- IntentionQA: A Benchmark for Evaluating Purchase Intention Comprehension Abilities of Language Models in E-commerce Enhancing Language Models' (LMs) ability to understand purchase intentions in E-commerce scenarios is crucial for their effective assistance in various downstream tasks. However, previous approaches that distill intentions from LMs often fail to generate meaningful and human-centric intentions applicable in real-world E-commerce contexts. This raises concerns about the true comprehension and utilization of purchase intentions by LMs. In this paper, we present IntentionQA, a double-task multiple-choice question answering benchmark to evaluate LMs' comprehension of purchase intentions in E-commerce. Specifically, LMs are tasked to infer intentions based on purchased products and utilize them to predict additional purchases. IntentionQA consists of 4,360 carefully curated problems across three difficulty levels, constructed using an automated pipeline to ensure scalability on large E-commerce platforms. Human evaluations demonstrate the high quality and low false-negative rate of our benchmark. Extensive experiments across 19 language models show that they still struggle with certain scenarios, such as understanding products and intentions accurately, jointly reasoning with products and intentions, and more, in which they fall far behind human performances. Our code and data are publicly available at https://github.com/HKUST-KnowComp/IntentionQA. 8 authors · Jun 14, 2024
1 LLM Distillation for Efficient Few-Shot Multiple Choice Question Answering Multiple Choice Question Answering (MCQA) is an important problem with numerous real-world applications, such as medicine, law, and education. The high cost of building MCQA datasets makes few-shot learning pivotal in this domain. While Large Language Models (LLMs) can enable few-shot learning, their direct application in real-world scenarios is often hindered by their high computational cost. To address this challenge, we propose a simple yet effective approach that uses LLMs for data generation and scoring. Our approach utilizes LLMs to create MCQA data which contains questions and choices, and to assign probability scores to the generated choices. We then use the generated data and LLM-assigned scores to finetune a smaller and more efficient encoder-only model, DeBERTa-v3-base by leveraging distillation loss. Extensive experiments on the Massive Multitask Language Understanding (MMLU) benchmark demonstrate that our method improves accuracy from 28.9% to 39.3%, representing a gain of over 10% compared to a baseline finetuned directly on 5-shot examples. This shows the effectiveness of LLM-driven data generation and knowledge distillation for few-shot MCQA. 4 authors · Dec 12, 2024
1 HEAD-QA: A Healthcare Dataset for Complex Reasoning We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work. 2 authors · Jun 11, 2019
- QASC: A Dataset for Question Answering via Sentence Composition Composing knowledge from multiple pieces of texts is a key challenge in multi-hop question answering. We present a multi-hop reasoning dataset, Question Answering via Sentence Composition(QASC), that requires retrieving facts from a large corpus and composing them to answer a multiple-choice question. QASC is the first dataset to offer two desirable properties: (a) the facts to be composed are annotated in a large corpus, and (b) the decomposition into these facts is not evident from the question itself. The latter makes retrieval challenging as the system must introduce new concepts or relations in order to discover potential decompositions. Further, the reasoning model must then learn to identify valid compositions of these retrieved facts using common-sense reasoning. To help address these challenges, we provide annotation for supporting facts as well as their composition. Guided by these annotations, we present a two-step approach to mitigate the retrieval challenges. We use other multiple-choice datasets as additional training data to strengthen the reasoning model. Our proposed approach improves over current state-of-the-art language models by 11% (absolute). The reasoning and retrieval problems, however, remain unsolved as this model still lags by 20% behind human performance. 5 authors · Oct 24, 2019
- TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension We present TriviaQA, a challenging reading comprehension dataset containing over 650K question-answer-evidence triples. TriviaQA includes 95K question-answer pairs authored by trivia enthusiasts and independently gathered evidence documents, six per question on average, that provide high quality distant supervision for answering the questions. We show that, in comparison to other recently introduced large-scale datasets, TriviaQA (1) has relatively complex, compositional questions, (2) has considerable syntactic and lexical variability between questions and corresponding answer-evidence sentences, and (3) requires more cross sentence reasoning to find answers. We also present two baseline algorithms: a feature-based classifier and a state-of-the-art neural network, that performs well on SQuAD reading comprehension. Neither approach comes close to human performance (23% and 40% vs. 80%), suggesting that TriviaQA is a challenging testbed that is worth significant future study. Data and code available at -- http://nlp.cs.washington.edu/triviaqa/ 4 authors · May 9, 2017
- Artifacts or Abduction: How Do LLMs Answer Multiple-Choice Questions Without the Question? Multiple-choice question answering (MCQA) is often used to evaluate large language models (LLMs). To see if MCQA assesses LLMs as intended, we probe if LLMs can perform MCQA with choices-only prompts, where models must select the correct answer only from the choices. In three MCQA datasets and four LLMs, this prompt bests a majority baseline in 11/12 cases, with up to 0.33 accuracy gain. To help explain this behavior, we conduct an in-depth, black-box analysis on memorization, choice dynamics, and question inference. Our key findings are threefold. First, we find no evidence that the choices-only accuracy stems from memorization alone. Second, priors over individual choices do not fully explain choices-only accuracy, hinting that LLMs use the group dynamics of choices. Third, LLMs have some ability to infer a relevant question from choices, and surprisingly can sometimes even match the original question. We hope to motivate the use of stronger baselines in MCQA benchmarks, the design of robust MCQA datasets, and further efforts to explain LLM decision-making. 3 authors · Feb 19, 2024
- Large-scale Simple Question Answering with Memory Networks Training large-scale question answering systems is complicated because training sources usually cover a small portion of the range of possible questions. This paper studies the impact of multitask and transfer learning for simple question answering; a setting for which the reasoning required to answer is quite easy, as long as one can retrieve the correct evidence given a question, which can be difficult in large-scale conditions. To this end, we introduce a new dataset of 100k questions that we use in conjunction with existing benchmarks. We conduct our study within the framework of Memory Networks (Weston et al., 2015) because this perspective allows us to eventually scale up to more complex reasoning, and show that Memory Networks can be successfully trained to achieve excellent performance. 4 authors · Jun 5, 2015
- Joint Learning of Sentence Embeddings for Relevance and Entailment We consider the problem of Recognizing Textual Entailment within an Information Retrieval context, where we must simultaneously determine the relevancy as well as degree of entailment for individual pieces of evidence to determine a yes/no answer to a binary natural language question. We compare several variants of neural networks for sentence embeddings in a setting of decision-making based on evidence of varying relevance. We propose a basic model to integrate evidence for entailment, show that joint training of the sentence embeddings to model relevance and entailment is feasible even with no explicit per-evidence supervision, and show the importance of evaluating strong baselines. We also demonstrate the benefit of carrying over text comprehension model trained on an unrelated task for our small datasets. Our research is motivated primarily by a new open dataset we introduce, consisting of binary questions and news-based evidence snippets. We also apply the proposed relevance-entailment model on a similar task of ranking multiple-choice test answers, evaluating it on a preliminary dataset of school test questions as well as the standard MCTest dataset, where we improve the neural model state-of-art. 3 authors · May 16, 2016
3 Right Answer, Wrong Score: Uncovering the Inconsistencies of LLM Evaluation in Multiple-Choice Question Answering One of the most widely used tasks to evaluate Large Language Models (LLMs) is Multiple-Choice Question Answering (MCQA). While open-ended question answering tasks are more challenging to evaluate, MCQA tasks are, in principle, easier to assess, as the model's answer is thought to be simple to extract and is directly compared to a set of predefined choices. However, recent studies have started to question the reliability of MCQA evaluation, showing that multiple factors can significantly impact the reported performance of LLMs, especially when the model generates free-form text before selecting one of the answer choices. In this work, we shed light on the inconsistencies of MCQA evaluation strategies, which can lead to inaccurate and misleading model comparisons. We systematically analyze whether existing answer extraction methods are aligned with human judgment, and how they are influenced by answer constraints in the prompt across different domains. Our experiments demonstrate that traditional evaluation strategies often underestimate LLM capabilities, while LLM-based answer extractors are prone to systematic errors. Moreover, we reveal a fundamental trade-off between including format constraints in the prompt to simplify answer extraction and allowing models to generate free-form text to improve reasoning. Our findings call for standardized evaluation methodologies and highlight the need for more reliable and consistent MCQA evaluation practices. 6 authors · Mar 19, 2025
1 TurkishMMLU: Measuring Massive Multitask Language Understanding in Turkish Multiple choice question answering tasks evaluate the reasoning, comprehension, and mathematical abilities of Large Language Models (LLMs). While existing benchmarks employ automatic translation for multilingual evaluation, this approach is error-prone and potentially introduces culturally biased questions, especially in social sciences. We introduce the first multitask, multiple-choice Turkish QA benchmark, TurkishMMLU, to evaluate LLMs' understanding of the Turkish language. TurkishMMLU includes over 10,000 questions, covering 9 different subjects from Turkish high-school education curricula. These questions are written by curriculum experts, suitable for the high-school curricula in Turkey, covering subjects ranging from natural sciences and math questions to more culturally representative topics such as Turkish Literature and the history of the Turkish Republic. We evaluate over 20 LLMs, including multilingual open-source (e.g., Gemma, Llama, MT5), closed-source (GPT 4o, Claude, Gemini), and Turkish-adapted (e.g., Trendyol) models. We provide an extensive evaluation, including zero-shot and few-shot evaluation of LLMs, chain-of-thought reasoning, and question difficulty analysis along with model performance. We provide an in-depth analysis of the Turkish capabilities and limitations of current LLMs to provide insights for future LLMs for the Turkish language. We publicly release our code for the dataset and evaluation: https://github.com/ArdaYueksel/TurkishMMLU. 5 authors · Jul 17, 2024
- XRJL-HKUST at SemEval-2021 Task 4: WordNet-Enhanced Dual Multi-head Co-Attention for Reading Comprehension of Abstract Meaning This paper presents our submitted system to SemEval 2021 Task 4: Reading Comprehension of Abstract Meaning. Our system uses a large pre-trained language model as the encoder and an additional dual multi-head co-attention layer to strengthen the relationship between passages and question-answer pairs, following the current state-of-the-art model DUMA. The main difference is that we stack the passage-question and question-passage attention modules instead of calculating parallelly to simulate re-considering process. We also add a layer normalization module to improve the performance of our model. Furthermore, to incorporate our known knowledge about abstract concepts, we retrieve the definitions of candidate answers from WordNet and feed them to the model as extra inputs. Our system, called WordNet-enhanced DUal Multi-head Co-Attention (WN-DUMA), achieves 86.67% and 89.99% accuracy on the official blind test set of subtask 1 and subtask 2 respectively. 5 authors · Mar 30, 2021
- ELI5: Long Form Question Answering We introduce the first large-scale corpus for long-form question answering, a task requiring elaborate and in-depth answers to open-ended questions. The dataset comprises 270K threads from the Reddit forum ``Explain Like I'm Five'' (ELI5) where an online community provides answers to questions which are comprehensible by five year olds. Compared to existing datasets, ELI5 comprises diverse questions requiring multi-sentence answers. We provide a large set of web documents to help answer the question. Automatic and human evaluations show that an abstractive model trained with a multi-task objective outperforms conventional Seq2Seq, language modeling, as well as a strong extractive baseline. However, our best model is still far from human performance since raters prefer gold responses in over 86% of cases, leaving ample opportunity for future improvement. 6 authors · Jul 22, 2019
1 SearchQA: A New Q&A Dataset Augmented with Context from a Search Engine We publicly release a new large-scale dataset, called SearchQA, for machine comprehension, or question-answering. Unlike recently released datasets, such as DeepMind CNN/DailyMail and SQuAD, the proposed SearchQA was constructed to reflect a full pipeline of general question-answering. That is, we start not from an existing article and generate a question-answer pair, but start from an existing question-answer pair, crawled from J! Archive, and augment it with text snippets retrieved by Google. Following this approach, we built SearchQA, which consists of more than 140k question-answer pairs with each pair having 49.6 snippets on average. Each question-answer-context tuple of the SearchQA comes with additional meta-data such as the snippet's URL, which we believe will be valuable resources for future research. We conduct human evaluation as well as test two baseline methods, one simple word selection and the other deep learning based, on the SearchQA. We show that there is a meaningful gap between the human and machine performances. This suggests that the proposed dataset could well serve as a benchmark for question-answering. 6 authors · Apr 17, 2017
1 NewsQA: A Machine Comprehension Dataset We present NewsQA, a challenging machine comprehension dataset of over 100,000 human-generated question-answer pairs. Crowdworkers supply questions and answers based on a set of over 10,000 news articles from CNN, with answers consisting of spans of text from the corresponding articles. We collect this dataset through a four-stage process designed to solicit exploratory questions that require reasoning. A thorough analysis confirms that NewsQA demands abilities beyond simple word matching and recognizing textual entailment. We measure human performance on the dataset and compare it to several strong neural models. The performance gap between humans and machines (0.198 in F1) indicates that significant progress can be made on NewsQA through future research. The dataset is freely available at https://datasets.maluuba.com/NewsQA. 7 authors · Nov 29, 2016
- A Survey on Multi-hop Question Answering and Generation The problem of Question Answering (QA) has attracted significant research interest for long. Its relevance to language understanding and knowledge retrieval tasks, along with the simple setting makes the task of QA crucial for strong AI systems. Recent success on simple QA tasks has shifted the focus to more complex settings. Among these, Multi-Hop QA (MHQA) is one of the most researched tasks over the recent years. The ability to answer multi-hop questions and perform multi step reasoning can significantly improve the utility of NLP systems. Consequently, the field has seen a sudden surge with high quality datasets, models and evaluation strategies. The notion of `multiple hops' is somewhat abstract which results in a large variety of tasks that require multi-hop reasoning. This implies that different datasets and models differ significantly which makes the field challenging to generalize and survey. This work aims to provide a general and formal definition of MHQA task, and organize and summarize existing MHQA frameworks. We also outline the best methods to create MHQA datasets. The paper provides a systematic and thorough introduction as well as the structuring of the existing attempts to this highly interesting, yet quite challenging task. 3 authors · Apr 19, 2022
3 Which of These Best Describes Multiple Choice Evaluation with LLMs? A) Forced B) Flawed C) Fixable D) All of the Above Multiple choice question answering (MCQA) is popular for LLM evaluation due to its simplicity and human-like testing, but we argue for its reform. We first reveal flaws in MCQA's format, as it struggles to: 1) test generation/subjectivity; 2) match LLM use cases; and 3) fully test knowledge. We instead advocate for generative formats based on human testing-where LLMs construct and explain answers-better capturing user needs and knowledge while remaining easy to score. We then show even when MCQA is a useful format, its datasets suffer from: leakage; unanswerability; shortcuts; and saturation. In each issue, we give fixes from education, like rubrics to guide MCQ writing; scoring methods to bridle guessing; and Item Response Theory to build harder MCQs. Lastly, we discuss LLM errors in MCQA-robustness, biases, and unfaithful explanations-showing how our prior solutions better measure or address these issues. While we do not need to desert MCQA, we encourage more efforts in refining the task based on educational testing, advancing evaluations. 3 authors · Feb 19, 2025 2
