Alexander Bagus commited on
Commit
a30ad4e
·
1 Parent(s): 0d0dc50
Files changed (1) hide show
  1. app.py +18 -10
app.py CHANGED
@@ -118,7 +118,7 @@ def inference(
118
  print("Error: input_image is empty.")
119
  return None
120
 
121
- mask_image = None
122
 
123
  # input_image, width, height = scale_image(input_image, image_scale)
124
  # control_mode='HED'
@@ -139,19 +139,25 @@ def inference(
139
  control_image, width, height = rescale_image(input_image, image_scale, 16)
140
  control_image = control_image.resize((1024, 1024))
141
 
142
- print("DEBUG: processor running")
 
143
  control_image = processor(control_image, to_pil=True)
144
  control_image = control_image.resize((width, height))
145
-
146
- sample_size = [height, width]
147
- if mask_image is not None:
148
- mask_image = get_image_latent(mask_image, sample_size=sample_size)[:, :1, 0]
149
- else:
150
- mask_image = torch.ones([1, 1, sample_size[0], sample_size[1]]) * 255
151
-
152
- print("DEBUG: control_image_torch")
153
  control_image_torch = get_image_latent(control_image, sample_size=sample_size)[:, :, 0]
154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
  # generation
156
  if randomize_seed: seed = random.randint(0, MAX_SEED)
157
  generator = torch.Generator().manual_seed(seed)
@@ -163,6 +169,8 @@ def inference(
163
  width=width,
164
  generator=generator,
165
  guidance_scale=guidance_scale,
 
 
166
  control_image=control_image_torch,
167
  num_inference_steps=num_inference_steps,
168
  control_context_scale=control_context_scale,
 
118
  print("Error: input_image is empty.")
119
  return None
120
 
121
+
122
 
123
  # input_image, width, height = scale_image(input_image, image_scale)
124
  # control_mode='HED'
 
139
  control_image, width, height = rescale_image(input_image, image_scale, 16)
140
  control_image = control_image.resize((1024, 1024))
141
 
142
+ print("DEBUG: control_image_torch")
143
+ sample_size = [height, width]
144
  control_image = processor(control_image, to_pil=True)
145
  control_image = control_image.resize((width, height))
 
 
 
 
 
 
 
 
146
  control_image_torch = get_image_latent(control_image, sample_size=sample_size)[:, :, 0]
147
 
148
+ # mask_image = None
149
+ # inpaint_image = None
150
+
151
+ # if mask_image is not None:
152
+ # mask_image = get_image_latent(mask_image, sample_size=sample_size)[:, :1, 0]
153
+ # else:
154
+ # mask_image = torch.ones([1, 1, sample_size[0], sample_size[1]]) * 255
155
+
156
+ # if inpaint_image is not None:
157
+ # inpaint_image = get_image_latent(inpaint_image, sample_size=sample_size)[:, :, 0]
158
+ # else:
159
+ # inpaint_image = torch.zeros([1, 3, sample_size[0], sample_size[1]])
160
+
161
  # generation
162
  if randomize_seed: seed = random.randint(0, MAX_SEED)
163
  generator = torch.Generator().manual_seed(seed)
 
169
  width=width,
170
  generator=generator,
171
  guidance_scale=guidance_scale,
172
+ image = None,
173
+ mask_image = None,
174
  control_image=control_image_torch,
175
  num_inference_steps=num_inference_steps,
176
  control_context_scale=control_context_scale,