1 Visual Gyroscope: Combination of Deep Learning Features and Direct Alignment for Panoramic Stabilization In this article we present a visual gyroscope based on equirectangular panoramas. We propose a new pipeline where we take advantage of combining three different methods to obtain a robust and accurate estimation of the attitude of the camera. We quantitatively and qualitatively validate our method on two image sequences taken with a 360^circ dual-fisheye camera mounted on different aerial vehicles. 5 authors · Feb 2, 2024
1 GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning Existing optical flow methods are erroneous in challenging scenes, such as fog, rain, and night because the basic optical flow assumptions such as brightness and gradient constancy are broken. To address this problem, we present an unsupervised learning approach that fuses gyroscope into optical flow learning. Specifically, we first convert gyroscope readings into motion fields named gyro field. Second, we design a self-guided fusion module to fuse the background motion extracted from the gyro field with the optical flow and guide the network to focus on motion details. To the best of our knowledge, this is the first deep learning-based framework that fuses gyroscope data and image content for optical flow learning. To validate our method, we propose a new dataset that covers regular and challenging scenes. Experiments show that our method outperforms the state-of-art methods in both regular and challenging scenes. Code and dataset are available at https://github.com/megvii-research/GyroFlow. 3 authors · Mar 25, 2021
1 GyroFlow+: Gyroscope-Guided Unsupervised Deep Homography and Optical Flow Learning Existing homography and optical flow methods are erroneous in challenging scenes, such as fog, rain, night, and snow because the basic assumptions such as brightness and gradient constancy are broken. To address this issue, we present an unsupervised learning approach that fuses gyroscope into homography and optical flow learning. Specifically, we first convert gyroscope readings into motion fields named gyro field. Second, we design a self-guided fusion module (SGF) to fuse the background motion extracted from the gyro field with the optical flow and guide the network to focus on motion details. Meanwhile, we propose a homography decoder module (HD) to combine gyro field and intermediate results of SGF to produce the homography. To the best of our knowledge, this is the first deep learning framework that fuses gyroscope data and image content for both deep homography and optical flow learning. To validate our method, we propose a new dataset that covers regular and challenging scenes. Experiments show that our method outperforms the state-of-the-art methods in both regular and challenging scenes. 4 authors · Jan 23, 2023