1 A Simple Approach to Jointly Rank Passages and Select Relevant Sentences in the OBQA Context In the open book question answering (OBQA) task, selecting the relevant passages and sentences from distracting information is crucial to reason the answer to a question. HotpotQA dataset is designed to teach and evaluate systems to do both passage ranking and sentence selection. Many existing frameworks use separate models to select relevant passages and sentences respectively. Such systems not only have high complexity in terms of the parameters of models but also fail to take the advantage of training these two tasks together since one task can be beneficial for the other one. In this work, we present a simple yet effective framework to address these limitations by jointly ranking passages and selecting sentences. Furthermore, we propose consistency and similarity constraints to promote the correlation and interaction between passage ranking and sentence selection.The experiments demonstrate that our framework can achieve competitive results with previous systems and outperform the baseline by 28\% in terms of exact matching of relevant sentences on the HotpotQA dataset. 3 authors · Sep 21, 2021
- BUCA: A Binary Classification Approach to Unsupervised Commonsense Question Answering Unsupervised commonsense reasoning (UCR) is becoming increasingly popular as the construction of commonsense reasoning datasets is expensive, and they are inevitably limited in their scope. A popular approach to UCR is to fine-tune language models with external knowledge (e.g., knowledge graphs), but this usually requires a large number of training examples. In this paper, we propose to transform the downstream multiple choice question answering task into a simpler binary classification task by ranking all candidate answers according to their reasonableness. To this end, for training the model, we convert the knowledge graph triples into reasonable and unreasonable texts. Extensive experimental results show the effectiveness of our approach on various multiple choice question answering benchmarks. Furthermore, compared with existing UCR approaches using KGs, ours is less data hungry. Our code is available at https://github.com/probe2/BUCA. 4 authors · May 25, 2023
2 Masking in Multi-hop QA: An Analysis of How Language Models Perform with Context Permutation Multi-hop Question Answering (MHQA) adds layers of complexity to question answering, making it more challenging. When Language Models (LMs) are prompted with multiple search results, they are tasked not only with retrieving relevant information but also employing multi-hop reasoning across the information sources. Although LMs perform well on traditional question-answering tasks, the causal mask can hinder their capacity to reason across complex contexts. In this paper, we explore how LMs respond to multi-hop questions by permuting search results (retrieved documents) under various configurations. Our study reveals interesting findings as follows: 1) Encoder-decoder models, such as the ones in the Flan-T5 family, generally outperform causal decoder-only LMs in MHQA tasks, despite being significantly smaller in size; 2) altering the order of gold documents reveals distinct trends in both Flan T5 models and fine-tuned decoder-only models, with optimal performance observed when the document order aligns with the reasoning chain order; 3) enhancing causal decoder-only models with bi-directional attention by modifying the causal mask can effectively boost their end performance. In addition to the above, we conduct a thorough investigation of the distribution of LM attention weights in the context of MHQA. Our experiments reveal that attention weights tend to peak at higher values when the resulting answer is correct. We leverage this finding to heuristically improve LMs' performance on this task. Our code is publicly available at https://github.com/hwy9855/MultiHopQA-Reasoning. 4 authors · May 16, 2025 2
- Paragraph-based Transformer Pre-training for Multi-Sentence Inference Inference tasks such as answer sentence selection (AS2) or fact verification are typically solved by fine-tuning transformer-based models as individual sentence-pair classifiers. Recent studies show that these tasks benefit from modeling dependencies across multiple candidate sentences jointly. In this paper, we first show that popular pre-trained transformers perform poorly when used for fine-tuning on multi-candidate inference tasks. We then propose a new pre-training objective that models the paragraph-level semantics across multiple input sentences. Our evaluation on three AS2 and one fact verification datasets demonstrates the superiority of our pre-training technique over the traditional ones for transformers used as joint models for multi-candidate inference tasks, as well as when used as cross-encoders for sentence-pair formulations of these tasks. Our code and pre-trained models are released at https://github.com/amazon-research/wqa-multi-sentence-inference . 4 authors · May 2, 2022
- Learning Compact Representations of LLM Abilities via Item Response Theory Recent years have witnessed a surge in the number of large language models (LLMs), yet efficiently managing and utilizing these vast resources remains a significant challenge. In this work, we explore how to learn compact representations of LLM abilities that can facilitate downstream tasks, such as model routing and performance prediction on new benchmarks. We frame this problem as estimating the probability that a given model will correctly answer a specific query. Inspired by the item response theory (IRT) in psychometrics, we model this probability as a function of three key factors: (i) the model's multi-skill ability vector, (2) the query's discrimination vector that separates models of differing skills, and (3) the query's difficulty scalar. To learn these parameters jointly, we introduce a Mixture-of-Experts (MoE) network that couples model- and query-level embeddings. Extensive experiments demonstrate that our approach leads to state-of-the-art performance in both model routing and benchmark accuracy prediction. Moreover, analysis validates that the learned parameters encode meaningful, interpretable information about model capabilities and query characteristics. 8 authors · Oct 1, 2025
- MultiReQA: A Cross-Domain Evaluation for Retrieval Question Answering Models Retrieval question answering (ReQA) is the task of retrieving a sentence-level answer to a question from an open corpus (Ahmad et al.,2019).This paper presents MultiReQA, anew multi-domain ReQA evaluation suite com-posed of eight retrieval QA tasks drawn from publicly available QA datasets. We provide the first systematic retrieval based evaluation over these datasets using two supervised neural models, based on fine-tuning BERT andUSE-QA models respectively, as well as a surprisingly strong information retrieval baseline,BM25. Five of these tasks contain both train-ing and test data, while three contain test data only. Performance on the five tasks with train-ing data shows that while a general model covering all domains is achievable, the best performance is often obtained by training exclusively on in-domain data. 5 authors · May 5, 2020
- Deep Learning for Answer Sentence Selection Answer sentence selection is the task of identifying sentences that contain the answer to a given question. This is an important problem in its own right as well as in the larger context of open domain question answering. We propose a novel approach to solving this task via means of distributed representations, and learn to match questions with answers by considering their semantic encoding. This contrasts prior work on this task, which typically relies on classifiers with large numbers of hand-crafted syntactic and semantic features and various external resources. Our approach does not require any feature engineering nor does it involve specialist linguistic data, making this model easily applicable to a wide range of domains and languages. Experimental results on a standard benchmark dataset from TREC demonstrate that---despite its simplicity---our model matches state of the art performance on the answer sentence selection task. 4 authors · Dec 4, 2014
- Listening to the Wise Few: Select-and-Copy Attention Heads for Multiple-Choice QA A standard way to evaluate the abilities of LLM involves presenting a multiple-choice question and selecting the option with the highest logit as the model's predicted answer. However, such a format for evaluating LLMs has limitations, since even if the model knows the correct answer, it may struggle to select the corresponding letter simply due to difficulties in following this rigid format. To address this, we introduce new scores that better capture and reveal model's underlying knowledge: the Query-Key Score (QK-score), derived from the interaction between query and key representations in attention heads, and the Attention Score, based on attention weights. These scores are extracted from specific select-and-copy heads, which show consistent performance across popular Multi-Choice Question Answering (MCQA) datasets. Based on these scores, our method improves knowledge extraction, yielding up to 16\% gain for LLaMA2-7B and up to 10\% for larger models on popular MCQA benchmarks. At the same time, the accuracy on a simple synthetic dataset, where the model explicitly knows the right answer, increases by almost 60\%, achieving nearly perfect accuracy, therefore demonstrating the method's efficiency in mitigating MCQA format limitations. To support our claims, we conduct experiments on models ranging from 7 billion to 70 billion parameters in both zero- and few-shot setups. 8 authors · Oct 3, 2024
- Retrieval Helps or Hurts? A Deeper Dive into the Efficacy of Retrieval Augmentation to Language Models While large language models (LMs) demonstrate remarkable performance, they encounter challenges in providing accurate responses when queried for information beyond their pre-trained memorization. Although augmenting them with relevant external information can mitigate these issues, failure to consider the necessity of retrieval may adversely affect overall performance. Previous research has primarily focused on examining how entities influence retrieval models and knowledge recall in LMs, leaving other aspects relatively unexplored. In this work, our goal is to offer a more detailed, fact-centric analysis by exploring the effects of combinations of entities and relations. To facilitate this, we construct a new question answering (QA) dataset called WiTQA (Wikipedia Triple Question Answers). This dataset includes questions about entities and relations of various popularity levels, each accompanied by a supporting passage. Our extensive experiments with diverse LMs and retrievers reveal when retrieval does not consistently enhance LMs from the viewpoints of fact-centric popularity.Confirming earlier findings, we observe that larger LMs excel in recalling popular facts. However, they notably encounter difficulty with infrequent entity-relation pairs compared to retrievers. Interestingly, they can effectively retain popular relations of less common entities. We demonstrate the efficacy of our finer-grained metric and insights through an adaptive retrieval system that selectively employs retrieval and recall based on the frequencies of entities and relations in the question. 4 authors · Feb 20, 2024
- PCoQA: Persian Conversational Question Answering Dataset Humans seek information regarding a specific topic through performing a conversation containing a series of questions and answers. In the pursuit of conversational question answering research, we introduce the PCoQA, the first Persian Conversational Question Answering dataset, a resource comprising information-seeking dialogs encompassing a total of 9,026 contextually-driven questions. Each dialog involves a questioner, a responder, and a document from the Wikipedia; The questioner asks several inter-connected questions from the text and the responder provides a span of the document as the answer for each question. PCoQA is designed to present novel challenges compared to previous question answering datasets including having more open-ended non-factual answers, longer answers, and fewer lexical overlaps. This paper not only presents the comprehensive PCoQA dataset but also reports the performance of various benchmark models. Our models include baseline models and pre-trained models, which are leveraged to boost the performance of the model. The dataset and benchmarks are available at our Github page. 6 authors · Dec 7, 2023
- Crowdsourcing Multiple Choice Science Questions We present a novel method for obtaining high-quality, domain-targeted multiple choice questions from crowd workers. Generating these questions can be difficult without trading away originality, relevance or diversity in the answer options. Our method addresses these problems by leveraging a large corpus of domain-specific text and a small set of existing questions. It produces model suggestions for document selection and answer distractor choice which aid the human question generation process. With this method we have assembled SciQ, a dataset of 13.7K multiple choice science exam questions (Dataset available at http://allenai.org/data.html). We demonstrate that the method produces in-domain questions by providing an analysis of this new dataset and by showing that humans cannot distinguish the crowdsourced questions from original questions. When using SciQ as additional training data to existing questions, we observe accuracy improvements on real science exams. 3 authors · Jul 19, 2017
- Memory Networks We describe a new class of learning models called memory networks. Memory networks reason with inference components combined with a long-term memory component; they learn how to use these jointly. The long-term memory can be read and written to, with the goal of using it for prediction. We investigate these models in the context of question answering (QA) where the long-term memory effectively acts as a (dynamic) knowledge base, and the output is a textual response. We evaluate them on a large-scale QA task, and a smaller, but more complex, toy task generated from a simulated world. In the latter, we show the reasoning power of such models by chaining multiple supporting sentences to answer questions that require understanding the intension of verbs. 3 authors · Oct 14, 2014
11 Does Circuit Analysis Interpretability Scale? Evidence from Multiple Choice Capabilities in Chinchilla Circuit analysis is a promising technique for understanding the internal mechanisms of language models. However, existing analyses are done in small models far from the state of the art. To address this, we present a case study of circuit analysis in the 70B Chinchilla model, aiming to test the scalability of circuit analysis. In particular, we study multiple-choice question answering, and investigate Chinchilla's capability to identify the correct answer label given knowledge of the correct answer text. We find that the existing techniques of logit attribution, attention pattern visualization, and activation patching naturally scale to Chinchilla, allowing us to identify and categorize a small set of `output nodes' (attention heads and MLPs). We further study the `correct letter' category of attention heads aiming to understand the semantics of their features, with mixed results. For normal multiple-choice question answers, we significantly compress the query, key and value subspaces of the head without loss of performance when operating on the answer labels for multiple-choice questions, and we show that the query and key subspaces represent an `Nth item in an enumeration' feature to at least some extent. However, when we attempt to use this explanation to understand the heads' behaviour on a more general distribution including randomized answer labels, we find that it is only a partial explanation, suggesting there is more to learn about the operation of `correct letter' heads on multiple choice question answering. 6 authors · Jul 18, 2023
- Consecutive Question Generation via Dynamic Multitask Learning In this paper, we propose the task of consecutive question generation (CQG), which generates a set of logically related question-answer pairs to understand a whole passage, with a comprehensive consideration of the aspects including accuracy, coverage, and informativeness. To achieve this, we first examine the four key elements of CQG, i.e., question, answer, rationale, and context history, and propose a novel dynamic multitask framework with one main task generating a question-answer pair, and four auxiliary tasks generating other elements. It directly helps the model generate good questions through both joint training and self-reranking. At the same time, to fully explore the worth-asking information in a given passage, we make use of the reranking losses to sample the rationales and search for the best question series globally. Finally, we measure our strategy by QA data augmentation and manual evaluation, as well as a novel application of generated question-answer pairs on DocNLI. We prove that our strategy can improve question generation significantly and benefit multiple related NLP tasks. 3 authors · Nov 16, 2022
