- The generalized roof F(1,2,n): Hodge structures and derived categories We consider generalized homogeneous roofs, i.e. quotients of simply connected, semisimple Lie groups by a parabolic subgroup, which admit two projective bundle structures. Given a general hyperplane section on such a variety, we consider the zero loci of its pushforwards along the projective bundle structures and we discuss their properties at the level of Hodge structures. In the case of the flag variety F(1,2,n) with its projections to P^{n-1} and G(2, n), we construct a derived embedding of the relevant zero loci by methods based on the study of B-brane categories in the context of a gauged linear sigma model. 4 authors · Oct 20, 2021
- Calabi-Yau fibrations, simple K-equivalence and mutations A homogeneous roof is a rational homogeneous variety of Picard rank 2 and index r equipped with two different mathbb P^{r-1}-bundle structures. We consider bundles of homogeneous roofs over a smooth projective variety, formulating a relative version of the duality of Calabi--Yau pairs associated to roofs of projective bundles. We discuss how derived equivalence of such pairs can lift to Calabi--Yau fibrations, extending a result of Bridgeland and Maciocia to higher-dimensional cases. We formulate an approach to prove that the DK-conjecture holds for a class of simple K-equivalent maps arising from bundles of roofs. As an example, we propose a pair of eight-dimensional Calabi--Yau varieties fibered in dual Calabi--Yau threefolds, related by a GLSM phase transition, and we prove derived equivalence with the methods above. 1 authors · Jun 11, 2020
- New counterexamples to the birational Torelli theorem for Calabi--Yau manifolds We produce counterexamples to the birational Torelli theorem for Calabi-Yau manifolds in arbitrarily high dimension: this is done by exhibiting a series of non birational pairs of Calabi-Yau (n^2-1)-folds which, for n geq 2 even, admit an isometry between their middle cohomologies. These varieties also satisfy an mathbb L-equivalence relation in the Grothendieck ring of varieties, i.e. the difference of their classes annihilates a power of the class of the affine line. We state this last property for a broader class of Calabi-Yau pairs, namely all those which are realized as pushforwards of a general (1,1)-section on a homogeneous roof in the sense of Kanemitsu, along its two extremal contractions. 1 authors · Nov 7, 2022
- RoofNet: A Global Multimodal Dataset for Roof Material Classification Natural disasters are increasing in frequency and severity, causing hundreds of billions of dollars in damage annually and posing growing threats to infrastructure and human livelihoods. Accurate data on roofing materials is critical for modeling building vulnerability to natural hazards such as earthquakes, floods, wildfires, and hurricanes, yet such data remain unavailable. To address this gap, we introduce RoofNet, the largest and most geographically diverse novel multimodal dataset to date, comprising over 51,500 samples from 184 geographically diverse sites pairing high-resolution Earth Observation (EO) imagery with curated text annotations for global roof material classification. RoofNet includes geographically diverse satellite imagery labeled with 14 key roofing types -- such as asphalt shingles, clay tiles, and metal sheets -- and is designed to enhance the fidelity of global exposure datasets through vision-language modeling (VLM). We sample EO tiles from climatically and architecturally distinct regions to construct a representative dataset. A subset of 6,000 images was annotated in collaboration with domain experts to fine-tune a VLM. We used geographic- and material-aware prompt tuning to enhance class separability. The fine-tuned model was then applied to the remaining EO tiles, with predictions refined through rule-based and human-in-the-loop verification. In addition to material labels, RoofNet provides rich metadata including roof shape, footprint area, solar panel presence, and indicators of mixed roofing materials (e.g., HVAC systems). RoofNet supports scalable, AI-driven risk assessment and serves as a downstream benchmark for evaluating model generalization across regions -- offering actionable insights for insurance underwriting, disaster preparedness, and infrastructure policy planning. 2 authors · May 25, 2025
- ZRG: A Dataset for Multimodal 3D Residential Rooftop Understanding A crucial part of any home is the roof over our heads to protect us from the elements. In this paper we present the Zeitview Rooftop Geometry (ZRG) dataset for residential rooftop understanding. ZRG is a large-scale residential rooftop dataset of over 20k properties collected through roof inspections from across the U.S. and contains multiple modalities including high resolution aerial orthomosaics, digital surface models (DSM), colored point clouds, and 3D roof wireframe annotations. We provide an in-depth analysis and perform several experimental baselines including roof outline extraction, monocular height estimation, and planar roof structure extraction, to illustrate a few of the numerous potential applications unlocked by this dataset. 3 authors · Apr 25, 2023
- Intuitive and Efficient Roof Modeling for Reconstruction and Synthesis We propose a novel and flexible roof modeling approach that can be used for constructing planar 3D polygon roof meshes. Our method uses a graph structure to encode roof topology and enforces the roof validity by optimizing a simple but effective planarity metric we propose. This approach is significantly more efficient than using general purpose 3D modeling tools such as 3ds Max or SketchUp, and more powerful and expressive than specialized tools such as the straight skeleton. Our optimization-based formulation is also flexible and can accommodate different styles and user preferences for roof modeling. We showcase two applications. The first application is an interactive roof editing framework that can be used for roof design or roof reconstruction from aerial images. We highlight the efficiency and generality of our approach by constructing a mesh-image paired dataset consisting of 2539 roofs. Our second application is a generative model to synthesize new roof meshes from scratch. We use our novel dataset to combine machine learning and our roof optimization techniques, by using transformers and graph convolutional networks to model roof topology, and our roof optimization methods to enforce the planarity constraint. 7 authors · Sep 15, 2021