new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 26

Diffusion Model is Secretly a Training-free Open Vocabulary Semantic Segmenter

The pre-trained text-image discriminative models, such as CLIP, has been explored for open-vocabulary semantic segmentation with unsatisfactory results due to the loss of crucial localization information and awareness of object shapes. Recently, there has been a growing interest in expanding the application of generative models from generation tasks to semantic segmentation. These approaches utilize generative models either for generating annotated data or extracting features to facilitate semantic segmentation. This typically involves generating a considerable amount of synthetic data or requiring additional mask annotations. To this end, we uncover the potential of generative text-to-image diffusion models (e.g., Stable Diffusion) as highly efficient open-vocabulary semantic segmenters, and introduce a novel training-free approach named DiffSegmenter. The insight is that to generate realistic objects that are semantically faithful to the input text, both the complete object shapes and the corresponding semantics are implicitly learned by diffusion models. We discover that the object shapes are characterized by the self-attention maps while the semantics are indicated through the cross-attention maps produced by the denoising U-Net, forming the basis of our segmentation results.Additionally, we carefully design effective textual prompts and a category filtering mechanism to further enhance the segmentation results. Extensive experiments on three benchmark datasets show that the proposed DiffSegmenter achieves impressive results for open-vocabulary semantic segmentation.

  • 8 authors
·
Sep 6, 2023

A Simple Video Segmenter by Tracking Objects Along Axial Trajectories

Video segmentation requires consistently segmenting and tracking objects over time. Due to the quadratic dependency on input size, directly applying self-attention to video segmentation with high-resolution input features poses significant challenges, often leading to insufficient GPU memory capacity. Consequently, modern video segmenters either extend an image segmenter without incorporating any temporal attention or resort to window space-time attention in a naive manner. In this work, we present Axial-VS, a general and simple framework that enhances video segmenters by tracking objects along axial trajectories. The framework tackles video segmentation through two sub-tasks: short-term within-clip segmentation and long-term cross-clip tracking. In the first step, Axial-VS augments an off-the-shelf clip-level video segmenter with the proposed axial-trajectory attention, sequentially tracking objects along the height- and width-trajectories within a clip, thereby enhancing temporal consistency by capturing motion trajectories. The axial decomposition significantly reduces the computational complexity for dense features, and outperforms the window space-time attention in segmentation quality. In the second step, we further employ axial-trajectory attention to the object queries in clip-level segmenters, which are learned to encode object information, thereby aiding object tracking across different clips and achieving consistent segmentation throughout the video. Without bells and whistles, Axial-VS showcases state-of-the-art results on video segmentation benchmarks, emphasizing its effectiveness in addressing the limitations of modern clip-level video segmenters. Code and models are available at https://github.com/TACJu/Axial-VS.

  • 7 authors
·
Nov 30, 2023

I-Segmenter: Integer-Only Vision Transformer for Efficient Semantic Segmentation

Vision Transformers (ViTs) have recently achieved strong results in semantic segmentation, yet their deployment on resource-constrained devices remains limited due to their high memory footprint and computational cost. Quantization offers an effective strategy to improve efficiency, but ViT-based segmentation models are notoriously fragile under low precision, as quantization errors accumulate across deep encoder-decoder pipelines. We introduce I-Segmenter, the first fully integer-only ViT segmentation framework. Building on the Segmenter architecture, I-Segmenter systematically replaces floating-point operations with integer-only counterparts. To further stabilize both training and inference, we propose lambda-ShiftGELU, a novel activation function that mitigates the limitations of uniform quantization in handling long-tailed activation distributions. In addition, we remove the L2 normalization layer and replace bilinear interpolation in the decoder with nearest neighbor upsampling, ensuring integer-only execution throughout the computational graph. Extensive experiments show that I-Segmenter achieves accuracy within a reasonable margin of its FP32 baseline (5.1 % on average), while reducing model size by up to 3.8x and enabling up to 1.2x faster inference with optimized runtimes. Notably, even in one-shot PTQ with a single calibration image, I-Segmenter delivers competitive accuracy, underscoring its practicality for real-world deployment.

  • 3 authors
·
Sep 12

Adapting Off-the-Shelf Source Segmenter for Target Medical Image Segmentation

Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a labeled source domain to an unlabeled and unseen target domain, which is usually trained on data from both domains. Access to the source domain data at the adaptation stage, however, is often limited, due to data storage or privacy issues. To alleviate this, in this work, we target source free UDA for segmentation, and propose to adapt an ``off-the-shelf" segmentation model pre-trained in the source domain to the target domain, with an adaptive batch-wise normalization statistics adaptation framework. Specifically, the domain-specific low-order batch statistics, i.e., mean and variance, are gradually adapted with an exponential momentum decay scheme, while the consistency of domain shareable high-order batch statistics, i.e., scaling and shifting parameters, is explicitly enforced by our optimization objective. The transferability of each channel is adaptively measured first from which to balance the contribution of each channel. Moreover, the proposed source free UDA framework is orthogonal to unsupervised learning methods, e.g., self-entropy minimization, which can thus be simply added on top of our framework. Extensive experiments on the BraTS 2018 database show that our source free UDA framework outperformed existing source-relaxed UDA methods for the cross-subtype UDA segmentation task and yielded comparable results for the cross-modality UDA segmentation task, compared with a supervised UDA methods with the source data.

