new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 13

A Benchmark Time Series Dataset for Semiconductor Fabrication Manufacturing Constructed using Component-based Discrete-Event Simulation Models

Advancements in high-computing devices increase the necessity for improved and new understanding and development of smart manufacturing factories. Discrete-event models with simulators have been shown to be critical to architect, designing, building, and operating the manufacturing of semiconductor chips. The diffusion, implantation, and lithography machines have intricate processes due to their feedforward and feedback connectivity. The dataset collected from simulations of the factory models holds the promise of generating valuable machine-learning models. As surrogate data-based models, their executions are highly efficient compared to the physics-based counterpart models. For the development of surrogate models, it is beneficial to have publicly available benchmark simulation models that are grounded in factory models that have concise structures and accurate behaviors. Hence, in this research, a dataset is devised and constructed based on a benchmark model of an Intel semiconductor fabrication factory. The model is formalized using the Parallel Discrete-Event System Specification and executed using the DEVS-Suite simulator. The time series dataset is constructed using discrete-event time trajectories. This dataset is further analyzed and used to develop baseline univariate and multivariate machine learning models. The dataset can also be utilized in the machine learning community for behavioral analysis based on formalized and scalable component-based discrete-event models and simulations.

  • 4 authors
·
Aug 17, 2024

Efficient and tunable narrowband second-harmonic generation by a large-area etchless lithium niobate metasurface

Optical resonances in nanostructures enable strong enhancement of nonlinear processes at the nanoscale, such as second-harmonic generation (SHG), with high-Q modes providing intensified light--matter interactions and sharp spectral selectivity for applications in filtering, sensing, and nonlinear spectroscopy. Thanks to the recent advances in thin-film lithium niobate (TFLN) technology, these key features can be now translated to lithium niobate for realizing novel nanoscale nonlinear optical platforms. Here, we demonstrate a large-area metasurface, realized by scalable nanoimprint lithography, comprising a slanted titanium dioxide (TiO_2) nanograting on etchless TFLN for efficient narrowband SHG. This is enabled by the optimal coupling of quasi-bound state in the continuum (q-BIC) modes with a narrowband pulsed laser pump. The demonstrated normalized SHG efficiency is 0.15%,cm^2/GW, which is among the largest reported for LN metasurfaces. The low pump peak intensity (3.64~kW/cm^2) employed, which enables SHG even by continuous-wave pumping, allows envisioning integrated and portable photonic applications. SHG wavelength tuning from 870 to 920~nm with stable output power as well as polarization control is also achieved by off-normal pump illumination. This versatile platform opens new opportunities for sensing, THz generation and detection, and ultrafast electro-optic modulation of nonlinear optical signals.

  • 11 authors
·
Jan 31