Spaces:
Sleeping
Sleeping
Upload 11 files
Browse files- README.md +5 -5
- app.py +103 -0
- config.py +30 -0
- examples/1089.png +0 -0
- examples/18769.png +0 -0
- examples/3569.png +0 -0
- examples/5989.png +0 -0
- examples/73295.png +0 -0
- examples/89238.png +0 -0
- out.model.onnx +3 -0
- requirements.txt +4 -0
README.md
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
|
|
|
| 1 |
---
|
| 2 |
+
title: MC Map Captcha Resolver
|
| 3 |
+
emoji: 📈
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.41.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
app.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import io
|
| 3 |
+
def solve_captcha(data_bytes: bytes = None, file_name: str = None):
|
| 4 |
+
import time
|
| 5 |
+
import os
|
| 6 |
+
import sys
|
| 7 |
+
import cv2
|
| 8 |
+
import numpy as np
|
| 9 |
+
import onnxruntime
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
real_tests = False
|
| 13 |
+
from config import characters, img_height, img_width, img_type, max_length, transpose_perm, OUTPUT_ONNX
|
| 14 |
+
|
| 15 |
+
sess = onnxruntime.InferenceSession(f"out.model.onnx")
|
| 16 |
+
name = sess.get_inputs()[0].name
|
| 17 |
+
def get_result(pred):
|
| 18 |
+
"""CTC decoder of the output tensor
|
| 19 |
+
https://distill.pub/2017/ctc/
|
| 20 |
+
https://en.wikipedia.org/wiki/Connectionist_temporal_classification
|
| 21 |
+
:return string, float
|
| 22 |
+
"""
|
| 23 |
+
accuracy = 1
|
| 24 |
+
last = None
|
| 25 |
+
ans = []
|
| 26 |
+
# pred - 3d tensor, we need 2d array - first element
|
| 27 |
+
for item in pred[0]:
|
| 28 |
+
# get index of element with max accuracy
|
| 29 |
+
char_ind = item.argmax()
|
| 30 |
+
# ignore duplicates and special characters
|
| 31 |
+
if char_ind != last and char_ind != 0 and char_ind != len(characters)+1:
|
| 32 |
+
# this element is a character - append it to answer
|
| 33 |
+
ans.append(characters[char_ind - 1])
|
| 34 |
+
# Get accuracy for current character and multiply global accuracy by it
|
| 35 |
+
accuracy *= item[char_ind]
|
| 36 |
+
last = char_ind
|
| 37 |
+
|
| 38 |
+
answ = "".join(ans)[:max_length]
|
| 39 |
+
return answ, accuracy
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def decode_img(data_bytes: bytes):
|
| 43 |
+
# same actions, as for tensorflow
|
| 44 |
+
image = cv2.imdecode(np.asarray(bytearray(data_bytes), dtype=np.uint8), 1)
|
| 45 |
+
image: "np.ndarray" = image.astype(np.float32) / 255.
|
| 46 |
+
if image.shape != (img_height, img_width, 3):
|
| 47 |
+
image = cv2.resize(image, (img_width, img_height))
|
| 48 |
+
image = image.transpose(transpose_perm)
|
| 49 |
+
# Creating tensor ( adding 4d dimension )
|
| 50 |
+
image = np.array([image])
|
| 51 |
+
return image
|
| 52 |
+
|
| 53 |
+
def decode_img_array(nump_array):
|
| 54 |
+
# same actions, as for tensorflow
|
| 55 |
+
#image = cv2.imdecode(nump_array, 1)
|
| 56 |
+
image: "np.ndarray" = nump_array.astype(np.float32) / 255.
|
| 57 |
+
if image.shape != (img_height, img_width, 3):
|
| 58 |
+
image = cv2.resize(image, (img_width, img_height))
|
| 59 |
+
image = image.transpose(transpose_perm)
|
| 60 |
+
# Creating tensor ( adding 4d dimension )
|
| 61 |
+
image = np.array([image])
|
| 62 |
+
return image
|
| 63 |
+
|
| 64 |
+
def solve(data_bytes: bytes=None, file_name=None):
|
| 65 |
+
if file_name:
|
| 66 |
+
with open(file_name, 'rb') as F:
|
| 67 |
+
data_bytes = F.read()
|
| 68 |
+
if data_bytes is None:
|
| 69 |
+
print('[CAPTCHA RESOLVER NN] ПУСТОТА ВМЕСТО БАЙТОВ!')