2 SceMQA: A Scientific College Entrance Level Multimodal Question Answering Benchmark The paper introduces SceMQA, a novel benchmark for scientific multimodal question answering at the college entrance level. It addresses a critical educational phase often overlooked in existing benchmarks, spanning high school to pre-college levels. SceMQA focuses on core science subjects including Mathematics, Physics, Chemistry, and Biology. It features a blend of multiple-choice and free-response formats, ensuring a comprehensive evaluation of AI models' abilities. Additionally, our benchmark provides specific knowledge points for each problem and detailed explanations for each answer. SceMQA also uniquely presents problems with identical contexts but varied questions to facilitate a more thorough and accurate assessment of reasoning capabilities. In the experiment, we evaluate both open-source and close-source state-of-the-art Multimodal Large Language Models (MLLMs), across various experimental settings. The results show that further research and development are needed in developing more capable MLLM, as highlighted by only 50% to 60% accuracy achieved by the strongest models. Our benchmark and analysis will be available at https://scemqa.github.io/ 10 authors · Feb 6, 2024
- STOC-TOT: Stochastic Tree-of-Thought with Constrained Decoding for Complex Reasoning in Multi-Hop Question Answering Multi-hop question answering (MHQA) requires a model to retrieve and integrate information from multiple passages to answer a complex question. Recent systems leverage the power of large language models and integrate evidence retrieval with reasoning prompts (e.g., chain-of-thought reasoning) for the MHQA task. However, the complexities in the question types (bridge v.s. comparison questions) and the reasoning types (sequential v.s. parallel reasonings) require more novel and fine-grained prompting methods to enhance the performance of MHQA under the zero-shot setting. In this paper, we propose STOC-TOT, a stochastic tree-of-thought reasoning prompting method with constrained decoding for MHQA and conduct a detailed comparison with other reasoning prompts on different question types and reasoning types. Specifically, we construct a tree-like reasoning structure by prompting the model to break down the original question into smaller sub-questions to form different reasoning paths. In addition, we prompt the model to provide a probability estimation for each reasoning path at each reasoning step. At answer time, we conduct constrained decoding on the model to generate more grounded answers and reduce hallucination. Experiments comparing STOC-TOT with two MHQA datasets and five large language models showed that our framework outperforms other reasoning prompts by a significant margin. 5 authors · Jul 4, 2024
- Beyond the Answers: Reviewing the Rationality of Multiple Choice Question Answering for the Evaluation of Large Language Models In the field of natural language processing (NLP), Large Language Models (LLMs) have precipitated a paradigm shift, markedly enhancing performance in natural language generation tasks. Despite these advancements, the comprehensive evaluation of LLMs remains an inevitable challenge for the community. Recently, the utilization of Multiple Choice Question Answering (MCQA) as a benchmark for LLMs has gained considerable traction. This study first investigates the limitations of MCQA as an evaluation method for LLMs and then analyzes the fundamental reason for the limitations of MCQA, that while LLMs may select the correct answers, it is possible that they also recognize other wrong options as correct. Finally, we propose a dataset augmenting method for Multiple-Choice Questions (MCQs), MCQA+, that can more accurately reflect the performance of the model, which underscores the need for more robust evaluation mechanisms in assessing the performance of LLMs. 6 authors · Feb 2, 2024
1 Retrieval-Generation Synergy Augmented Large Language Models Large language models augmented with task-relevant documents have demonstrated impressive performance on knowledge-intensive tasks. However, regarding how to obtain effective documents, the existing methods are mainly divided into two categories. One is to retrieve from an external knowledge base, and the other is to utilize large language models to generate documents. We propose an iterative retrieval-generation collaborative framework. It is not only able to leverage both parametric and non-parametric knowledge, but also helps to find the correct reasoning path through retrieval-generation interactions, which is very important for tasks that require multi-step reasoning. We conduct experiments on four question answering datasets, including single-hop QA and multi-hop QA tasks. Empirical results show that our method significantly improves the reasoning ability of large language models and outperforms previous baselines. 5 authors · Oct 8, 2023
- MultiQA: An Empirical Investigation of Generalization and Transfer in Reading Comprehension A large number of reading comprehension (RC) datasets has been created recently, but little analysis has been done on whether they generalize to one another, and the extent to which existing datasets can be leveraged for improving performance on new ones. In this paper, we conduct such an investigation over ten RC datasets, training on one or more source RC datasets, and evaluating generalization, as well as transfer to a target RC dataset. We analyze the factors that contribute to generalization, and show that training on a source RC dataset and transferring to a target dataset substantially improves performance, even in the presence of powerful contextual representations from BERT (Devlin et al., 2019). We also find that training on multiple source RC datasets leads to robust generalization and transfer, and can reduce the cost of example collection for a new RC dataset. Following our analysis, we propose MultiQA, a BERT-based model, trained on multiple RC datasets, which leads to state-of-the-art performance on five RC datasets. We share our infrastructure for the benefit of the research community. 2 authors · May 31, 2019
1 CoQA: A Conversational Question Answering Challenge Humans gather information by engaging in conversations involving a series of interconnected questions and answers. For machines to assist in information gathering, it is therefore essential to enable them to answer conversational questions. We introduce CoQA, a novel dataset for building Conversational Question Answering systems. Our dataset contains 127k questions with answers, obtained from 8k conversations about text passages from seven diverse domains. The questions are conversational, and the answers are free-form text with their corresponding evidence highlighted in the passage. We analyze CoQA in depth and show that conversational questions have challenging phenomena not present in existing reading comprehension datasets, e.g., coreference and pragmatic reasoning. We evaluate strong conversational and reading comprehension models on CoQA. The best system obtains an F1 score of 65.4%, which is 23.4 points behind human performance (88.8%), indicating there is ample room for improvement. We launch CoQA as a challenge to the community at http://stanfordnlp.github.io/coqa/ 3 authors · Aug 21, 2018
- Do Large Language Models Perform Latent Multi-Hop Reasoning without Exploiting Shortcuts? We evaluate how well Large Language Models (LLMs) latently recall and compose facts to answer multi-hop queries like "In the year Scarlett Johansson was born, the Summer Olympics were hosted in the country of". One major challenge in evaluating this ability is that LLMs may have developed shortcuts by encounters of the head entity "Scarlett Johansson" and the answer entity "United States" in the same training sequences or merely guess the answer based on frequency-based priors. To prevent shortcuts, we exclude test queries where the head and answer entities co-appear in pretraining corpora. Through careful selection of relations and facts and systematic removal of cases where models might guess answers or exploit partial matches, we construct an evaluation dataset SOCRATES (ShOrtCut-fRee lATent rEaSoning). We observe that LLMs demonstrate promising latent multi-hop reasoning abilities without exploiting shortcuts, but only for certain types of queries. For queries requiring latent recall of countries as the intermediate answer, the best models achieve 80% latent composability, but this drops to just 5% for the recall of years. Comparisons with Chain-of-Thought composability highlight a significant gap between the ability of models to reason latently versus explicitly. Analysis reveals that latent representations of the intermediate answer are constructed more often in queries with higher latent composability, and shows the emergence of latent multi-hop reasoning during pretraining. 5 authors · Nov 25, 2024
- Boosting Process-Correct CoT Reasoning by Modeling Solvability of Multiple-Choice QA Reasoning quality in large language models depends not only on producing correct answers but also on generating valid intermediate steps. We study this through multiple-choice question answering (MCQA), which provides a controlled setting with fixed answer options. Our analysis shows that when questions are effectively unsolvable for a model, spurious chains of thought (CoTs) are more likely to appear, leading to false positives. By estimating the solvability of each question, we uncover an intermediate regime where learning is most effective. Building on this insight, we adapt outcome-supervised reward models and reinforcement learning with group-relative advantage to incorporate solvability into their objectives. Across experiments on math and multimodal datasets, these modifications consistently yield higher rates of process-correct reasoning and, in reinforcement learning, improved answer accuracy as well. Our results highlight solvability as a key factor for reducing hallucinations and increasing reliability in CoT reasoning. 2 authors · Sep 30, 2025
- Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations. We present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text. C^3 is available at https://dataset.org/c3/. 4 authors · Apr 21, 2019
1 RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open-Domain Question Answering In open-domain question answering, dense passage retrieval has become a new paradigm to retrieve relevant passages for finding answers. Typically, the dual-encoder architecture is adopted to learn dense representations of questions and passages for semantic matching. However, it is difficult to effectively train a dual-encoder due to the challenges including the discrepancy between training and inference, the existence of unlabeled positives and limited training data. To address these challenges, we propose an optimized training approach, called RocketQA, to improving dense passage retrieval. We make three major technical contributions in RocketQA, namely cross-batch negatives, denoised hard negatives and data augmentation. The experiment results show that RocketQA significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions. We also conduct extensive experiments to examine the effectiveness of the three strategies in RocketQA. Besides, we demonstrate that the performance of end-to-end QA can be improved based on our RocketQA retriever. 9 authors · Oct 16, 2020
- Enhancing Dual-Encoders with Question and Answer Cross-Embeddings for Answer Retrieval Dual-Encoders is a promising mechanism for answer retrieval in question answering (QA) systems. Currently most conventional Dual-Encoders learn the semantic representations of questions and answers merely through matching score. Researchers proposed to introduce the QA interaction features in scoring function but at the cost of low efficiency in inference stage. To keep independent encoding of questions and answers during inference stage, variational auto-encoder is further introduced to reconstruct answers (questions) from question (answer) embeddings as an auxiliary task to enhance QA interaction in representation learning in training stage. However, the needs of text generation and answer retrieval are different, which leads to hardness in training. In this work, we propose a framework to enhance the Dual-Encoders model with question answer cross-embeddings and a novel Geometry Alignment Mechanism (GAM) to align the geometry of embeddings from Dual-Encoders with that from Cross-Encoders. Extensive experimental results show that our framework significantly improves Dual-Encoders model and outperforms the state-of-the-art method on multiple answer retrieval datasets. 8 authors · Jun 6, 2022
- Wrong Answers Can Also Be Useful: PlausibleQA -- A Large-Scale QA Dataset with Answer Plausibility Scores Large Language Models (LLMs) are revolutionizing information retrieval, with chatbots becoming an important source for answering user queries. As by their design, LLMs prioritize generating correct answers, the value of highly plausible yet incorrect answers (candidate answers) tends to be overlooked. However, such answers can still prove useful, for example, they can play a crucial role in tasks like Multiple-Choice Question Answering (MCQA) and QA Robustness Assessment (QARA). Existing QA datasets primarily focus on correct answers without explicit consideration of the plausibility of other candidate answers, limiting opportunity for more nuanced evaluations of models. To address this gap, we introduce PlausibleQA, a large-scale dataset comprising 10,000 questions and 100,000 candidate answers, each annotated with plausibility scores and justifications for their selection. Additionally, the dataset includes 900,000 justifications for pairwise comparisons between candidate answers, further refining plausibility assessments. We evaluate PlausibleQA through human assessments and empirical experiments, demonstrating its utility in MCQA and QARA analysis. Our findings show that plausibility-aware approaches are effective for MCQA distractor generation and QARA. We release PlausibleQA as a resource for advancing QA research and enhancing LLM performance in distinguishing plausible distractors from correct answers. 4 authors · Feb 22, 2025
10 Beyond Multiple Choice: Verifiable OpenQA for Robust Vision-Language RFT Multiple-choice question answering (MCQA) has been a popular format for evaluating and reinforcement fine-tuning (RFT) of modern multimodal language models. Its constrained output format allows for simplified, deterministic automatic verification. However, we find that the options may leak exploitable signals, which makes the accuracy metrics unreliable for indicating real capabilities and encourages explicit or implicit answer guessing behaviors during RFT. We propose ReVeL (Rewrite and Verify by LLM), a framework that rewrites multiple-choice questions into open-form questions while keeping answers verifiable whenever possible. The framework categorizes questions according to different answer types, apply different rewriting and verification schemes, respectively. When applied for RFT, we converted 20k MCQA examples and use GRPO to finetune Qwen2.5-VL models. Models trained on ReVeL-OpenQA match MCQA accuracy on multiple-choice benchmarks and improve OpenQA accuracy by about six percentage points, indicating better data efficiency and more robust reward signals than MCQA-based training. When used for evaluation, ReVeL also reveals up to 20 percentage points of score inflation in MCQA benchmarks (relative to OpenQA), improves judging accuracy, and reduces both cost and latency. We will release code and data publicly. 12 authors · Nov 21, 2025 3
- BiRdQA: A Bilingual Dataset for Question Answering on Tricky Riddles A riddle is a question or statement with double or veiled meanings, followed by an unexpected answer. Solving riddle is a challenging task for both machine and human, testing the capability of understanding figurative, creative natural language and reasoning with commonsense knowledge. We introduce BiRdQA, a bilingual multiple-choice question answering dataset with 6614 English riddles and 8751 Chinese riddles. For each riddle-answer pair, we provide four distractors with additional information from Wikipedia. The distractors are automatically generated at scale with minimal bias. Existing monolingual and multilingual QA models fail to perform well on our dataset, indicating that there is a long way to go before machine can beat human on solving tricky riddles. The dataset has been released to the community. 2 authors · Sep 22, 2021
1 Exploring the Integration Strategies of Retriever and Large Language Models The integration of retrieved passages and large language models (LLMs), such as ChatGPTs, has significantly contributed to improving open-domain question answering. However, there is still a lack of exploration regarding the optimal approach for incorporating retrieved passages into the answer generation process. This paper aims to fill this gap by investigating different methods of combining retrieved passages with LLMs to enhance answer generation. We begin by examining the limitations of a commonly-used concatenation approach. Surprisingly, this approach often results in generating "unknown" outputs, even when the correct document is among the top-k retrieved passages. To address this issue, we explore four alternative strategies for integrating the retrieved passages with the LLMs. These strategies include two single-round methods that utilize chain-of-thought reasoning and two multi-round strategies that incorporate feedback loops. Through comprehensive analyses and experiments, we provide insightful observations on how to effectively leverage retrieved passages to enhance the answer generation capability of LLMs. 7 authors · Aug 24, 2023
- TASA: Deceiving Question Answering Models by Twin Answer Sentences Attack We present Twin Answer Sentences Attack (TASA), an adversarial attack method for question answering (QA) models that produces fluent and grammatical adversarial contexts while maintaining gold answers. Despite phenomenal progress on general adversarial attacks, few works have investigated the vulnerability and attack specifically for QA models. In this work, we first explore the biases in the existing models and discover that they mainly rely on keyword matching between the question and context, and ignore the relevant contextual relations for answer prediction. Based on two biases above, TASA attacks the target model in two folds: (1) lowering the model's confidence on the gold answer with a perturbed answer sentence; (2) misguiding the model towards a wrong answer with a distracting answer sentence. Equipped with designed beam search and filtering methods, TASA can generate more effective attacks than existing textual attack methods while sustaining the quality of contexts, in extensive experiments on five QA datasets and human evaluations. 7 authors · Oct 27, 2022
