new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

Training-Free Tokenizer Transplantation via Orthogonal Matching Pursuit

We present a training-free method to transplant tokenizers in pretrained large language models (LLMs) by reconstructing unseen token embeddings via Orthogonal Matching Pursuit (OMP). Specifically, we approximate each out-of-vocabulary token as a sparse linear combination of shared tokens, in two phases: first, compute each new token's representation in the donor embedding space with a small dictionary of shared anchor tokens, then transfer these same sparse coefficients back into the base model's embedding space. On two challenging cross-tokenizer tasks--LlamatoMistral NeMo (12B) and QwentoLlama (1B)--we show that OMP achieves best zero-shot preservation of the base model's performance across multiple benchmarks, while other zero-shot approaches degrade significantly. Compared to baselines (zero-init, mean-init, and existing approaches like WECHSEL, FOCUS, ZETT), OMP consistently achieves the best overall performance, effectively bridging large tokenizer discrepancies without gradient updates. Our analysis further identifies mismatched numerical tokenization schemes as a critical challenge for preserving mathematical reasoning capabilities. This technique enables direct reuse of pretrained model weights with new tokenizers, facilitating cross-tokenizer knowledge distillation, speculative decoding, ensembling, merging, and domain-specific vocabulary adaptations. We integrate our method into the open-source mergekit-tokensurgeon tool for post hoc vocabulary realignment.

  • 2 authors
·
Jun 6, 2025 2

Direct Numerical Layout Generation for 3D Indoor Scene Synthesis via Spatial Reasoning

Realistic 3D indoor scene synthesis is vital for embodied AI and digital content creation. It can be naturally divided into two subtasks: object generation and layout generation. While recent generative models have significantly advanced object-level quality and controllability, layout generation remains challenging due to limited datasets. Existing methods either overfit to these datasets or rely on predefined constraints to optimize numerical layout that sacrifice flexibility. As a result, they fail to generate scenes that are both open-vocabulary and aligned with fine-grained user instructions. We introduce DirectLayout, a framework that directly generates numerical 3D layouts from text descriptions using generalizable spatial reasoning of large language models (LLMs). DirectLayout decomposes the generation into three stages: producing a Bird's-Eye View (BEV) layout, lifting it into 3D space, and refining object placements. To enable explicit spatial reasoning and help the model grasp basic principles of object placement, we employ Chain-of-Thought (CoT) Activation based on the 3D-Front dataset. Additionally, we design CoT-Grounded Generative Layout Reward to enhance generalization and spatial planning. During inference, DirectLayout addresses asset-layout mismatches via Iterative Asset-Layout Alignment through in-context learning. Extensive experiments demonstrate that DirectLayout achieves impressive semantic consistency, generalization and physical plausibility.

  • 5 authors
·
Jun 5, 2025

VLM-FO1: Bridging the Gap Between High-Level Reasoning and Fine-Grained Perception in VLMs

Vision-Language Models (VLMs) excel at high-level scene understanding but falter on fine-grained perception tasks requiring precise localization. This failure stems from a fundamental mismatch, as generating exact numerical coordinates is a challenging task for language-centric architectures. In this paper, we introduce VLM-FO1, a novel framework that overcomes this limitation by reframing object-centric perception from a brittle coordinate generation problem into a robust feature retrieval task. Our method operates as a plug-and-play module that integrates with any pre-trained VLM. It leverages a Hybrid Fine-grained Region Encoder (HFRE), featuring a dual vision encoder, to generate powerful region tokens rich in both semantic and spatial detail. A token-based referencing system then enables the LLM to seamlessly reason about and ground language in these specific visual regions. Experiments show that VLM-FO1 achieves state-of-the-art performance across a diverse suite of benchmarks, demonstrating exceptional capabilities in object grounding, region generational understanding, and visual region reasoning. Crucially, our two-stage training strategy ensures that these perception gains are achieved without compromising the base model's general visual understanding capabilities. VLM-FO1 establishes an effective and flexible paradigm for building perception-aware VLMs, bridging the gap between high-level reasoning and fine-grained visual grounding.

omlab Om AI Lab
·
Sep 30, 2025 2

Mathematical Reasoning in Large Language Models: Assessing Logical and Arithmetic Errors across Wide Numerical Ranges

Mathematical reasoning in Large Language Models (LLMs) is often evaluated using benchmarks with limited numerical ranges, failing to reflect real-world problem-solving across diverse scales. Furthermore, most existing evaluation methods only compare model outputs to ground-truth answers, obscuring insights into reasoning processes. To address these limitations, we introduce GSM-Ranges, a dataset generator derived from GSM8K that systematically perturbs numerical values in math problems to assess model robustness across varying numerical scales. Additionally, we propose a novel grading methodology that distinguishes between logical and non-logical errors, offering a more precise evaluation of reasoning processes beyond computational accuracy. Our experiments with various models reveal a significant increase in logical error rates-up to 14 percentage points-as numerical complexity rises, demonstrating a general weakness in reasoning with out-of-distribution numerical values. Moreover, while models demonstrate high accuracy on standalone arithmetic tasks, their performance deteriorates substantially when computations are embedded within word problems. These findings provide a comprehensive evaluation of LLMs' mathematical reasoning capabilities and inform future research directions for improving numerical generalization in language models.

