform random selection. Motivated by this finding, we propose a strategy that balances influence and representativeness, enabling better use of selection budgets than naively selecting the highest-ranking examples.

Community

Sign up or log in to comment

Models citing this paper 3

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2601.03786 in a Space README.md to link it from this page.

Collections including this paper 1