  • 5 authors
·
Jun 23, 2021

Where's the Point? Self-Supervised Multilingual Punctuation-Agnostic Sentence Segmentation

Many NLP pipelines split text into sentences as one of the crucial preprocessing steps. Prior sentence segmentation tools either rely on punctuation or require a considerable amount of sentence-segmented training data: both central assumptions might fail when porting sentence segmenters to diverse languages on a massive scale. In this work, we thus introduce a multilingual punctuation-agnostic sentence segmentation method, currently covering 85 languages, trained in a self-supervised fashion on unsegmented text, by making use of newline characters which implicitly perform segmentation into paragraphs. We further propose an approach that adapts our method to the segmentation in a given corpus by using only a small number (64-256) of sentence-segmented examples. The main results indicate that our method outperforms all the prior best sentence-segmentation tools by an average of 6.1% F1 points. Furthermore, we demonstrate that proper sentence segmentation has a point: the use of a (powerful) sentence segmenter makes a considerable difference for a downstream application such as machine translation (MT). By using our method to match sentence segmentation to the segmentation used during training of MT models, we achieve an average improvement of 2.3 BLEU points over the best prior segmentation tool, as well as massive gains over a trivial segmenter that splits text into equally sized blocks.

  • 3 authors
·
May 30, 2023

Hyper-SD: Trajectory Segmented Consistency Model for Efficient Image Synthesis

Recently, a series of diffusion-aware distillation algorithms have emerged to alleviate the computational overhead associated with the multi-step inference process of Diffusion Models (DMs). Current distillation techniques often dichotomize into two distinct aspects: i) ODE Trajectory Preservation; and ii) ODE Trajectory Reformulation. However, these approaches suffer from severe performance degradation or domain shifts. To address these limitations, we propose Hyper-SD, a novel framework that synergistically amalgamates the advantages of ODE Trajectory Preservation and Reformulation, while maintaining near-lossless performance during step compression. Firstly, we introduce Trajectory Segmented Consistency Distillation to progressively perform consistent distillation within pre-defined time-step segments, which facilitates the preservation of the original ODE trajectory from a higher-order perspective. Secondly, we incorporate human feedback learning to boost the performance of the model in a low-step regime and mitigate the performance loss incurred by the distillation process. Thirdly, we integrate score distillation to further improve the low-step generation capability of the model and offer the first attempt to leverage a unified LoRA to support the inference process at all steps. Extensive experiments and user studies demonstrate that Hyper-SD achieves SOTA performance from 1 to 8 inference steps for both SDXL and SD1.5. For example, Hyper-SDXL surpasses SDXL-Lightning by +0.68 in CLIP Score and +0.51 in Aes Score in the 1-step inference.

  • 8 authors
·
Apr 21, 2024 2

Immunohistochemistry guided segmentation of benign epithelial cells, in situ lesions, and invasive epithelial cells in breast cancer slides

Digital pathology enables automatic analysis of histopathological sections using artificial intelligence (AI). Automatic evaluation could improve diagnostic efficiency and help find associations between morphological features and clinical outcome. For development of such prediction models, identifying invasive epithelial cells, and separating these from benign epithelial cells and in situ lesions would be the first step. In this study, we aimed to develop an AI model for segmentation of epithelial cells in sections from breast cancer. We generated epithelial ground truth masks by restaining hematoxylin and eosin (HE) sections with cytokeratin (CK) AE1/AE3, and by pathologists' annotations. HE/CK image pairs were used to train a convolutional neural network, and data augmentation was used to make the model more robust. Tissue microarrays (TMAs) from 839 patients, and whole slide images from two patients were used for training and evaluation of the models. The sections were derived from four cohorts of breast cancer patients. TMAs from 21 patients from a fifth cohort was used as a second test set. In quantitative evaluation, a mean Dice score of 0.70, 0.79, and 0.75 for invasive epithelial cells, benign epithelial cells, and in situ lesions, respectively, were achieved. In qualitative scoring (0-5) by pathologists, results were best for all epithelium and invasive epithelium, with scores of 4.7 and 4.4. Scores for benign epithelium and in situ lesions were 3.7 and 2.0. The proposed model segmented epithelial cells in HE stained breast cancer slides well, but further work is needed for accurate division between the classes. Immunohistochemistry, together with pathologists' annotations, enabled the creation of accurate ground truths. The model is made freely available in FastPathology and the code is available at https://github.com/AICAN-Research/breast-epithelium-segmentation

  • 11 authors
·
Nov 22, 2023