  • 3 authors
·
Feb 12, 2025 2

Climate Modelling in Low-Precision: Effects of both Deterministic & Stochastic Rounding

Motivated by recent advances in operational weather forecasting, we study the efficacy of low-precision arithmetic for climate simulations. We develop a framework to measure rounding error in a climate model which provides a stress-test for a low-precision version of the model, and we apply our method to a variety of models including the Lorenz system; a shallow water approximation for flow over a ridge; and a coarse resolution global atmospheric model with simplified parameterisations (SPEEDY). Although double precision (52 significant bits) is standard across operational climate models, in our experiments we find that single precision (23 sbits) is more than enough and that as low as half precision (10 sbits) is often sufficient. For example, SPEEDY can be run with 12 sbits across the entire code with negligible rounding error and this can be lowered to 10 sbits if very minor errors are accepted, amounting to less than 0.1 mm/6hr for the average grid-point precipitation, for example. Our test is based on the Wasserstein metric and this provides stringent non-parametric bounds on rounding error accounting for annual means as well as extreme weather events. In addition, by testing models using both round-to-nearest (RN) and stochastic rounding (SR) we find that SR can mitigate rounding error across a range of applications. Thus our results also provide evidence that SR could be relevant to next-generation climate models. While many studies have shown that low-precision arithmetic can be suitable on short-term weather forecasting timescales, our results give the first evidence that a similar low precision level can be suitable for climate.

  • 5 authors
·
Apr 30, 2021

DotaMath: Decomposition of Thought with Code Assistance and Self-correction for Mathematical Reasoning

Large language models (LLMs) have made impressive progress in handling simple math problems, yet they still struggle with more challenging and complex mathematical tasks. In this paper, we introduce a series of LLMs that employs the Decomposition of thought with code assistance and self-correction for mathematical reasoning, dubbed as DotaMath. DotaMath models tackle complex mathematical tasks by decomposing them into simpler logical subtasks, leveraging code to solve these subtasks, obtaining fine-grained feedback from the code interpreter, and engaging in self-reflection and correction. By annotating diverse interactive tool-use trajectories and employing query evolution on GSM8K and MATH datasets, we generate an instruction fine-tuning dataset called DotaMathQA with 574K query-response pairs. We train a series of base LLMs using imitation learning on DotaMathQA, resulting in DotaMath models that achieve remarkable performance compared to open-source LLMs across various in-domain and out-of-domain benchmarks. Notably, DotaMath-deepseek-7B showcases an outstanding performance of 64.8% on the competitive MATH dataset and 86.7% on GSM8K. Besides, DotaMath-deepseek-7B maintains strong competitiveness on a series of in-domain and out-of-domain benchmarks (Avg. 80.1%). Looking forward, we anticipate that the DotaMath paradigm will open new pathways for addressing intricate mathematical problems. Our code is publicly available at https://github.com/ChengpengLi1003/DotaMath.

  • 6 authors
·
Jul 4, 2024 3

Subtle Errors Matter: Preference Learning via Error-injected Self-editing

Large Language Models (LLMs) have exhibited strong mathematical reasoning and computational prowess, tackling tasks ranging from basic arithmetic to advanced competition-level problems. However, frequently occurring subtle errors, such as miscalculations or incorrect substitutions, limit the models' full mathematical potential. Existing studies to improve mathematical ability typically involve distilling reasoning skills from stronger LLMs or applying preference learning to step-wise response pairs. Although these methods leverage samples of varying granularity to mitigate reasoning errors, they overlook the frequently occurring subtle errors. A major reason is that sampled preference pairs involve differences unrelated to the errors, which may distract the model from focusing on subtle errors. In this work, we propose a novel preference learning framework called eRror-Injected Self-Editing (RISE), which injects predefined subtle errors into partial tokens of correct solutions to construct hard pairs for error mitigation. In detail, RISE uses the model itself to edit a small number of tokens in the solution, injecting designed subtle errors. Then, pairs composed of self-edited solutions and their corresponding correct ones, along with pairs of correct and incorrect solutions obtained through sampling, are used together for subtle error-aware DPO training. Compared with other preference learning methods, RISE further refines the training objective to focus on predefined errors and their tokens, without requiring fine-grained sampling or preference annotation. Extensive experiments validate the effectiveness of RISE, with preference learning on Qwen2-7B-Instruct yielding notable improvements of 3.0% on GSM8K and 7.9% on MATH.

