new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 13

Can Transformers Learn Sequential Function Classes In Context?

In-context learning (ICL) has revolutionized the capabilities of transformer models in NLP. In our project, we extend the understanding of the mechanisms underpinning ICL by exploring whether transformers can learn from sequential, non-textual function class data distributions. We introduce a novel sliding window sequential function class and employ toy-sized transformers with a GPT-2 architecture to conduct our experiments. Our analysis indicates that these models can indeed leverage ICL when trained on non-textual sequential function classes. Additionally, our experiments with randomized y-label sequences highlights that transformers retain some ICL capabilities even when the label associations are obfuscated. We provide evidence that transformers can reason with and understand sequentiality encoded within function classes, as reflected by the effective learning of our proposed tasks. Our results also show that the performance deteriorated with increasing randomness in the labels, though not to the extent one might expect, implying a potential robustness of learned sequentiality against label noise. Future research may want to look into how previous explanations of transformers, such as induction heads and task vectors, relate to sequentiality in ICL in these toy examples. Our investigation lays the groundwork for further research into how transformers process and perceive sequential data.

  • 5 authors
·
Dec 19, 2023

Quantum Lower Bounds for Finding Stationary Points of Nonconvex Functions

Quantum algorithms for optimization problems are of general interest. Despite recent progress in classical lower bounds for nonconvex optimization under different settings and quantum lower bounds for convex optimization, quantum lower bounds for nonconvex optimization are still widely open. In this paper, we conduct a systematic study of quantum query lower bounds on finding epsilon-approximate stationary points of nonconvex functions, and we consider the following two important settings: 1) having access to p-th order derivatives; or 2) having access to stochastic gradients. The classical query lower bounds is Omegabig(epsilon^{-1+p{p}}big) regarding the first setting, and Omega(epsilon^{-4}) regarding the second setting (or Omega(epsilon^{-3}) if the stochastic gradient function is mean-squared smooth). In this paper, we extend all these classical lower bounds to the quantum setting. They match the classical algorithmic results respectively, demonstrating that there is no quantum speedup for finding epsilon-stationary points of nonconvex functions with p-th order derivative inputs or stochastic gradient inputs, whether with or without the mean-squared smoothness assumption. Technically, our quantum lower bounds are obtained by showing that the sequential nature of classical hard instances in all these settings also applies to quantum queries, preventing any quantum speedup other than revealing information of the stationary points sequentially.

  • 2 authors
·
Dec 7, 2022