|
| 70 |
+
return None
|
| 71 |
+
if isinstance(data_bytes,np.ndarray):
|
| 72 |
+
print('Img is ndarray')
|
| 73 |
+
img = decode_img_array(data_bytes)
|
| 74 |
+
else:
|
| 75 |
+
print('Img is bytes')
|
| 76 |
+
img_byte_arr = io.BytesIO()
|
| 77 |
+
data_bytes.save(img_byte_arr, format='PNG')
|
| 78 |
+
img_byte_arr = img_byte_arr.getvalue()
|
| 79 |
+
img = decode_img(data_bytes)
|
| 80 |
+
#print(img)
|
| 81 |
+
pred_onx = sess.run(None, {name: img})[0]
|
| 82 |
+
ans = get_result(pred_onx)
|
| 83 |
+
return ans
|
| 84 |
+
result = solve(data_bytes,file_name)
|
| 85 |
+
print ('solved', result)
|
| 86 |
+
return {"result":result[0], "predict":result[1]}
|
| 87 |
+
|
| 88 |
+
def image_classifier(inp):
|
| 89 |
+
if inp is None:
|
| 90 |
+
return "Не загружена картинка"
|
| 91 |
+
print('INPUT GOT>>>', inp)
|
| 92 |
+
#gradio img inp - numpy ndarray
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
result = solve_captcha(inp)
|
| 96 |
+
return result
|
| 97 |
+
#inputs=gr.Image(type="pil")
|
| 98 |
+
examples_names = ["1089","3569","5989","18769","73295","89238"]
|
| 99 |
+
examples = []
|
| 100 |
+
for n in examples_names:
|
| 101 |
+
examples.append("examples/"+n+".png")
|
| 102 |
+
demo = gr.Interface(fn=image_classifier, inputs=gr.Image(), outputs="textbox", examples=examples)
|
| 103 |
+
demo.launch(show_api = True)
|
config.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
img_type = "*.png" # "*.jpeg" # "*.png"
|
| 2 |
+
characters = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
|
| 3 |
+
# Desired image dimensions
|
| 4 |
+
img_width = 70#130
|
| 5 |
+
img_height = 50#50
|
| 6 |
+
# Maximum length of any captcha in the dataset
|
| 7 |
+
max_length = 5
|
| 8 |
+
|
| 9 |
+
MODEL_FNAME_TRANING = "output/output.traning2.model"
|
| 10 |
+
MODEL_FNAME = "output/output2.model"
|
| 11 |
+
OUTPUT_ONNX = "output/out.model.onnx"
|
| 12 |
+
|
| 13 |
+
# Training config
|
| 14 |
+
batch_size = 16 # 16 #48 мое норм 77%
|
| 15 |
+
epochs = 100 # 400мое норм 77
|
| 16 |
+
early_stopping_patience = 20 #было 10 #40 мое норм 77%
|
| 17 |
+
train_ratio = 0.8
|
| 18 |
+
|
| 19 |
+
# соотношение TRAIN IMAGES к TEST IMAGES, 0.9 означает 0.9 для трейн и 0.1 для тест.
|
| 20 |
+
# Ставь 1.0 если для теста юзать только те что в папке тест
|
| 21 |
+
|
| 22 |
+
transpose_perm = [1, 0, 2]
|
| 23 |
+
# батч епохи патиенс
|
| 24 |
+
|
| 25 |
+
# 1
|
| 26 |
+
# 48 400 40 нормас 77% вроде 170 эпоха
|
| 27 |
+
|
| 28 |
+
# 2
|
| 29 |
+
#96 800 80
|
| 30 |
+
# loss 0.2-0.1 на 200 эпохе; 300 эпоха стабильно 0.1 потом меньше 0.1
|
examples/1089.png
ADDED
|
examples/18769.png
ADDED
|
examples/3569.png
ADDED
|
examples/5989.png
ADDED
|
examples/73295.png
ADDED
|
examples/89238.png
ADDED
|
out.model.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22fce976f92bc8abe8ee3b1f4fcd3a1032e17cf006bca2b88624a332ef4031dc
|
| 3 |
+
size 1750703
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
onnx
|
| 2 |
+
onnxruntime
|
| 3 |
+
opencv-python
|
| 4 |
+
numpy
|