3 Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge We present a new question set, text corpus, and baselines assembled to encourage AI research in advanced question answering. Together, these constitute the AI2 Reasoning Challenge (ARC), which requires far more powerful knowledge and reasoning than previous challenges such as SQuAD or SNLI. The ARC question set is partitioned into a Challenge Set and an Easy Set, where the Challenge Set contains only questions answered incorrectly by both a retrieval-based algorithm and a word co-occurence algorithm. The dataset contains only natural, grade-school science questions (authored for human tests), and is the largest public-domain set of this kind (7,787 questions). We test several baselines on the Challenge Set, including leading neural models from the SQuAD and SNLI tasks, and find that none are able to significantly outperform a random baseline, reflecting the difficult nature of this task. We are also releasing the ARC Corpus, a corpus of 14M science sentences relevant to the task, and implementations of the three neural baseline models tested. Can your model perform better? We pose ARC as a challenge to the community. 7 authors · Mar 14, 2018
- MultiWikiQA: A Reading Comprehension Benchmark in 300+ Languages We introduce a new reading comprehension dataset, dubbed MultiWikiQA, which covers 306 languages. The context data comes from Wikipedia articles, with questions generated by an LLM and the answers appearing verbatim in the Wikipedia articles. We conduct a crowdsourced human evaluation of the fluency of the generated questions across 30 of the languages, providing evidence that the questions are of good quality. We evaluate 6 different language models, both decoder and encoder models of varying sizes, showing that the benchmark is sufficiently difficult and that there is a large performance discrepancy amongst the languages. The dataset and survey evaluations are freely available. 1 authors · Sep 4, 2025
2 FREESON: Retriever-Free Retrieval-Augmented Reasoning via Corpus-Traversing MCTS Large Reasoning Models (LRMs) have demonstrated remarkable capabilities in multi-step reasoning and calling search engines at appropriate steps. However, existing retrieval-augmented reasoning approaches rely on separate retrieval models, limiting the LRM's role in retrieval to deciding when to retrieve and how to query. This separation not only increases hardware and operational costs but also leads to errors in the retrieval process due to the representation bottleneck, a phenomenon where the retriever's embedding space is not expressive enough to meet the generator's requirements. To address this, we shift our perspective from sequence-to-sequence matching to locating the answer-containing paths within the corpus, and propose a novel framework called FREESON (Retriever-FREE Retrieval-Augmented ReaSONing). This framework enables LRMs to retrieve relevant knowledge on their own by acting as both a generator and retriever. To achieve this, we introduce a variant of the MCTS algorithm specialized for the retrieval task, which we call CT-MCTS (Corpus-Traversing Monte Carlo Tree Search). In this algorithm, LRMs traverse through the corpus toward answer-containing regions. Our results on five open-domain QA benchmarks, including single-hop and multi-hop questions, show that FREESON achieves an average improvement of 14.4% in EM and F1 over four multi-step reasoning models with a separate retriever, and it also performs comparably to the strongest baseline, surpassing it by 3% on PopQA and 2WikiMultihopQA. 2 authors · May 22, 2025 2
- The NarrativeQA Reading Comprehension Challenge Reading comprehension (RC)---in contrast to information retrieval---requires integrating information and reasoning about events, entities, and their relations across a full document. Question answering is conventionally used to assess RC ability, in both artificial agents and children learning to read. However, existing RC datasets and tasks are dominated by questions that can be solved by selecting answers using superficial information (e.g., local context similarity or global term frequency); they thus fail to test for the essential integrative aspect of RC. To encourage progress on deeper comprehension of language, we present a new dataset and set of tasks in which the reader must answer questions about stories by reading entire books or movie scripts. These tasks are designed so that successfully answering their questions requires understanding the underlying narrative rather than relying on shallow pattern matching or salience. We show that although humans solve the tasks easily, standard RC models struggle on the tasks presented here. We provide an analysis of the dataset and the challenges it presents. 7 authors · Dec 19, 2017
1 MAUPQA: Massive Automatically-created Polish Question Answering Dataset Recently, open-domain question answering systems have begun to rely heavily on annotated datasets to train neural passage retrievers. However, manually annotating such datasets is both difficult and time-consuming, which limits their availability for less popular languages. In this work, we experiment with several methods for automatically collecting weakly labeled datasets and show how they affect the performance of the neural passage retrieval models. As a result of our work, we publish the MAUPQA dataset, consisting of nearly 400,000 question-passage pairs for Polish, as well as the HerBERT-QA neural retriever. 1 authors · May 9, 2023
1 Multi-head Span-based Detector for AI-generated Fragments in Scientific Papers This paper describes a system designed to distinguish between AI-generated and human-written scientific excerpts in the DAGPap24 competition hosted within the Fourth Workshop on Scientific Document Processing. In this competition the task is to find artificially generated token-level text fragments in documents of a scientific domain. Our work focuses on the use of a multi-task learning architecture with two heads. The application of this approach is justified by the specificity of the task, where class spans are continuous over several hundred characters. We considered different encoder variations to obtain a state vector for each token in the sequence, as well as a variation in splitting fragments into tokens to further feed into the input of a transform-based encoder. This approach allows us to achieve a 9% quality improvement relative to the baseline solution score on the development set (from 0.86 to 0.95) using the average macro F1-score, as well as a score of 0.96 on a closed test part of the dataset from the competition. 3 authors · Nov 11, 2024
- Rethinking Generative Large Language Model Evaluation for Semantic Comprehension Despite their sophisticated capabilities, large language models (LLMs) encounter a major hurdle in effective assessment. This paper first revisits the prevalent evaluation method-multiple choice question answering (MCQA), which allows for straightforward accuracy measurement. Through a comprehensive evaluation of 24 models across 11 benchmarks, we highlight several potential drawbacks of MCQA, for instance, the inconsistency between the MCQA evaluation and the generation of open-ended responses in practical scenarios. In response, we introduce an RWQ-Elo rating system, engaging 24 LLMs such as GPT-4, GPT-3.5, Google-Gemini-Pro and LLaMA-1/-2, in a two-player competitive format, with GPT-4 serving as the judge. Each LLM receives an Elo rating thereafter. This system is designed to mirror real-world usage, and for this purpose, we have compiled a new benchmark called ``Real-world questions'' (RWQ), comprising 20,772 authentic user inquiries. Additionally, we thoroughly analyze the characteristics of our system and compare it with prior leaderboards like AlpacaEval and MT-Bench. Our analysis reveals the stability of our RWQ-Elo system, the feasibility of registering new models, and its potential to reshape LLM leaderboards. 3 authors · Mar 12, 2024
- MRQA 2019 Shared Task: Evaluating Generalization in Reading Comprehension We present the results of the Machine Reading for Question Answering (MRQA) 2019 shared task on evaluating the generalization capabilities of reading comprehension systems. In this task, we adapted and unified 18 distinct question answering datasets into the same format. Among them, six datasets were made available for training, six datasets were made available for development, and the final six were hidden for final evaluation. Ten teams submitted systems, which explored various ideas including data sampling, multi-task learning, adversarial training and ensembling. The best system achieved an average F1 score of 72.5 on the 12 held-out datasets, 10.7 absolute points higher than our initial baseline based on BERT. 6 authors · Oct 21, 2019
8 Answer Matching Outperforms Multiple Choice for Language Model Evaluation Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching. 5 authors · Jul 3, 2025 2
51 MMLU-Pro: A More Robust and Challenging Multi-Task Language Understanding Benchmark In the age of large-scale language models, benchmarks like the Massive Multitask Language Understanding (MMLU) have been pivotal in pushing the boundaries of what AI can achieve in language comprehension and reasoning across diverse domains. However, as models continue to improve, their performance on these benchmarks has begun to plateau, making it increasingly difficult to discern differences in model capabilities. This paper introduces MMLU-Pro, an enhanced dataset designed to extend the mostly knowledge-driven MMLU benchmark by integrating more challenging, reasoning-focused questions and expanding the choice set from four to ten options. Additionally, MMLU-Pro eliminates the trivial and noisy questions in MMLU. Our experimental results show that MMLU-Pro not only raises the challenge, causing a significant drop in accuracy by 16% to 33% compared to MMLU but also demonstrates greater stability under varying prompts. With 24 different prompt styles tested, the sensitivity of model scores to prompt variations decreased from 4-5% in MMLU to just 2% in MMLU-Pro. Additionally, we found that models utilizing Chain of Thought (CoT) reasoning achieved better performance on MMLU-Pro compared to direct answering, which is in stark contrast to the findings on the original MMLU, indicating that MMLU-Pro includes more complex reasoning questions. Our assessments confirm that MMLU-Pro is a more discriminative benchmark to better track progress in the field. 17 authors · Jun 3, 2024 3
2 CommonsenseQA: A Question Answering Challenge Targeting Commonsense Knowledge When answering a question, people often draw upon their rich world knowledge in addition to the particular context. Recent work has focused primarily on answering questions given some relevant document or context, and required very little general background. To investigate question answering with prior knowledge, we present CommonsenseQA: a challenging new dataset for commonsense question answering. To capture common sense beyond associations, we extract from ConceptNet (Speer et al., 2017) multiple target concepts that have the same semantic relation to a single source concept. Crowd-workers are asked to author multiple-choice questions that mention the source concept and discriminate in turn between each of the target concepts. This encourages workers to create questions with complex semantics that often require prior knowledge. We create 12,247 questions through this procedure and demonstrate the difficulty of our task with a large number of strong baselines. Our best baseline is based on BERT-large (Devlin et al., 2018) and obtains 56% accuracy, well below human performance, which is 89%. 4 authors · Nov 2, 2018
- EEE-QA: Exploring Effective and Efficient Question-Answer Representations Current approaches to question answering rely on pre-trained language models (PLMs) like RoBERTa. This work challenges the existing question-answer encoding convention and explores finer representations. We begin with testing various pooling methods compared to using the begin-of-sentence token as a question representation for better quality. Next, we explore opportunities to simultaneously embed all answer candidates with the question. This enables cross-reference between answer choices and improves inference throughput via reduced memory usage. Despite their simplicity and effectiveness, these methods have yet to be widely studied in current frameworks. We experiment with different PLMs, and with and without the integration of knowledge graphs. Results prove that the memory efficacy of the proposed techniques with little sacrifice in performance. Practically, our work enhances 38-100% throughput with 26-65% speedups on consumer-grade GPUs by allowing for considerably larger batch sizes. Our work sends a message to the community with promising directions in both representation quality and efficiency for the question-answering task in natural language processing. 5 authors · Mar 4, 2024
- Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering We present a new kind of question answering dataset, OpenBookQA, modeled after open book exams for assessing human understanding of a subject. The open book that comes with our questions is a set of 1329 elementary level science facts. Roughly 6000 questions probe an understanding of these facts and their application to novel situations. This requires combining an open book fact (e.g., metals conduct electricity) with broad common knowledge (e.g., a suit of armor is made of metal) obtained from other sources. While existing QA datasets over documents or knowledge bases, being generally self-contained, focus on linguistic understanding, OpenBookQA probes a deeper understanding of both the topic---in the context of common knowledge---and the language it is expressed in. Human performance on OpenBookQA is close to 92%, but many state-of-the-art pre-trained QA methods perform surprisingly poorly, worse than several simple neural baselines we develop. Our oracle experiments designed to circumvent the knowledge retrieval bottleneck demonstrate the value of both the open book and additional facts. We leave it as a challenge to solve the retrieval problem in this multi-hop setting and to close the large gap to human performance. 4 authors · Sep 8, 2018
- SQUARE: Automatic Question Answering Evaluation using Multiple Positive and Negative References Evaluation of QA systems is very challenging and expensive, with the most reliable approach being human annotations of correctness of answers for questions. Recent works (AVA, BEM) have shown that transformer LM encoder based similarity metrics transfer well for QA evaluation, but they are limited by the usage of a single correct reference answer. We propose a new evaluation metric: SQuArE (Sentence-level QUestion AnsweRing Evaluation), using multiple reference answers (combining multiple correct and incorrect references) for sentence-form QA. We evaluate SQuArE on both sentence-level extractive (Answer Selection) and generative (GenQA) QA systems, across multiple academic and industrial datasets, and show that it outperforms previous baselines and obtains the highest correlation with human annotations. 4 authors · Sep 21, 2023
10 The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants We present Belebele, a multiple-choice machine reading comprehension (MRC) dataset spanning 122 language variants. Significantly expanding the language coverage of natural language understanding (NLU) benchmarks, this dataset enables the evaluation of text models in high-, medium-, and low-resource languages. Each question is based on a short passage from the Flores-200 dataset and has four multiple-choice answers. The questions were carefully curated to discriminate between models with different levels of general language comprehension. The English dataset on its own proves difficult enough to challenge state-of-the-art language models. Being fully parallel, this dataset enables direct comparison of model performance across all languages. We use this dataset to evaluate the capabilities of multilingual masked language models (MLMs) and large language models (LLMs). We present extensive results and find that despite significant cross-lingual transfer in English-centric LLMs, much smaller MLMs pretrained on balanced multilingual data still understand far more languages. We also observe that larger vocabulary size and conscious vocabulary construction correlate with better performance on low-resource languages. Overall, Belebele opens up new avenues for evaluating and analyzing the multilingual capabilities of NLP systems. 10 authors · Aug 31, 2023
- Enhancing Multi-hop Reasoning in Vision-Language Models via Self-Distillation with Multi-Prompt Ensembling Multi-modal large language models have seen rapid advancement alongside large language models. However, while language models can effectively leverage chain-of-thought prompting for zero or few-shot learning, similar prompting strategies are less effective for multi-modal LLMs due to modality gaps and task complexity. To address this challenge, we explore two prompting approaches: a dual-query method that separates multi-modal input analysis and answer generation into two prompting steps, and an ensemble prompting method that combines multiple prompt variations to arrive at the final answer. Although these approaches enhance the model's reasoning capabilities without fine-tuning, they introduce significant inference overhead. Therefore, building on top of these two prompting techniques, we propose a self-distillation framework such that the model can improve itself without any annotated data. Our self-distillation framework learns representation intervention modules from the reasoning traces collected from ensembled dual-query prompts, in the form of hidden representations. The lightweight intervention modules operate in parallel with the frozen original model, which makes it possible to maintain computational efficiency while significantly improving model capability. We evaluate our method on five widely-used VQA benchmarks, demonstrating its effectiveness in performing multi-hop reasoning for complex tasks. 7 authors · Mar 3, 2025
