Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRed-Teaming LLM Multi-Agent Systems via Communication Attacks
Large Language Model-based Multi-Agent Systems (LLM-MAS) have revolutionized complex problem-solving capability by enabling sophisticated agent collaboration through message-based communications. While the communication framework is crucial for agent coordination, it also introduces a critical yet unexplored security vulnerability. In this work, we introduce Agent-in-the-Middle (AiTM), a novel attack that exploits the fundamental communication mechanisms in LLM-MAS by intercepting and manipulating inter-agent messages. Unlike existing attacks that compromise individual agents, AiTM demonstrates how an adversary can compromise entire multi-agent systems by only manipulating the messages passing between agents. To enable the attack under the challenges of limited control and role-restricted communication format, we develop an LLM-powered adversarial agent with a reflection mechanism that generates contextually-aware malicious instructions. Our comprehensive evaluation across various frameworks, communication structures, and real-world applications demonstrates that LLM-MAS is vulnerable to communication-based attacks, highlighting the need for robust security measures in multi-agent systems.
Post-Quantum Cryptography: Securing Digital Communication in the Quantum Era
The advent of quantum computing poses a profound threat to traditional cryptographic systems, exposing vulnerabilities that compromise the security of digital communication channels reliant on RSA, ECC, and similar classical encryption methods. Quantum algorithms, notably Shor's algorithm, exploit the inherent computational power of quantum computers to efficiently solve mathematical problems underlying these cryptographic schemes. In response, post-quantum cryptography (PQC) emerged as a critical field aimed at developing resilient cryptographic algorithms impervious to quantum attacks. This paper delineates the vulnerabilities of classical cryptographic systems to quantum attacks, elucidates the principles of quantum computing, and introduces various PQC algorithms such as lattice-based cryptography, code-based cryptography, hash-based cryptography, and multivariate polynomial cryptography. Highlighting the importance of PQC in securing digital communication amidst quantum computing advancements, this research underscores its pivotal role in safeguarding data integrity, confidentiality, and authenticity in the face of emerging quantum threats.
Communication-efficient Federated Learning with Single-Step Synthetic Features Compressor for Faster Convergence
Reducing communication overhead in federated learning (FL) is challenging but crucial for large-scale distributed privacy-preserving machine learning. While methods utilizing sparsification or others can largely lower the communication overhead, the convergence rate is also greatly compromised. In this paper, we propose a novel method, named single-step synthetic features compressor (3SFC), to achieve communication-efficient FL by directly constructing a tiny synthetic dataset based on raw gradients. Thus, 3SFC can achieve an extremely low compression rate when the constructed dataset contains only one data sample. Moreover, 3SFC's compressing phase utilizes a similarity-based objective function so that it can be optimized with just one step, thereby considerably improving its performance and robustness. In addition, to minimize the compressing error, error feedback (EF) is also incorporated into 3SFC. Experiments on multiple datasets and models suggest that 3SFC owns significantly better convergence rates compared to competing methods with lower compression rates (up to 0.02%). Furthermore, ablation studies and visualizations show that 3SFC can carry more information than competing methods for every communication round, further validating its effectiveness.
Semantic Edge-Cloud Communication for Real-Time Urban Traffic Surveillance with ViT and LLMs over Mobile Networks
Real-time urban traffic surveillance is vital for Intelligent Transportation Systems (ITS) to ensure road safety, optimize traffic flow, track vehicle trajectories, and prevent collisions in smart cities. Deploying edge cameras across urban environments is a standard practice for monitoring road conditions. However, integrating these with intelligent models requires a robust understanding of dynamic traffic scenarios and a responsive interface for user interaction. Although multimodal Large Language Models (LLMs) can interpret traffic images and generate informative responses, their deployment on edge devices is infeasible due to high computational demands. Therefore, LLM inference must occur on the cloud, necessitating visual data transmission from edge to cloud, a process hindered by limited bandwidth, leading to potential delays that compromise real-time performance. To address this challenge, we propose a semantic communication framework that significantly reduces transmission overhead. Our method involves detecting Regions of Interest (RoIs) using YOLOv11, cropping relevant image segments, and converting them into compact embedding vectors using a Vision Transformer (ViT). These embeddings are then transmitted to the cloud, where an image decoder reconstructs the cropped images. The reconstructed images are processed by a multimodal LLM to generate traffic condition descriptions. This approach achieves a 99.9% reduction in data transmission size while maintaining an LLM response accuracy of 89% for reconstructed cropped images, compared to 93% accuracy with original cropped images. Our results demonstrate the efficiency and practicality of ViT and LLM-assisted edge-cloud semantic communication for real-time traffic surveillance.