  • 10 authors
·
Oct 9, 2024

The Atomic Instruction Gap: Instruction-Tuned LLMs Struggle with Simple, Self-Contained Directives

Instruction-tuned large language models (IT-LLMs) exhibit strong zero-shot reasoning, yet their ability to execute simple, self-contained instructions remains underexplored, despite this being foundational to complex instruction-following. We evaluate 20 IT-LLMs on modified MMLU and MMLU-Pro benchmarks, by systematically varying the format of option labels (alphabetic, numeric, Roman) while keeping their meaning identical under four paradigms, namely: (1) With explicit instructions, label changes cause large performance shifts (e.g., -30.45\% for Roman vs. numeric), revealing instruction-format bias. (2) Without instructions, performance drops further (up to -10.84\%) and label sensitivity intensifies, underscoring the role of explicit guidance. (3) When option contents are removed, models fail random-choice baselines except with numeric labels, suggesting weak adherence to atomic directives. (4) Three-shot exemplars yield no significant gains in robustness or fidelity, and generation analyses show persistent label errors, especially for non-numeric formats. Across model sizes, larger LLMs achieve higher accuracy but remain inconsistent in instruction adherence. These results expose the insufficiencies of current instruction-tuning paradigms and highlight the need for evaluation methods and training strategies that explicitly target atomic instruction-following.

  • 2 authors
·
Oct 20, 2025 2

Give Me FP32 or Give Me Death? Challenges and Solutions for Reproducible Reasoning

Large Language Models (LLMs) are now integral across various domains and have demonstrated impressive performance. Progress, however, rests on the premise that benchmark scores are both accurate and reproducible. We demonstrate that the reproducibility of LLM performance is fragile: changing system configuration such as evaluation batch size, GPU count, and GPU version can introduce significant difference in the generated responses. This issue is especially pronounced in reasoning models, where minor rounding differences in early tokens can cascade into divergent chains of thought, ultimately affecting accuracy. For instance, under bfloat16 precision with greedy decoding, a reasoning model like DeepSeek-R1-Distill-Qwen-7B can exhibit up to 9% variation in accuracy and 9,000 tokens difference in response length due to differences in GPU count, type, and evaluation batch size. We trace the root cause of this variability to the non-associative nature of floating-point arithmetic under limited numerical precision. This work presents the first systematic investigation into how numerical precision affects reproducibility in LLM inference. Through carefully controlled experiments across various hardware, software, and precision settings, we quantify when and how model outputs diverge. Our analysis reveals that floating-point precision -- while critical for reproducibility -- is often neglected in evaluation practices. Inspired by this, we develop a lightweight inference pipeline, dubbed LayerCast, that stores weights in 16-bit precision but performs all computations in FP32, balancing memory efficiency with numerical stability. Code is available at https://github.com/nanomaoli/llm_reproducibility.

  • 10 authors
·
Jun 11, 2025 2

Low-Precision Training of Large Language Models: Methods, Challenges, and Opportunities

Large language models (LLMs) have achieved impressive performance across various domains. However, the substantial hardware resources required for their training present a significant barrier to efficiency and scalability. To mitigate this challenge, low-precision training techniques have been widely adopted, leading to notable advancements in training efficiency. Despite these gains, low-precision training involves several componentsx2013such as weights, activations, and gradientsx2013each of which can be represented in different numerical formats. The resulting diversity has created a fragmented landscape in low-precision training research, making it difficult for researchers to gain a unified overview of the field. This survey provides a comprehensive review of existing low-precision training methods. To systematically organize these approaches, we categorize them into three primary groups based on their underlying numerical formats, which is a key factor influencing hardware compatibility, computational efficiency, and ease of reference for readers. The categories are: (1) fixed-point and integer-based methods, (2) floating-point-based methods, and (3) customized format-based methods. Additionally, we discuss quantization-aware training approaches, which share key similarities with low-precision training during forward propagation. Finally, we highlight several promising research directions to advance this field. A collection of papers discussed in this survey is provided in https://github.com/Hao840/Awesome-Low-Precision-Training.

  • 9 authors
·
May 2, 2025 3

Tokenization counts: the impact of tokenization on arithmetic in frontier LLMs

Tokenization, the division of input text into input tokens, is an often overlooked aspect of the large language model (LLM) pipeline and could be the source of useful or harmful inductive biases. Historically, LLMs have relied on byte pair encoding, without care to specific input domains. With the increased use of LLMs for reasoning, various number-specific tokenization schemes have been adopted, with popular models like LLaMa and PaLM opting for single-digit tokenization while GPT-3.5 and GPT-4 have separate tokens for each 1-, 2-, and 3-digit numbers. In this work, we study the effect this choice has on numerical reasoning through the use of arithmetic tasks. We consider left-to-right and right-to-left tokenization for GPT-3.5 and -4, finding that right-to-left tokenization (enforced by comma separating numbers at inference time) leads to largely improved performance. Furthermore, we find that model errors when using standard left-to-right tokenization follow stereotyped error patterns, suggesting that model computations are systematic rather than approximate. We show that the model is able to convert between tokenizations easily, thus allowing chain-of-thought-inspired approaches to recover performance on left-to-right tokenized inputs. We also find the gap between tokenization directions decreases when models are scaled, possibly indicating that larger models are better able to override this tokenization-dependent inductive bias. In summary, our work performs the first study of how number tokenization choices lead to differences in model performance on arithmetic tasks, accompanied by a thorough analysis of error patterns. We hope this work inspires practitioners to more carefully ablate number tokenization-related choices when working towards general models of numerical reasoning.

  • 2 authors
·
Feb 22, 2024 1