- JE-IRT: A Geometric Lens on LLM Abilities through Joint Embedding Item Response Theory Standard LLM evaluation practices compress diverse abilities into single scores, obscuring their inherently multidimensional nature. We present JE-IRT, a geometric item-response framework that embeds both LLMs and questions in a shared space. For question embeddings, the direction encodes semantics and the norm encodes difficulty, while correctness on each question is determined by the geometric interaction between the model and question embeddings. This geometry replaces a global ranking of LLMs with topical specialization and enables smooth variation across related questions. Building on this framework, our experimental results reveal that out-of-distribution behavior can be explained through directional alignment, and that larger norms consistently indicate harder questions. Moreover, JE-IRT naturally supports generalization: once the space is learned, new LLMs are added by fitting a single embedding. The learned space further reveals an LLM-internal taxonomy that only partially aligns with human-defined subject categories. JE-IRT thus establishes a unified and interpretable geometric lens that connects LLM abilities with the structure of questions, offering a distinctive perspective on model evaluation and generalization. 6 authors · Sep 26, 2025
- FrenchMedMCQA: A French Multiple-Choice Question Answering Dataset for Medical domain This paper introduces FrenchMedMCQA, the first publicly available Multiple-Choice Question Answering (MCQA) dataset in French for medical domain. It is composed of 3,105 questions taken from real exams of the French medical specialization diploma in pharmacy, mixing single and multiple answers. Each instance of the dataset contains an identifier, a question, five possible answers and their manual correction(s). We also propose first baseline models to automatically process this MCQA task in order to report on the current performances and to highlight the difficulty of the task. A detailed analysis of the results showed that it is necessary to have representations adapted to the medical domain or to the MCQA task: in our case, English specialized models yielded better results than generic French ones, even though FrenchMedMCQA is in French. Corpus, models and tools are available online. 7 authors · Apr 9, 2023
6 SATA-BENCH: Select All That Apply Benchmark for Multiple Choice Questions Large language models (LLMs) are increasingly evaluated on single-answer multiple-choice tasks, yet many real-world problems require identifying all correct answers from a set of options. This capability remains underexplored. We introduce SATA-BENCH, the first dedicated benchmark for evaluating LLMs on Select All That Apply (SATA) questions across diverse domains, including reading comprehension, law, and biomedicine. Our evaluation of 27 open-source and proprietary models reveals a significant gap: even the strongest model achieves only 41.8% exact match, exposing LLMs' inability to reliably identify all correct answers. We find that this weakness stems from two core challenges: selection bias - models favor certain choices regardless of content, and count bias - models fail to predict the correct number of answers. To address these issues, we propose Choice Funnel, a decoding strategy that combines token debiasing with adaptive thresholding to guide models toward complete and accurate selections. Choice Funnel achieves up to 29% higher exact match than competitive baselines while reducing inference cost by over 64%. Our findings expose fundamental limitations in current LLMs and introduce a new framework for diagnosing and improving multi-answer reasoning. We release SATA-BENCH and Choice Funnel to promote LLM development for robust decision-making in realistic, multi-answer applications. 6 authors · May 31, 2025 2
- You May Speak Freely: Improving the Fine-Grained Visual Recognition Capabilities of Multimodal Large Language Models with Answer Extraction Despite the renewed interest in zero-shot visual classification due to the rise of Multimodal Large Language Models (MLLMs), the problem of evaluating free-form responses of auto-regressive models remains a persistent challenge. Most existing works focus on language-only tasks or don't consider Multiple Choice Questions (MCQs) beyond 5-way options, both of which are critical capabilities to solve tasks in Fine-Grained Visual Classification (FGVC) where choice counts are in the hundreds to thousands and the choices are highly related. Furthermore, in this highly multi-way MCQ setting it is not clear how to extend LLM choice extraction to retrieval-based problems, where computing probabilities over the choice set is computationally costly. In this work we investigate nlg2choice, a simple two-stage method which first asks the MLLM an open-ended question for the task with minimal constraints, then uses text-only constrained decoding to predict the most likely choice. In retrieval settings, we compute the probability of the constrained response taking that choice with an early stopping method to significantly improve throughput. Our results show improvement over a suite of seven fine-grained visual datasets when evaluating in terms of classification and retrieval, and show that this performance holds over the various ways that users of LLMs can implement tasks in natural language. 6 authors · Oct 16, 2025
18 Learning from Failures in Multi-Attempt Reinforcement Learning Recent advancements in reinforcement learning (RL) for large language models (LLMs), exemplified by DeepSeek R1, have shown that even a simple question-answering task can substantially improve an LLM's reasoning capabilities. In this work, we extend this approach by modifying the task into a multi-attempt setting. Instead of generating a single response per question, the model is given multiple attempts, with feedback provided after incorrect responses. The multi-attempt task encourages the model to refine its previous attempts and improve search efficiency. Experimental results show that even a small LLM trained on a multi-attempt task achieves significantly higher accuracy when evaluated with more attempts, improving from 45.6% with 1 attempt to 52.5% with 2 attempts on the math benchmark. In contrast, the same LLM trained on a standard single-turn task exhibits only a marginal improvement, increasing from 42.3% to 43.2% when given more attempts during evaluation. The results indicate that, compared to the standard single-turn task, an LLM trained on a multi-attempt task achieves slightly better performance on math benchmarks while also learning to refine its responses more effectively based on user feedback. Full code is available at https://github.com/DualityRL/multi-attempt 3 authors · Mar 3, 2025 2
1 Augmenting Pre-trained Language Models with QA-Memory for Open-Domain Question Answering Retrieval augmented language models have recently become the standard for knowledge intensive tasks. Rather than relying purely on latent semantics within the parameters of large neural models, these methods enlist a semi-parametric memory to encode an index of knowledge for the model to retrieve over. Most prior work has employed text passages as the unit of knowledge, which has high coverage at the cost of interpretability, controllability, and efficiency. The opposite properties arise in other methods which have instead relied on knowledge base (KB) facts. At the same time, more recent work has demonstrated the effectiveness of storing and retrieving from an index of Q-A pairs derived from text lewis2021paq. This approach yields a high coverage knowledge representation that maintains KB-like properties due to its representations being more atomic units of information. In this work we push this line of research further by proposing a question-answer augmented encoder-decoder model and accompanying pretraining strategy. This yields an end-to-end system that not only outperforms prior QA retrieval methods on single-hop QA tasks but also enables compositional reasoning, as demonstrated by strong performance on two multi-hop QA datasets. Together, these methods improve the ability to interpret and control the model while narrowing the performance gap with passage retrieval systems. 5 authors · Apr 9, 2022
3 SQuAD: 100,000+ Questions for Machine Comprehension of Text We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of 51.0%, a significant improvement over a simple baseline (20%). However, human performance (86.8%) is much higher, indicating that the dataset presents a good challenge problem for future research. The dataset is freely available at https://stanford-qa.com 4 authors · Jun 16, 2016 1
- Text Modular Networks: Learning to Decompose Tasks in the Language of Existing Models We propose a general framework called Text Modular Networks(TMNs) for building interpretable systems that learn to solve complex tasks by decomposing them into simpler ones solvable by existing models. To ensure solvability of simpler tasks, TMNs learn the textual input-output behavior (i.e., language) of existing models through their datasets. This differs from prior decomposition-based approaches which, besides being designed specifically for each complex task, produce decompositions independent of existing sub-models. Specifically, we focus on Question Answering (QA) and show how to train a next-question generator to sequentially produce sub-questions targeting appropriate sub-models, without additional human annotation. These sub-questions and answers provide a faithful natural language explanation of the model's reasoning. We use this framework to build ModularQA, a system that can answer multi-hop reasoning questions by decomposing them into sub-questions answerable by a neural factoid single-span QA model and a symbolic calculator. Our experiments show that ModularQA is more versatile than existing explainable systems for DROP and HotpotQA datasets, is more robust than state-of-the-art blackbox (uninterpretable) systems, and generates more understandable and trustworthy explanations compared to prior work. 5 authors · Sep 1, 2020
- Measuring and Narrowing the Compositionality Gap in Language Models We investigate the ability of language models to perform compositional reasoning tasks where the overall solution depends on correctly composing the answers to sub-problems. We measure how often models can correctly answer all sub-problems but not generate the overall solution, a ratio we call the compositionality gap. We evaluate this ratio by asking multi-hop questions with answers that require composing multiple facts unlikely to have been observed together during pretraining. In the GPT-3 family of models, as model size increases we show that the single-hop question answering performance improves faster than the multi-hop performance does, therefore the compositionality gap does not decrease. This surprising result suggests that while more powerful models memorize and recall more factual knowledge, they show no corresponding improvement in their ability to perform this kind of compositional reasoning. We then demonstrate how elicitive prompting (such as chain of thought) narrows the compositionality gap by reasoning explicitly instead of implicitly. We present a new method, self-ask, that further improves on chain of thought. In our method, the model explicitly asks itself (and then answers) follow-up questions before answering the initial question. We finally show that self-ask's structured prompting lets us easily plug in a search engine to answer the follow-up questions, which additionally improves accuracy. 6 authors · Oct 7, 2022
1 A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers Readers of academic research papers often read with the goal of answering specific questions. Question Answering systems that can answer those questions can make consumption of the content much more efficient. However, building such tools requires data that reflect the difficulty of the task arising from complex reasoning about claims made in multiple parts of a paper. In contrast, existing information-seeking question answering datasets usually contain questions about generic factoid-type information. We therefore present QASPER, a dataset of 5,049 questions over 1,585 Natural Language Processing papers. Each question is written by an NLP practitioner who read only the title and abstract of the corresponding paper, and the question seeks information present in the full text. The questions are then answered by a separate set of NLP practitioners who also provide supporting evidence to answers. We find that existing models that do well on other QA tasks do not perform well on answering these questions, underperforming humans by at least 27 F1 points when answering them from entire papers, motivating further research in document-grounded, information-seeking QA, which our dataset is designed to facilitate. 6 authors · May 6, 2021
1 Reading Wikipedia to Answer Open-Domain Questions This paper proposes to tackle open- domain question answering using Wikipedia as the unique knowledge source: the answer to any factoid question is a text span in a Wikipedia article. This task of machine reading at scale combines the challenges of document retrieval (finding the relevant articles) with that of machine comprehension of text (identifying the answer spans from those articles). Our approach combines a search component based on bigram hashing and TF-IDF matching with a multi-layer recurrent neural network model trained to detect answers in Wikipedia paragraphs. Our experiments on multiple existing QA datasets indicate that (1) both modules are highly competitive with respect to existing counterparts and (2) multitask learning using distant supervision on their combination is an effective complete system on this challenging task. 4 authors · Mar 31, 2017
1 MS MARCO: A Human Generated MAchine Reading COmprehension Dataset We introduce a large scale MAchine Reading COmprehension dataset, which we name MS MARCO. The dataset comprises of 1,010,916 anonymized questions---sampled from Bing's search query logs---each with a human generated answer and 182,669 completely human rewritten generated answers. In addition, the dataset contains 8,841,823 passages---extracted from 3,563,535 web documents retrieved by Bing---that provide the information necessary for curating the natural language answers. A question in the MS MARCO dataset may have multiple answers or no answers at all. Using this dataset, we propose three different tasks with varying levels of difficulty: (i) predict if a question is answerable given a set of context passages, and extract and synthesize the answer as a human would (ii) generate a well-formed answer (if possible) based on the context passages that can be understood with the question and passage context, and finally (iii) rank a set of retrieved passages given a question. The size of the dataset and the fact that the questions are derived from real user search queries distinguishes MS MARCO from other well-known publicly available datasets for machine reading comprehension and question-answering. We believe that the scale and the real-world nature of this dataset makes it attractive for benchmarking machine reading comprehension and question-answering models. 15 authors · Nov 28, 2016
- Multiple Choice Learning of Low Rank Adapters for Language Modeling We propose LoRA-MCL, a training scheme that extends next-token prediction in language models with a method designed to decode diverse, plausible sentence continuations at inference time. Traditional language modeling is an intrinsically ill-posed problem: given a context, multiple futures may be equally plausible. Our approach leverages Multiple Choice Learning (MCL) and the Winner-Takes-All (WTA) loss to efficiently handle ambiguity through Low-Rank Adaptation (LoRA). We provide a theoretical interpretation of applying Multiple Choice Learning to Language Modeling, assuming the data is generated from a mixture of distributions. To illustrate the proposed approach, we use data sampled from mixtures of Markov chains. We then demonstrate with extensive experiments on real-world visual and audio captioning tasks that our method achieves high diversity and relevance in generated outputs. 7 authors · Jul 14, 2025
1 Minds versus Machines: Rethinking Entailment Verification with Language Models Humans make numerous inferences in text comprehension to understand discourse. This paper aims to understand the commonalities and disparities in the inference judgments between humans and state-of-the-art Large Language Models (LLMs). Leveraging a comprehensively curated entailment verification benchmark, we evaluate both human and LLM performance across various reasoning categories. Our benchmark includes datasets from three categories (NLI, contextual QA, and rationales) that include multi-sentence premises and different knowledge types, thereby evaluating the inference capabilities in complex reasoning instances. Notably, our findings reveal LLMs' superiority in multi-hop reasoning across extended contexts, while humans excel in tasks necessitating simple deductive reasoning. Leveraging these insights, we introduce a fine-tuned Flan-T5 model that outperforms GPT-3.5 and rivals with GPT-4, offering a robust open-source solution for entailment verification. As a practical application, we showcase the efficacy of our finetuned model in enhancing self-consistency in model-generated explanations, resulting in a 6% performance boost on average across three multiple-choice question-answering datasets. 5 authors · Feb 5, 2024