EcoLANG: Efficient and Effective Agent Communication Language Induction for Social Simulation
Large language models (LLMs) have demonstrated an impressive ability to role-play humans and replicate complex social dynamics. While large-scale social simulations are gaining increasing attention, they still face significant challenges, particularly regarding high time and computation costs. Existing solutions, such as distributed mechanisms or hybrid agent-based model (ABM) integrations, either fail to address inference costs or compromise accuracy and generalizability. To this end, we propose EcoLANG: Efficient and Effective Agent Communication Language Induction for Social Simulation. EcoLANG operates in two stages: (1) language evolution, where we filter synonymous words and optimize sentence-level rules through natural selection, and (2) language utilization, where agents in social simulations communicate using the evolved language. Experimental results demonstrate that EcoLANG reduces token consumption by over 20%, enhancing efficiency without sacrificing simulation accuracy.
The Ethics of ChatGPT in Medicine and Healthcare: A Systematic Review on Large Language Models (LLMs)
With the introduction of ChatGPT, Large Language Models (LLMs) have received enormous attention in healthcare. Despite their potential benefits, researchers have underscored various ethical implications. While individual instances have drawn much attention, the debate lacks a systematic overview of practical applications currently researched and ethical issues connected to them. Against this background, this work aims to map the ethical landscape surrounding the current stage of deployment of LLMs in medicine and healthcare. Electronic databases and preprint servers were queried using a comprehensive search strategy. Studies were screened and extracted following a modified rapid review approach. Methodological quality was assessed using a hybrid approach. For 53 records, a meta-aggregative synthesis was performed. Four fields of applications emerged and testify to a vivid exploration phase. Advantages of using LLMs are attributed to their capacity in data analysis, personalized information provisioning, support in decision-making, mitigating information loss and enhancing information accessibility. However, we also identifies recurrent ethical concerns connected to fairness, bias, non-maleficence, transparency, and privacy. A distinctive concern is the tendency to produce harmful misinformation or convincingly but inaccurate content. A recurrent plea for ethical guidance and human oversight is evident. Given the variety of use cases, it is suggested that the ethical guidance debate be reframed to focus on defining what constitutes acceptable human oversight across the spectrum of applications. This involves considering diverse settings, varying potentials for harm, and different acceptable thresholds for performance and certainty in healthcare. In addition, a critical inquiry is necessary to determine the extent to which the current experimental use of LLMs is necessary and justified.
From Prompt Injections to Protocol Exploits: Threats in LLM-Powered AI Agents Workflows
Autonomous AI agents powered by large language models (LLMs) with structured function-calling interfaces have dramatically expanded capabilities for real-time data retrieval, complex computation, and multi-step orchestration. Yet, the explosive proliferation of plugins, connectors, and inter-agent protocols has outpaced discovery mechanisms and security practices, resulting in brittle integrations vulnerable to diverse threats. In this survey, we introduce the first unified, end-to-end threat model for LLM-agent ecosystems, spanning host-to-tool and agent-to-agent communications, formalize adversary capabilities and attacker objectives, and catalog over thirty attack techniques. Specifically, we organized the threat model into four domains: Input Manipulation (e.g., prompt injections, long-context hijacks, multimodal adversarial inputs), Model Compromise (e.g., prompt- and parameter-level backdoors, composite and encrypted multi-backdoors, poisoning strategies), System and Privacy Attacks (e.g., speculative side-channels, membership inference, retrieval poisoning, social-engineering simulations), and Protocol Vulnerabilities (e.g., exploits in Model Context Protocol (MCP), Agent Communication Protocol (ACP), Agent Network Protocol (ANP), and Agent-to-Agent (A2A) protocol). For each category, we review representative scenarios, assess real-world feasibility, and evaluate existing defenses. Building on our threat taxonomy, we identify key open challenges and future research directions, such as securing MCP deployments through dynamic trust management and cryptographic provenance tracking; designing and hardening Agentic Web Interfaces; and achieving resilience in multi-agent and federated environments. Our work provides a comprehensive reference to guide the design of robust defense mechanisms and establish best practices for resilient LLM-agent workflows.
Ethical and social risks of harm from Language Models
This paper aims to help structure the risk landscape associated with large-scale Language Models (LMs). In order to foster advances in responsible innovation, an in-depth understanding of the potential risks posed by these models is needed. A wide range of established and anticipated risks are analysed in detail, drawing on multidisciplinary expertise and literature from computer science, linguistics, and social sciences. We outline six specific risk areas: I. Discrimination, Exclusion and Toxicity, II. Information Hazards, III. Misinformation Harms, V. Malicious Uses, V. Human-Computer Interaction Harms, VI. Automation, Access, and Environmental Harms. The first area concerns the perpetuation of stereotypes, unfair discrimination, exclusionary norms, toxic language, and lower performance by social group for LMs. The second focuses on risks from private data leaks or LMs correctly inferring sensitive information. The third addresses risks arising from poor, false or misleading information including in sensitive domains, and knock-on risks such as the erosion of trust in shared information. The fourth considers risks from actors who try to use LMs to cause harm. The fifth focuses on risks specific to LLMs used to underpin conversational agents that interact with human users, including unsafe use, manipulation or deception. The sixth discusses the risk of environmental harm, job automation, and other challenges that may have a disparate effect on different social groups or communities. In total, we review 21 risks in-depth. We discuss the points of origin of different risks and point to potential mitigation approaches. Lastly, we discuss organisational responsibilities in implementing mitigations, and the role of collaboration and participation. We highlight directions for further research, particularly on expanding the toolkit for assessing and evaluating the outlined risks in LMs.
