- CoMuMDR: Code-mixed Multi-modal Multi-domain corpus for Discourse paRsing in conversations Discourse parsing is an important task useful for NLU applications such as summarization, machine comprehension, and emotion recognition. The current discourse parsing datasets based on conversations consists of written English dialogues restricted to a single domain. In this resource paper, we introduce CoMuMDR: Code-mixed Multi-modal Multi-domain corpus for Discourse paRsing in conversations. The corpus (code-mixed in Hindi and English) has both audio and transcribed text and is annotated with nine discourse relations. We experiment with various SoTA baseline models; the poor performance of SoTA models highlights the challenges of multi-domain code-mixed corpus, pointing towards the need for developing better models for such realistic settings. 6 authors · Jun 10, 2025
- A Side-by-side Comparison of Transformers for English Implicit Discourse Relation Classification Though discourse parsing can help multiple NLP fields, there has been no wide language model search done on implicit discourse relation classification. This hinders researchers from fully utilizing public-available models in discourse analysis. This work is a straightforward, fine-tuned discourse performance comparison of seven pre-trained language models. We use PDTB-3, a popular discourse relation annotated dataset. Through our model search, we raise SOTA to 0.671 ACC and obtain novel observations. Some are contrary to what has been reported before (Shi and Demberg, 2019b), that sentence-level pre-training objectives (NSP, SBO, SOP) generally fail to produce the best performing model for implicit discourse relation classification. Counterintuitively, similar-sized PLMs with MLM and full attention led to better performance. 3 authors · Jul 7, 2023
- LLaMIPa: An Incremental Discourse Parser This paper provides the first discourse parsing experiments with a large language model (LLM) finetuned on corpora annotated in the style of SDRT (Asher, 1993; Asher and Lascarides, 2003). The result is a discourse parser, LLaMIPa (LLaMA Incremental Parser), which is able to more fully exploit discourse context, leading to substantial performance gains over approaches that use encoder-only models to provide local, context-sensitive representations of discourse units. Furthermore, it is able to process discourse data incrementally, which is essential for the eventual use of discourse information in downstream tasks. 4 authors · Jun 26, 2024
- Bridging Discourse Treebanks with a Unified Rhetorical Structure Parser We introduce UniRST, the first unified RST-style discourse parser capable of handling 18 treebanks in 11 languages without modifying their relation inventories. To overcome inventory incompatibilities, we propose and evaluate two training strategies: Multi-Head, which assigns separate relation classification layer per inventory, and Masked-Union, which enables shared parameter training through selective label masking. We first benchmark monotreebank parsing with a simple yet effective augmentation technique for low-resource settings. We then train a unified model and show that (1) the parameter efficient Masked-Union approach is also the strongest, and (2) UniRST outperforms 16 of 18 mono-treebank baselines, demonstrating the advantages of a single-model, multilingual end-to-end discourse parsing across diverse resources. 1 authors · Oct 7, 2025
- ChatGPT Evaluation on Sentence Level Relations: A Focus on Temporal, Causal, and Discourse Relations This paper aims to quantitatively evaluate the performance of ChatGPT, an interactive large language model, on inter-sentential relations such as temporal relations, causal relations, and discourse relations. Given ChatGPT's promising performance across various tasks, we proceed to carry out thorough evaluations on the whole test sets of 11 datasets, including temporal and causal relations, PDTB2.0-based, and dialogue-based discourse relations. To ensure the reliability of our findings, we employ three tailored prompt templates for each task, including the zero-shot prompt template, zero-shot prompt engineering (PE) template, and in-context learning (ICL) prompt template, to establish the initial baseline scores for all popular sentence-pair relation classification tasks for the first time. Through our study, we discover that ChatGPT exhibits exceptional proficiency in detecting and reasoning about causal relations, albeit it may not possess the same level of expertise in identifying the temporal order between two events. While it is capable of identifying the majority of discourse relations with existing explicit discourse connectives, the implicit discourse relation remains a formidable challenge. Concurrently, ChatGPT demonstrates subpar performance in the dialogue discourse parsing task that requires structural understanding in a dialogue before being aware of the discourse relation. 7 authors · Apr 28, 2023
- DiscoSG: Towards Discourse-Level Text Scene Graph Parsing through Iterative Graph Refinement Vision-Language Models (VLMs) generate discourse-level, multi-sentence visual descriptions, challenging text scene graph parsers built for single-sentence caption-to-graph mapping. Current approaches typically merge sentence-level parsing outputs for discourse input, often missing phenomena like cross-sentence coreference, resulting in fragmented graphs and degraded downstream VLM task performance. We introduce a new task, Discourse-level text Scene Graph parsing (DiscoSG), and release DiscoSG-DS, a dataset of 400 expert-annotated and 8,430 synthesised multi-sentence caption-graph pairs. Each caption averages 9 sentences, and each graph contains at least 3 times more triples than those in existing datasets. Fine-tuning GPT-4o on DiscoSG-DS yields over 40% higher SPICE metric than the best sentence-merging baseline. However, its high inference cost and licensing restrict open-source use. Smaller fine-tuned open-source models (e.g., Flan-T5) perform well on simpler graphs yet degrade on denser, more complex graphs. To bridge this gap, we introduce DiscoSG-Refiner, a lightweight open-source parser that drafts a seed graph and iteratively refines it with a novel learned graph-editing model, achieving 30% higher SPICE than the baseline while delivering 86 times faster inference than GPT-4o. It generalises from simple to dense graphs, thereby consistently improving downstream VLM tasks, including discourse-level caption evaluation and hallucination detection, outperforming alternative open-source parsers. Code and data are available at https://github.com/ShaoqLin/DiscoSG . 6 authors · Jun 18, 2025
- Pre-Trained Language-Meaning Models for Multilingual Parsing and Generation Pre-trained language models (PLMs) have achieved great success in NLP and have recently been used for tasks in computational semantics. However, these tasks do not fully benefit from PLMs since meaning representations are not explicitly included in the pre-training stage. We introduce multilingual pre-trained language-meaning models based on Discourse Representation Structures (DRSs), including meaning representations besides natural language texts in the same model, and design a new strategy to reduce the gap between the pre-training and fine-tuning objectives. Since DRSs are language neutral, cross-lingual transfer learning is adopted to further improve the performance of non-English tasks. Automatic evaluation results show that our approach achieves the best performance on both the multilingual DRS parsing and DRS-to-text generation tasks. Correlation analysis between automatic metrics and human judgements on the generation task further validates the effectiveness of our model. Human inspection reveals that out-of-vocabulary tokens are the main cause of erroneous results. 4 authors · May 31, 2023
1 Semantic Anchoring in Agentic Memory: Leveraging Linguistic Structures for Persistent Conversational Context Large Language Models (LLMs) have demonstrated impressive fluency and task competence in conversational settings. However, their effectiveness in multi-session and long-term interactions is hindered by limited memory persistence. Typical retrieval-augmented generation (RAG) systems store dialogue history as dense vectors, which capture semantic similarity but neglect finer linguistic structures such as syntactic dependencies, discourse relations, and coreference links. We propose Semantic Anchoring, a hybrid agentic memory architecture that enriches vector-based storage with explicit linguistic cues to improve recall of nuanced, context-rich exchanges. Our approach combines dependency parsing, discourse relation tagging, and coreference resolution to create structured memory entries. Experiments on adapted long-term dialogue datasets show that semantic anchoring improves factual recall and discourse coherence by up to 18% over strong RAG baselines. We further conduct ablation studies, human evaluations, and error analysis to assess robustness and interpretability. 2 authors · Aug 18, 2025