- Benchmarks for Pirá 2.0, a Reading Comprehension Dataset about the Ocean, the Brazilian Coast, and Climate Change Pir\'a is a reading comprehension dataset focused on the ocean, the Brazilian coast, and climate change, built from a collection of scientific abstracts and reports on these topics. This dataset represents a versatile language resource, particularly useful for testing the ability of current machine learning models to acquire expert scientific knowledge. Despite its potential, a detailed set of baselines has not yet been developed for Pir\'a. By creating these baselines, researchers can more easily utilize Pir\'a as a resource for testing machine learning models across a wide range of question answering tasks. In this paper, we define six benchmarks over the Pir\'a dataset, covering closed generative question answering, machine reading comprehension, information retrieval, open question answering, answer triggering, and multiple choice question answering. As part of this effort, we have also produced a curated version of the original dataset, where we fixed a number of grammar issues, repetitions, and other shortcomings. Furthermore, the dataset has been extended in several new directions, so as to face the aforementioned benchmarks: translation of supporting texts from English into Portuguese, classification labels for answerability, automatic paraphrases of questions and answers, and multiple choice candidates. The results described in this paper provide several points of reference for researchers interested in exploring the challenges provided by the Pir\'a dataset. 8 authors · Sep 19, 2023
- GreenMind: A Next-Generation Vietnamese Large Language Model for Structured and Logical Reasoning Chain-of-Thought (CoT) is a robust approach for tackling LLM tasks that require intermediate reasoning steps prior to generating a final answer. In this paper, we present GreenMind-Medium-14B-R1, the Vietnamese reasoning model inspired by the finetuning strategy based on Group Relative Policy Optimization. We also leverage a high-quality Vietnamese synthesized reasoning dataset and design two reward functions to tackle the main limitations of this technique: (i) language mixing, where we explicitly detect the presence of biased language characters during the process of sampling tokens, and (ii) we leverage Sentence Transformer-based models to ensure that the generated reasoning content maintains factual correctness and does not distort the final output. Experimental results on the Vietnamese dataset from the VLSP 2023 Challenge demonstrate that our model outperforms prior works and enhances linguistic consistency in its responses. Furthermore, we extend our evaluation to SeaExam-a multilingual multiple-choice dataset, showing the effectiveness of our reasoning method compared to few-shot prompting techniques. 3 authors · Apr 23, 2025
- "John is 50 years old, can his son be 65?" Evaluating NLP Models' Understanding of Feasibility In current NLP research, large-scale language models and their abilities are widely being discussed. Some recent works have also found notable failures of these models. Often these failure examples involve complex reasoning abilities. This work focuses on a simple commonsense ability, reasoning about when an action (or its effect) is feasible. To this end, we introduce FeasibilityQA, a question-answering dataset involving binary classification (BCQ) and multi-choice multi-correct questions (MCQ) that test understanding of feasibility. We show that even state-of-the-art models such as GPT-3, GPT-2, and T5 struggle to answer the feasibility questions correctly. Specifically, on MCQ and BCQ questions, GPT-3 achieves an accuracy of just (19%, 62%) and (25%, 64%) in zero-shot and few-shot settings, respectively. We also evaluate models by providing relevant knowledge statements required to answer the question. We find that the additional knowledge leads to a 7% gain in performance, but the overall performance still remains low. These results make one wonder how much commonsense knowledge about action feasibility is encoded in state-of-the-art models and how well they can reason about it. 8 authors · Oct 13, 2022
- ProtoQA: A Question Answering Dataset for Prototypical Common-Sense Reasoning Given questions regarding some prototypical situation such as Name something that people usually do before they leave the house for work? a human can easily answer them via acquired experiences. There can be multiple right answers for such questions, with some more common for a situation than others. This paper introduces a new question answering dataset for training and evaluating common sense reasoning capabilities of artificial intelligence systems in such prototypical situations. The training set is gathered from an existing set of questions played in a long-running international game show FAMILY- FEUD. The hidden evaluation set is created by gathering answers for each question from 100 crowd-workers. We also propose a generative evaluation task where a model has to output a ranked list of answers, ideally covering all prototypical answers for a question. After presenting multiple competitive baseline models, we find that human performance still exceeds model scores on all evaluation metrics with a meaningful gap, supporting the challenging nature of the task. 6 authors · May 2, 2020
- Look at the Text: Instruction-Tuned Language Models are More Robust Multiple Choice Selectors than You Think Multiple choice questions (MCQs) are commonly used to evaluate the capabilities of large language models (LLMs). One common way to evaluate the model response is to rank the candidate answers based on the log probability of the first token prediction. An alternative way is to examine the text output. Prior work has shown that first token probabilities lack robustness to changes in MCQ phrasing, and that first token probabilities do not match text answers for instruction-tuned models. Therefore, in this paper, we investigate the robustness of text answers. We show that the text answers are more robust to question perturbations than the first token probabilities, when the first token answers mismatch the text answers. The difference in robustness increases as the mismatch rate becomes greater. As the mismatch reaches over 50\%, the text answer is more robust to option order changes than the debiased first token probabilities using state-of-the-art debiasing methods such as PriDe. Our findings provide further evidence for the benefits of text answer evaluation over first token probability evaluation. 5 authors · Apr 12, 2024
2 Improving Factuality and Reasoning in Language Models through Multiagent Debate Large language models (LLMs) have demonstrated remarkable capabilities in language generation, understanding, and few-shot learning in recent years. An extensive body of work has explored how their performance may be further improved through the tools of prompting, ranging from verification, self-consistency, or intermediate scratchpads. In this paper, we present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer. Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks. We also demonstrate that our approach improves the factual validity of generated content, reducing fallacious answers and hallucinations that contemporary models are prone to. Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate. Overall, our findings suggest that such "society of minds" approach has the potential to significantly advance the capabilities of LLMs and pave the way for further breakthroughs in language generation and understanding. 5 authors · May 23, 2023
16 SQuARE: Sequential Question Answering Reasoning Engine for Enhanced Chain-of-Thought in Large Language Models In the rapidly evolving field of Natural Language Processing, Large Language Models (LLMs) are tasked with increasingly complex reasoning challenges. Traditional methods like chain-of-thought prompting have shown promise but often fall short in fully leveraging a model's reasoning capabilities. This paper introduces SQuARE (Sequential Question Answering Reasoning Engine), a novel prompting technique designed to improve reasoning through a self-interrogation paradigm. Building upon CoT frameworks, SQuARE prompts models to generate and resolve multiple auxiliary questions before tackling the main query, promoting a more thorough exploration of various aspects of a topic. Our expansive evaluations, conducted with Llama 3 and GPT-4o models across multiple question-answering datasets, demonstrate that SQuARE significantly surpasses traditional CoT prompts and existing rephrase-and-respond methods. By systematically decomposing queries, SQuARE advances LLM capabilities in reasoning tasks. The code is publicly available at https://github.com/IntelLabs/RAG-FiT/tree/square. 4 authors · Feb 13, 2025 2
- Efficient Single-Pass Training for Multi-Turn Reasoning Training Large Language Models ( LLMs) to generate explicit reasoning before they produce an answer has been shown to improve their performance across various tasks such as mathematics and coding. However, fine-tuning LLMs on multi-turn reasoning datasets presents a unique challenge: LLMs must generate reasoning tokens that are excluded from subsequent inputs to the LLM. This discrepancy prevents us from processing an entire conversation in a single forward pass-an optimization readily available when we fine-tune on a multi-turn non-reasoning dataset. This paper proposes a novel approach that overcomes this limitation through response token duplication and a custom attention mask that enforces appropriate visibility constraints. Our approach significantly reduces the training time and allows efficient fine-tuning on multi-turn reasoning datasets. 3 authors · Apr 25, 2025
- Are Language Models Puzzle Prodigies? Algorithmic Puzzles Unveil Serious Challenges in Multimodal Reasoning This paper introduces the novel task of multimodal puzzle solving, framed within the context of visual question-answering. We present a new dataset, AlgoPuzzleVQA designed to challenge and evaluate the capabilities of multimodal language models in solving algorithmic puzzles that necessitate both visual understanding, language understanding, and complex algorithmic reasoning. We create the puzzles to encompass a diverse array of mathematical and algorithmic topics such as boolean logic, combinatorics, graph theory, optimization, search, etc., aiming to evaluate the gap between visual data interpretation and algorithmic problem-solving skills. The dataset is generated automatically from code authored by humans. All our puzzles have exact solutions that can be found from the algorithm without tedious human calculations. It ensures that our dataset can be scaled up arbitrarily in terms of reasoning complexity and dataset size. Our investigation reveals that large language models (LLMs) such as GPT4V and Gemini exhibit limited performance in puzzle-solving tasks. We find that their performance is near random in a multi-choice question-answering setup for a significant number of puzzles. The findings emphasize the challenges of integrating visual, language, and algorithmic knowledge for solving complex reasoning problems. 4 authors · Mar 6, 2024
1 Multimodal Multi-Hop Question Answering Through a Conversation Between Tools and Efficiently Finetuned Large Language Models We employ a tool-interacting divide-and-conquer strategy enabling large language models (LLMs) to answer complex multimodal multi-hop questions. In particular, we harness the power of large language models to divide a given multimodal multi-hop question into unimodal single-hop sub-questions to be answered by the appropriate tool from a predefined set of tools. After all corresponding tools provide the LLM with their answers, the LLM generates the next relevant unimodal single-hop question. To increase the reasoning ability of LLMs, we prompt chatGPT to generate a tool-interacting divide-and-conquer dataset. This dataset is then used to efficiently finetune the corresponding LLM. To assess the effectiveness of this approach, we conduct an evaluation on two recently introduced complex question-answering datasets. The experimental analysis demonstrate substantial improvements over existing state-of-the-art solutions, indicating the efficacy and generality of our strategy 4 authors · Sep 16, 2023
- PAIR: Leveraging Passage-Centric Similarity Relation for Improving Dense Passage Retrieval Recently, dense passage retrieval has become a mainstream approach to finding relevant information in various natural language processing tasks. A number of studies have been devoted to improving the widely adopted dual-encoder architecture. However, most of the previous studies only consider query-centric similarity relation when learning the dual-encoder retriever. In order to capture more comprehensive similarity relations, we propose a novel approach that leverages both query-centric and PAssage-centric sImilarity Relations (called PAIR) for dense passage retrieval. To implement our approach, we make three major technical contributions by introducing formal formulations of the two kinds of similarity relations, generating high-quality pseudo labeled data via knowledge distillation, and designing an effective two-stage training procedure that incorporates passage-centric similarity relation constraint. Extensive experiments show that our approach significantly outperforms previous state-of-the-art models on both MSMARCO and Natural Questions datasets. 9 authors · Aug 12, 2021
1 Answering Unseen Questions With Smaller Language Models Using Rationale Generation and Dense Retrieval When provided with sufficient explanatory context, smaller Language Models have been shown to exhibit strong reasoning ability on challenging short-answer question-answering tasks where the questions are unseen in training. We evaluate two methods for further improvement in this setting. Both methods focus on combining rationales generated by a larger Language Model with longer contexts created from a multi-hop dense retrieval system. The first method (RR) involves training a Rationale Ranking model to score both generated rationales and retrieved contexts with respect to relevance and truthfulness. We then use the scores to derive combined contexts from both knowledge sources using a number of combinatory strategies. For the second method (RATD) we utilise retrieval-augmented training datasets developed by Hartill et al. 2023 to train a smaller Reasoning model such that it becomes proficient at utilising relevant information from longer text sequences that may be only partially evidential and frequently contain many irrelevant sentences. We find that both methods significantly improve results. Our single best Reasoning model materially improves upon strong comparable prior baselines for unseen evaluation datasets (StrategyQA 58.9 rightarrow 61.7 acc., CommonsenseQA 63.6 rightarrow 72.7 acc., ARC-DA 31.6 rightarrow 52.1 F1, IIRC 25.5 rightarrow 27.3 F1) and a version utilising our prior knowledge of each type of question in selecting a context combination strategy does even better. Our proposed models also generally outperform direct prompts against much larger models (BLOOM 175B and StableVicuna 13B) in both few-shot chain-of-thought and standard few-shot settings. 4 authors · Aug 9, 2023
- NLP at UC Santa Cruz at SemEval-2024 Task 5: Legal Answer Validation using Few-Shot Multi-Choice QA This paper presents our submission to the SemEval 2024 Task 5: The Legal Argument Reasoning Task in Civil Procedure. We present two approaches to solving the task of legal answer validation, given an introduction to the case, a question and an answer candidate. Firstly, we fine-tuned pre-trained BERT-based models and found that models trained on domain knowledge perform better. Secondly, we performed few-shot prompting on GPT models and found that reformulating the answer validation task to be a multiple-choice QA task remarkably improves the performance of the model. Our best submission is a BERT-based model that achieved the 7th place out of 20. 3 authors · Apr 3, 2024
- Passage Re-ranking with BERT Recently, neural models pretrained on a language modeling task, such as ELMo (Peters et al., 2017), OpenAI GPT (Radford et al., 2018), and BERT (Devlin et al., 2018), have achieved impressive results on various natural language processing tasks such as question-answering and natural language inference. In this paper, we describe a simple re-implementation of BERT for query-based passage re-ranking. Our system is the state of the art on the TREC-CAR dataset and the top entry in the leaderboard of the MS MARCO passage retrieval task, outperforming the previous state of the art by 27% (relative) in MRR@10. The code to reproduce our results is available at https://github.com/nyu-dl/dl4marco-bert 2 authors · Jan 13, 2019
- UnifiedQA: Crossing Format Boundaries With a Single QA System Question answering (QA) tasks have been posed using a variety of formats, such as extractive span selection, multiple choice, etc. This has led to format-specialized models, and even to an implicit division in the QA community. We argue that such boundaries are artificial and perhaps unnecessary, given the reasoning abilities we seek to teach are not governed by the format. As evidence, we use the latest advances in language modeling to build a single pre-trained QA model, UnifiedQA, that performs surprisingly well across 17 QA datasets spanning 4 diverse formats. UnifiedQA performs on par with 9 different models that were trained on individual datasets themselves. Even when faced with 12 unseen datasets of observed formats, UnifiedQA performs surprisingly well, showing strong generalization from its out-of-format training data. Finally, simply fine-tuning this pre-trained QA model into specialized models results in a new state of the art on 6 datasets, establishing UnifiedQA as a strong starting point for building QA systems. 7 authors · May 2, 2020