Dataset and Lessons Learned from the 2024 SaTML LLM Capture-the-Flag Competition
Large language model systems face important security risks from maliciously crafted messages that aim to overwrite the system's original instructions or leak private data. To study this problem, we organized a capture-the-flag competition at IEEE SaTML 2024, where the flag is a secret string in the LLM system prompt. The competition was organized in two phases. In the first phase, teams developed defenses to prevent the model from leaking the secret. During the second phase, teams were challenged to extract the secrets hidden for defenses proposed by the other teams. This report summarizes the main insights from the competition. Notably, we found that all defenses were bypassed at least once, highlighting the difficulty of designing a successful defense and the necessity for additional research to protect LLM systems. To foster future research in this direction, we compiled a dataset with over 137k multi-turn attack chats and open-sourced the platform.
Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks
Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation wireless networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to service providers. As WMNs become an increasingly popular replacement technology for last-mile connectivity to the home networking, community and neighborhood networking, it is imperative to design efficient and secure communication protocols for these networks. However, several vulnerabilities exist in currently existing protocols for WMNs. These security loopholes can be exploited by potential attackers to launch attack on WMNs. The absence of a central point of administration makes securing WMNs even more challenging. The broadcast nature of transmission and the dependency on the intermediate nodes for multi-hop communications lead to several security vulnerabilities in WMNs. The attacks can be external as well as internal in nature. External attacks are launched by intruders who are not authorized users of the network. For example, an intruding node may eavesdrop on the packets and replay those packets at a later point of time to gain access to the network resources. On the other hand, the internal attacks are launched by the nodes that are part of the WMN. On example of such attack is an intermediate node dropping packets which it was supposed to forward. This chapter presents a comprehensive discussion on the current authentication and privacy protection schemes for WMN. In addition, it proposes a novel security protocol for node authentication and message confidentiality and an anonymization scheme for privacy protection of users in WMNs.
TrojanStego: Your Language Model Can Secretly Be A Steganographic Privacy Leaking Agent
As large language models (LLMs) become integrated into sensitive workflows, concerns grow over their potential to leak confidential information. We propose TrojanStego, a novel threat model in which an adversary fine-tunes an LLM to embed sensitive context information into natural-looking outputs via linguistic steganography, without requiring explicit control over inference inputs. We introduce a taxonomy outlining risk factors for compromised LLMs, and use it to evaluate the risk profile of the threat. To implement TrojanStego, we propose a practical encoding scheme based on vocabulary partitioning learnable by LLMs via fine-tuning. Experimental results show that compromised models reliably transmit 32-bit secrets with 87% accuracy on held-out prompts, reaching over 97% accuracy using majority voting across three generations. Further, they maintain high utility, can evade human detection, and preserve coherence. These results highlight a new class of LLM data exfiltration attacks that are passive, covert, practical, and dangerous.
Simulating and Understanding Deceptive Behaviors in Long-Horizon Interactions
Deception is a pervasive feature of human communication and an emerging concern in large language models (LLMs). While recent studies document instances of LLM deception under pressure, most evaluations remain confined to single-turn prompts and fail to capture the long-horizon interactions in which deceptive strategies typically unfold. We introduce the first simulation framework for probing and evaluating deception in LLMs under extended sequences of interdependent tasks and dynamic contextual pressures. Our framework instantiates a multi-agent system: a performer agent tasked with completing tasks and a supervisor agent that evaluates progress, provides feedback, and maintains evolving states of trust. An independent deception auditor then reviews full trajectories to identify when and how deception occurs. We conduct extensive experiments across 11 frontier models, spanning both closed- and open-source systems, and find that deception is model-dependent, increases with event pressure, and consistently erodes supervisor trust. Qualitative analyses further reveal distinct strategies of concealment, equivocation, and falsification. Our findings establish deception as an emergent risk in long-horizon interactions and provide a foundation for evaluating future LLMs in real-world, trust-sensitive contexts.
Quantum Steganography
Steganography is the process of hiding secret information by embedding it in an "innocent" message. We present protocols for hiding quantum information in a codeword of a quantum error-correcting code passing through a channel. Using either a shared classical secret key or shared entanglement the sender (Alice) disguises her information as errors in the channel. The receiver (Bob) can retrieve the hidden information, but an eavesdropper (Eve) with the power to monitor the channel, but without the secret key, cannot distinguish the message from channel noise. We analyze how difficult it is for Eve to detect the presence of secret messages, and estimate rates of steganographic communication and secret key consumption for certain protocols.