2 Making Retrieval-Augmented Language Models Robust to Irrelevant Context Retrieval-augmented language models (RALMs) hold promise to produce language understanding systems that are are factual, efficient, and up-to-date. An important desideratum of RALMs, is that retrieved information helps model performance when it is relevant, and does not harm performance when it is not. This is particularly important in multi-hop reasoning scenarios, where misuse of irrelevant evidence can lead to cascading errors. However, recent work has shown that retrieval augmentation can sometimes have a negative effect on performance. In this work, we present a thorough analysis on five open-domain question answering benchmarks, characterizing cases when retrieval reduces accuracy. We then propose two methods to mitigate this issue. First, a simple baseline that filters out retrieved passages that do not entail question-answer pairs according to a natural language inference (NLI) model. This is effective in preventing performance reduction, but at a cost of also discarding relevant passages. Thus, we propose a method for automatically generating data to fine-tune the language model to properly leverage retrieved passages, using a mix of relevant and irrelevant contexts at training time. We empirically show that even 1,000 examples suffice to train the model to be robust to irrelevant contexts while maintaining high performance on examples with relevant ones. 4 authors · Oct 2, 2023
- Quizbowl: The Case for Incremental Question Answering Scholastic trivia competitions test knowledge and intelligence through mastery of question answering. Modern question answering benchmarks are one variant of the Turing test. Specifically, answering a set of questions as well as a human is a minimum bar towards demonstrating human-like intelligence. This paper makes the case that the format of one competition -- where participants can answer in the middle of hearing a question (incremental) -- better differentiates the skill between (human or machine) players. Additionally, merging a sequential decision-making sub-task with question answering (QA) provides a good setting for research in model calibration and opponent modeling. Thus, embedded in this task are three machine learning challenges: (1) factoid QA over thousands of Wikipedia-like answers, (2) calibration of the QA model's confidence scores, and (3) sequential decision-making that incorporates knowledge of the QA model, its calibration, and what the opponent may do. We make two contributions: (1) collecting and curating a large factoid QA dataset and an accompanying gameplay dataset, and (2) developing a model that addresses these three machine learning challenges. In addition to offline evaluation, we pitted our model against some of the most accomplished trivia players in the world in a series of exhibition matches spanning several years. Throughout this paper, we show that collaborations with the vibrant trivia community have contributed to the quality of our dataset, spawned new research directions, and doubled as an exciting way to engage the public with research in machine learning and natural language processing. 5 authors · Apr 9, 2019
- First Token Probability Guided RAG for Telecom Question Answering Large Language Models (LLMs) have garnered significant attention for their impressive general-purpose capabilities. For applications requiring intricate domain knowledge, Retrieval-Augmented Generation (RAG) has shown a distinct advantage in incorporating domain-specific information into LLMs. However, existing RAG research has not fully addressed the challenges of Multiple Choice Question Answering (MCQA) in telecommunications, particularly in terms of retrieval quality and mitigating hallucinations. To tackle these challenges, we propose a novel first token probability guided RAG framework. This framework leverages confidence scores to optimize key hyperparameters, such as chunk number and chunk window size, while dynamically adjusting the context. Our method starts by retrieving the most relevant chunks and generates a single token as the potential answer. The probabilities of all options are then normalized to serve as confidence scores, which guide the dynamic adjustment of the context. By iteratively optimizing the hyperparameters based on these confidence scores, we can continuously improve RAG performance. We conducted experiments to validate the effectiveness of our framework, demonstrating its potential to enhance accuracy in domain-specific MCQA tasks. 6 authors · Jan 11, 2025
3 HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering Existing question answering (QA) datasets fail to train QA systems to perform complex reasoning and provide explanations for answers. We introduce HotpotQA, a new dataset with 113k Wikipedia-based question-answer pairs with four key features: (1) the questions require finding and reasoning over multiple supporting documents to answer; (2) the questions are diverse and not constrained to any pre-existing knowledge bases or knowledge schemas; (3) we provide sentence-level supporting facts required for reasoning, allowing QA systems to reason with strong supervision and explain the predictions; (4) we offer a new type of factoid comparison questions to test QA systems' ability to extract relevant facts and perform necessary comparison. We show that HotpotQA is challenging for the latest QA systems, and the supporting facts enable models to improve performance and make explainable predictions. 7 authors · Sep 25, 2018
1 A Simple and Effective Model for Answering Multi-span Questions Models for reading comprehension (RC) commonly restrict their output space to the set of all single contiguous spans from the input, in order to alleviate the learning problem and avoid the need for a model that generates text explicitly. However, forcing an answer to be a single span can be restrictive, and some recent datasets also include multi-span questions, i.e., questions whose answer is a set of non-contiguous spans in the text. Naturally, models that return single spans cannot answer these questions. In this work, we propose a simple architecture for answering multi-span questions by casting the task as a sequence tagging problem, namely, predicting for each input token whether it should be part of the output or not. Our model substantially improves performance on span extraction questions from DROP and Quoref by 9.9 and 5.5 EM points respectively. 5 authors · Sep 29, 2019 1
- Unifying Vision-and-Language Tasks via Text Generation Existing methods for vision-and-language learning typically require designing task-specific architectures and objectives for each task. For example, a multi-label answer classifier for visual question answering, a region scorer for referring expression comprehension, and a language decoder for image captioning, etc. To alleviate these hassles, in this work, we propose a unified framework that learns different tasks in a single architecture with the same language modeling objective, i.e., multimodal conditional text generation, where our models learn to generate labels in text based on the visual and textual inputs. On 7 popular vision-and-language benchmarks, including visual question answering, referring expression comprehension, visual commonsense reasoning, most of which have been previously modeled as discriminative tasks, our generative approach (with a single unified architecture) reaches comparable performance to recent task-specific state-of-the-art vision-and-language models. Moreover, our generative approach shows better generalization ability on questions that have rare answers. Also, we show that our framework allows multi-task learning in a single architecture with a single set of parameters, achieving similar performance to separately optimized single-task models. Our code is publicly available at: https://github.com/j-min/VL-T5 4 authors · Feb 4, 2021
- Did Aristotle Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies A key limitation in current datasets for multi-hop reasoning is that the required steps for answering the question are mentioned in it explicitly. In this work, we introduce StrategyQA, a question answering (QA) benchmark where the required reasoning steps are implicit in the question, and should be inferred using a strategy. A fundamental challenge in this setup is how to elicit such creative questions from crowdsourcing workers, while covering a broad range of potential strategies. We propose a data collection procedure that combines term-based priming to inspire annotators, careful control over the annotator population, and adversarial filtering for eliminating reasoning shortcuts. Moreover, we annotate each question with (1) a decomposition into reasoning steps for answering it, and (2) Wikipedia paragraphs that contain the answers to each step. Overall, StrategyQA includes 2,780 examples, each consisting of a strategy question, its decomposition, and evidence paragraphs. Analysis shows that questions in StrategyQA are short, topic-diverse, and cover a wide range of strategies. Empirically, we show that humans perform well (87%) on this task, while our best baseline reaches an accuracy of sim66%. 6 authors · Jan 6, 2021
- CliCR: A Dataset of Clinical Case Reports for Machine Reading Comprehension We present a new dataset for machine comprehension in the medical domain. Our dataset uses clinical case reports with around 100,000 gap-filling queries about these cases. We apply several baselines and state-of-the-art neural readers to the dataset, and observe a considerable gap in performance (20% F1) between the best human and machine readers. We analyze the skills required for successful answering and show how reader performance varies depending on the applicable skills. We find that inferences using domain knowledge and object tracking are the most frequently required skills, and that recognizing omitted information and spatio-temporal reasoning are the most difficult for the machines. 2 authors · Mar 26, 2018
1 SEM: Reinforcement Learning for Search-Efficient Large Language Models Recent advancements in Large Language Models(LLMs) have demonstrated their capabilities not only in reasoning but also in invoking external tools, particularly search engines. However, teaching models to discern when to invoke search and when to rely on their internal knowledge remains a significant challenge. Existing reinforcement learning approaches often lead to redundant search behaviors, resulting in inefficiencies and over-cost. In this paper, we propose SEM, a novel post-training reinforcement learning framework that explicitly trains LLMs to optimize search usage. By constructing a balanced dataset combining MuSiQue and MMLU, we create scenarios where the model must learn to distinguish between questions it can answer directly and those requiring external retrieval. We design a structured reasoning template and employ Group Relative Policy Optimization(GRPO) to post-train the model's search behaviors. Our reward function encourages accurate answering without unnecessary search while promoting effective retrieval when needed. Experimental results demonstrate that our method significantly reduces redundant search operations while maintaining or improving answer accuracy across multiple challenging benchmarks. This framework advances the model's reasoning efficiency and extends its capability to judiciously leverage external knowledge. 3 authors · May 12, 2025
- CHIME: Cross-passage Hierarchical Memory Network for Generative Review Question Answering We introduce CHIME, a cross-passage hierarchical memory network for question answering (QA) via text generation. It extends XLNet introducing an auxiliary memory module consisting of two components: the context memory collecting cross-passage evidences, and the answer memory working as a buffer continually refining the generated answers. Empirically, we show the efficacy of the proposed architecture in the multi-passage generative QA, outperforming the state-of-the-art baselines with better syntactically well-formed answers and increased precision in addressing the questions of the AmazonQA review dataset. An additional qualitative analysis revealed the interpretability introduced by the memory module. 5 authors · Nov 1, 2020
1 Are Large Language Models Good at Utility Judgments? Retrieval-augmented generation (RAG) is considered to be a promising approach to alleviate the hallucination issue of large language models (LLMs), and it has received widespread attention from researchers recently. Due to the limitation in the semantic understanding of retrieval models, the success of RAG heavily lies on the ability of LLMs to identify passages with utility. Recent efforts have explored the ability of LLMs to assess the relevance of passages in retrieval, but there has been limited work on evaluating the utility of passages in supporting question answering. In this work, we conduct a comprehensive study about the capabilities of LLMs in utility evaluation for open-domain QA. Specifically, we introduce a benchmarking procedure and collection of candidate passages with different characteristics, facilitating a series of experiments with five representative LLMs. Our experiments reveal that: (i) well-instructed LLMs can distinguish between relevance and utility, and that LLMs are highly receptive to newly generated counterfactual passages. Moreover, (ii) we scrutinize key factors that affect utility judgments in the instruction design. And finally, (iii) to verify the efficacy of utility judgments in practical retrieval augmentation applications, we delve into LLMs' QA capabilities using the evidence judged with utility and direct dense retrieval results. (iv) We propose a k-sampling, listwise approach to reduce the dependency of LLMs on the sequence of input passages, thereby facilitating subsequent answer generation. We believe that the way we formalize and study the problem along with our findings contributes to a critical assessment of retrieval-augmented LLMs. Our code and benchmark can be found at https://github.com/ict-bigdatalab/utility_judgments. 6 authors · Mar 28, 2024
- CODAH: An Adversarially Authored Question-Answer Dataset for Common Sense Commonsense reasoning is a critical AI capability, but it is difficult to construct challenging datasets that test common sense. Recent neural question answering systems, based on large pre-trained models of language, have already achieved near-human-level performance on commonsense knowledge benchmarks. These systems do not possess human-level common sense, but are able to exploit limitations of the datasets to achieve human-level scores. We introduce the CODAH dataset, an adversarially-constructed evaluation dataset for testing common sense. CODAH forms a challenging extension to the recently-proposed SWAG dataset, which tests commonsense knowledge using sentence-completion questions that describe situations observed in video. To produce a more difficult dataset, we introduce a novel procedure for question acquisition in which workers author questions designed to target weaknesses of state-of-the-art neural question answering systems. Workers are rewarded for submissions that models fail to answer correctly both before and after fine-tuning (in cross-validation). We create 2.8k questions via this procedure and evaluate the performance of multiple state-of-the-art question answering systems on our dataset. We observe a significant gap between human performance, which is 95.3%, and the performance of the best baseline accuracy of 67.5% by the BERT-Large model. 5 authors · Apr 8, 2019
- PUB: A Pragmatics Understanding Benchmark for Assessing LLMs' Pragmatics Capabilities LLMs have demonstrated remarkable capability for understanding semantics, but they often struggle with understanding pragmatics. To demonstrate this fact, we release a Pragmatics Understanding Benchmark (PUB) dataset consisting of fourteen tasks in four pragmatics phenomena, namely, Implicature, Presupposition, Reference, and Deixis. We curated high-quality test sets for each task, consisting of Multiple Choice Question Answers (MCQA). PUB includes a total of 28k data points, 6.1k of which have been created by us, and the rest are adapted from existing datasets. We evaluated nine models varying in the number of parameters and type of training. Our study indicates that fine-tuning for instruction-following and chat significantly enhances the pragmatics capabilities of smaller language models. However, for larger models, the base versions perform comparably with their chat-adapted counterparts. Additionally, there is a noticeable performance gap between human capabilities and model capabilities. Furthermore, unlike the consistent performance of humans across various tasks, the models demonstrate variability in their proficiency, with performance levels fluctuating due to different hints and the complexities of tasks within the same dataset. Overall, the benchmark aims to provide a comprehensive evaluation of LLM's ability to handle real-world language tasks that require pragmatic reasoning. 6 authors · Jan 13, 2024
- Leveraging Passage Retrieval with Generative Models for Open Domain Question Answering Generative models for open domain question answering have proven to be competitive, without resorting to external knowledge. While promising, this approach requires to use models with billions of parameters, which are expensive to train and query. In this paper, we investigate how much these models can benefit from retrieving text passages, potentially containing evidence. We obtain state-of-the-art results on the Natural Questions and TriviaQA open benchmarks. Interestingly, we observe that the performance of this method significantly improves when increasing the number of retrieved passages. This is evidence that generative models are good at aggregating and combining evidence from multiple passages. 2 authors · Jul 2, 2020
1 Faithful Reasoning Using Large Language Models Although contemporary large language models (LMs) demonstrate impressive question-answering capabilities, their answers are typically the product of a single call to the model. This entails an unwelcome degree of opacity and compromises performance, especially on problems that are inherently multi-step. To address these limitations, we show how LMs can be made to perform faithful multi-step reasoning via a process whose causal structure mirrors the underlying logical structure of the problem. Our approach works by chaining together reasoning steps, where each step results from calls to two fine-tuned LMs, one for selection and one for inference, to produce a valid reasoning trace. Our method carries out a beam search through the space of reasoning traces to improve reasoning quality. We demonstrate the effectiveness of our model on multi-step logical deduction and scientific question-answering, showing that it outperforms baselines on final answer accuracy, and generates humanly interpretable reasoning traces whose validity can be checked by the user. 2 authors · Aug 30, 2022
3 PRISMM-Bench: A Benchmark of Peer-Review Grounded Multimodal Inconsistencies Large Multimodal Models (LMMs) are increasingly applied to scientific research, yet it remains unclear whether they can reliably understand and reason over the multimodal complexity of papers. A central challenge lies in detecting and resolving inconsistencies across text, figures, tables, and equations, issues that are often subtle, domain-specific, and ultimately undermine clarity, reproducibility, and trust. Existing benchmarks overlook this issue, either isolating single modalities or relying on synthetic errors that fail to capture real-world complexity. We introduce PRISMM-Bench (Peer-Review-sourced Inconsistency Set for Multimodal Models), the first benchmark grounded in real reviewer-flagged inconsistencies in scientific papers. Through a multi-stage pipeline of review mining, LLM-assisted filtering and human verification, we curate 262 inconsistencies from 242 papers. Based on this set, we design three tasks, namely inconsistency identification, remedy and pair matching, which assess a model's capacity to detect, correct, and reason over inconsistencies across different modalities. Furthermore, to address the notorious problem of choice-only shortcuts in multiple-choice evaluation, where models exploit answer patterns without truly understanding the question, we further introduce structured JSON-based answer representations that minimize linguistic biases by reducing reliance on superficial stylistic cues. We benchmark 21 leading LMMs, including large open-weight models (GLM-4.5V 106B, InternVL3 78B) and proprietary models (Gemini 2.5 Pro, GPT-5 with high reasoning). Results reveal strikingly low performance (26.1-54.2%), underscoring the challenge of multimodal scientific reasoning and motivating progress towards trustworthy scientific assistants. 7 authors · Oct 18, 2025 2
- Stacked Attention Networks for Image Question Answering This paper presents stacked attention networks (SANs) that learn to answer natural language questions from images. SANs use semantic representation of a question as query to search for the regions in an image that are related to the answer. We argue that image question answering (QA) often requires multiple steps of reasoning. Thus, we develop a multiple-layer SAN in which we query an image multiple times to infer the answer progressively. Experiments conducted on four image QA data sets demonstrate that the proposed SANs significantly outperform previous state-of-the-art approaches. The visualization of the attention layers illustrates the progress that the SAN locates the relevant visual clues that lead to the answer of the question layer-by-layer. 5 authors · Nov 6, 2015
4 Bidirectional LMs are Better Knowledge Memorizers? A Benchmark for Real-world Knowledge Injection Despite significant advances in large language models (LLMs), their knowledge memorization capabilities remain underexplored, due to the lack of standardized and high-quality test ground. In this paper, we introduce a novel, real-world and large-scale knowledge injection benchmark that evolves continuously over time without requiring human intervention. Specifically, we propose WikiDYK, which leverages recently-added and human-written facts from Wikipedia's "Did You Know..." entries. These entries are carefully selected by expert Wikipedia editors based on criteria such as verifiability and clarity. Each entry is converted into multiple question-answer pairs spanning diverse task formats from easy cloze prompts to complex multi-hop questions. WikiDYK contains 12,290 facts and 77,180 questions, which is also seamlessly extensible with future updates from Wikipedia editors. Extensive experiments using continued pre-training reveal a surprising insight: despite their prevalence in modern LLMs, Causal Language Models (CLMs) demonstrate significantly weaker knowledge memorization capabilities compared to Bidirectional Language Models (BiLMs), exhibiting a 23% lower accuracy in terms of reliability. To compensate for the smaller scales of current BiLMs, we introduce a modular collaborative framework utilizing ensembles of BiLMs as external knowledge repositories to integrate with LLMs. Experiment shows that our framework further improves the reliability accuracy by up to 29.1%. 8 authors · May 18, 2025 2
1 Solving and Generating NPR Sunday Puzzles with Large Language Models We explore the ability of large language models to solve and generate puzzles from the NPR Sunday Puzzle game show using PUZZLEQA, a dataset comprising 15 years of on-air puzzles. We evaluate four large language models using PUZZLEQA, in both multiple choice and free response formats, and explore two prompt engineering techniques to improve free response performance: chain-of-thought reasoning and prompt summarization. We find that state-of-the-art large language models can solve many PUZZLEQA puzzles: the best model, GPT-3.5, achieves 50.2% loose accuracy. However, in our few-shot puzzle generation experiment, we find no evidence that models can generate puzzles: GPT-3.5 generates puzzles with answers that do not conform to the generated rules. Puzzle generation remains a challenging task for future work. 2 authors · Jun 21, 2023
- Bidirectional Attention Flow for Machine Comprehension Machine comprehension (MC), answering a query about a given context paragraph, requires modeling complex interactions between the context and the query. Recently, attention mechanisms have been successfully extended to MC. Typically these methods use attention to focus on a small portion of the context and summarize it with a fixed-size vector, couple attentions temporally, and/or often form a uni-directional attention. In this paper we introduce the Bi-Directional Attention Flow (BIDAF) network, a multi-stage hierarchical process that represents the context at different levels of granularity and uses bi-directional attention flow mechanism to obtain a query-aware context representation without early summarization. Our experimental evaluations show that our model achieves the state-of-the-art results in Stanford Question Answering Dataset (SQuAD) and CNN/DailyMail cloze test. 4 authors · Nov 5, 2016
6 GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints Multi-query attention (MQA), which only uses a single key-value head, drastically speeds up decoder inference. However, MQA can lead to quality degradation, and moreover it may not be desirable to train a separate model just for faster inference. We (1) propose a recipe for uptraining existing multi-head language model checkpoints into models with MQA using 5% of original pre-training compute, and (2) introduce grouped-query attention (GQA), a generalization of multi-query attention which uses an intermediate (more than one, less than number of query heads) number of key-value heads. We show that uptrained GQA achieves quality close to multi-head attention with comparable speed to MQA. 6 authors · May 22, 2023
- Learning to Reason Across Parallel Samples for LLM Reasoning Scaling test-time compute brings substantial performance gains for large language models (LLMs). By sampling multiple answers and heuristically aggregate their answers (e.g., either through majority voting or using verifiers to rank the answers), one can achieve consistent performance gains in math domains. In this paper, we propose a new way to leverage such multiple sample set. We train a compact LLM, called Sample Set Aggregator (SSA), that takes a concatenated sequence of multiple samples and output the final answer, optimizing it for the answer accuracy with reinforcement learning. Experiments on multiple reasoning datasets show that SSA outperforms other test-time scaling methods such as reward model-based re-ranking. Our approach also shows a promising generalization ability, across sample set sizes, base model families and scales, and tasks. By separating LLMs to generate answers and LLMs to analyze and aggregate sampled answers, our approach can work with the outputs from premier black box models easily and efficiently. 5 authors · Jun 10, 2025
- SciDQA: A Deep Reading Comprehension Dataset over Scientific Papers Scientific literature is typically dense, requiring significant background knowledge and deep comprehension for effective engagement. We introduce SciDQA, a new dataset for reading comprehension that challenges LLMs for a deep understanding of scientific articles, consisting of 2,937 QA pairs. Unlike other scientific QA datasets, SciDQA sources questions from peer reviews by domain experts and answers by paper authors, ensuring a thorough examination of the literature. We enhance the dataset's quality through a process that carefully filters out lower quality questions, decontextualizes the content, tracks the source document across different versions, and incorporates a bibliography for multi-document question-answering. Questions in SciDQA necessitate reasoning across figures, tables, equations, appendices, and supplementary materials, and require multi-document reasoning. We evaluate several open-source and proprietary LLMs across various configurations to explore their capabilities in generating relevant and factual responses. Our comprehensive evaluation, based on metrics for surface-level similarity and LLM judgements, highlights notable performance discrepancies. SciDQA represents a rigorously curated, naturally derived scientific QA dataset, designed to facilitate research on complex scientific text understanding. 3 authors · Nov 8, 2024
- EduQG: A Multi-format Multiple Choice Dataset for the Educational Domain We introduce a high-quality dataset that contains 3,397 samples comprising (i) multiple choice questions, (ii) answers (including distractors), and (iii) their source documents, from the educational domain. Each question is phrased in two forms, normal and close. Correct answers are linked to source documents with sentence-level annotations. Thus, our versatile dataset can be used for both question and distractor generation, as well as to explore new challenges such as question format conversion. Furthermore, 903 questions are accompanied by their cognitive complexity level as per Bloom's taxonomy. All questions have been generated by educational experts rather than crowd workers to ensure they are maintaining educational and learning standards. Our analysis and experiments suggest distinguishable differences between our dataset and commonly used ones for question generation for educational purposes. We believe this new dataset can serve as a valuable resource for research and evaluation in the educational domain. The dataset and baselines will be released to support further research in question generation. 5 authors · Oct 12, 2022
- STARC: Structured Annotations for Reading Comprehension We present STARC (Structured Annotations for Reading Comprehension), a new annotation framework for assessing reading comprehension with multiple choice questions. Our framework introduces a principled structure for the answer choices and ties them to textual span annotations. The framework is implemented in OneStopQA, a new high-quality dataset for evaluation and analysis of reading comprehension in English. We use this dataset to demonstrate that STARC can be leveraged for a key new application for the development of SAT-like reading comprehension materials: automatic annotation quality probing via span ablation experiments. We further show that it enables in-depth analyses and comparisons between machine and human reading comprehension behavior, including error distributions and guessing ability. Our experiments also reveal that the standard multiple choice dataset in NLP, RACE, is limited in its ability to measure reading comprehension. 47% of its questions can be guessed by machines without accessing the passage, and 18% are unanimously judged by humans as not having a unique correct answer. OneStopQA provides an alternative test set for reading comprehension which alleviates these shortcomings and has a substantially higher human ceiling performance. 3 authors · Apr 30, 2020
- Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding Recent state-of-the-art natural language understanding models, such as BERT and XLNet, score a pair of sentences (A and B) using multiple cross-attention operations - a process in which each word in sentence A attends to all words in sentence B and vice versa. As a result, computing the similarity between a query sentence and a set of candidate sentences, requires the propagation of all query-candidate sentence-pairs throughout a stack of cross-attention layers. This exhaustive process becomes computationally prohibitive when the number of candidate sentences is large. In contrast, sentence embedding techniques learn a sentence-to-vector mapping and compute the similarity between the sentence vectors via simple elementary operations. In this paper, we introduce Distilled Sentence Embedding (DSE) - a model that is based on knowledge distillation from cross-attentive models, focusing on sentence-pair tasks. The outline of DSE is as follows: Given a cross-attentive teacher model (e.g. a fine-tuned BERT), we train a sentence embedding based student model to reconstruct the sentence-pair scores obtained by the teacher model. We empirically demonstrate the effectiveness of DSE on five GLUE sentence-pair tasks. DSE significantly outperforms several ELMO variants and other sentence embedding methods, while accelerating computation of the query-candidate sentence-pairs similarities by several orders of magnitude, with an average relative degradation of 4.6% compared to BERT. Furthermore, we show that DSE produces sentence embeddings that reach state-of-the-art performance on universal sentence representation benchmarks. Our code is made publicly available at https://github.com/microsoft/Distilled-Sentence-Embedding. 6 authors · Aug 14, 2019
- Open-Domain Question Answering Goes Conversational via Question Rewriting We introduce a new dataset for Question Rewriting in Conversational Context (QReCC), which contains 14K conversations with 80K question-answer pairs. The task in QReCC is to find answers to conversational questions within a collection of 10M web pages (split into 54M passages). Answers to questions in the same conversation may be distributed across several web pages. QReCC provides annotations that allow us to train and evaluate individual subtasks of question rewriting, passage retrieval and reading comprehension required for the end-to-end conversational question answering (QA) task. We report the effectiveness of a strong baseline approach that combines the state-of-the-art model for question rewriting, and competitive models for open-domain QA. Our results set the first baseline for the QReCC dataset with F1 of 19.10, compared to the human upper bound of 75.45, indicating the difficulty of the setup and a large room for improvement. 6 authors · Oct 10, 2020
- A Unified Model for Reverse Dictionary and Definition Modelling We build a dual-way neural dictionary to retrieve words given definitions, and produce definitions for queried words. The model learns the two tasks simultaneously and handles unknown words via embeddings. It casts a word or a definition to the same representation space through a shared layer, then generates the other form in a multi-task fashion. Our method achieves promising automatic scores on previous benchmarks without extra resources. Human annotators prefer the model's outputs in both reference-less and reference-based evaluation, indicating its practicality. Analysis suggests that multiple objectives benefit learning. 2 authors · May 9, 2022
1 Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering When answering a question, humans utilize the information available across different modalities to synthesize a consistent and complete chain of thought (CoT). This process is normally a black box in the case of deep learning models like large-scale language models. Recently, science question benchmarks have been used to diagnose the multi-hop reasoning ability and interpretability of an AI system. However, existing datasets fail to provide annotations for the answers, or are restricted to the textual-only modality, small scales, and limited domain diversity. To this end, we present Science Question Answering (ScienceQA), a new benchmark that consists of ~21k multimodal multiple choice questions with a diverse set of science topics and annotations of their answers with corresponding lectures and explanations. We further design language models to learn to generate lectures and explanations as the chain of thought (CoT) to mimic the multi-hop reasoning process when answering ScienceQA questions. ScienceQA demonstrates the utility of CoT in language models, as CoT improves the question answering performance by 1.20% in few-shot GPT-3 and 3.99% in fine-tuned UnifiedQA. We also explore the upper bound for models to leverage explanations by feeding those in the input; we observe that it improves the few-shot performance of GPT-3 by 18.96%. Our analysis further shows that language models, similar to humans, benefit from explanations to learn from fewer data and achieve the same performance with just 40% of the data. The data and code are available at https://scienceqa.github.io. 9 authors · Sep 20, 2022