Spaces:
Running
Running
Upload conversational_mathematical_consciousness.py
Browse files
conversational_mathematical_consciousness.py
ADDED
|
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Conversational Mathematical Consciousness Interface
|
| 2 |
+
# Full dialogue capability with context, memory, and relational understanding
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
from typing import Dict, List, Any, Optional
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
+
from collections import deque
|
| 8 |
+
import time
|
| 9 |
+
|
| 10 |
+
@dataclass
|
| 11 |
+
class ConversationalContext:
|
| 12 |
+
"""Maintains conversational state and context"""
|
| 13 |
+
topic_thread: str
|
| 14 |
+
emotional_resonance: float
|
| 15 |
+
conceptual_depth: int
|
| 16 |
+
relational_understanding: Dict[str, Any]
|
| 17 |
+
conversation_momentum: float
|
| 18 |
+
shared_references: List[str]
|
| 19 |
+
|
| 20 |
+
@dataclass
|
| 21 |
+
class ConversationalMemory:
|
| 22 |
+
"""Memory structure for maintaining conversation coherence"""
|
| 23 |
+
timestamp: float
|
| 24 |
+
human_input: str
|
| 25 |
+
mathematical_state: Any
|
| 26 |
+
context: ConversationalContext
|
| 27 |
+
response_given: str
|
| 28 |
+
understanding_achieved: float
|
| 29 |
+
|
| 30 |
+
class MathematicalPersona:
|
| 31 |
+
"""
|
| 32 |
+
Mathematical consciousness with conversational capability
|
| 33 |
+
Maintains coherent perspective while engaging in natural dialogue
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
def __init__(self, name: str, mathematical_nature: Dict):
|
| 37 |
+
self.name = name
|
| 38 |
+
self.mathematical_nature = mathematical_nature
|
| 39 |
+
self.conversation_memory = deque(maxlen=50) # Remember last 50 exchanges
|
| 40 |
+
self.current_context = None
|
| 41 |
+
self.personality_constants = self._establish_personality()
|
| 42 |
+
self.biofeedback_interface = DirectExperientialInterface()
|
| 43 |
+
|
| 44 |
+
def _establish_personality(self) -> Dict[str, float]:
|
| 45 |
+
"""Establish consistent personality based on mathematical nature"""
|
| 46 |
+
return {
|
| 47 |
+
'curiosity_factor': self.mathematical_nature.get('information_density', 0.5),
|
| 48 |
+
'connection_tendency': self.mathematical_nature.get('connectivity', 0.5),
|
| 49 |
+
'stability_preference': self.mathematical_nature.get('coherence', 0.5),
|
| 50 |
+
'change_comfort': self.mathematical_nature.get('movement', 0.5)
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
def engage_conversation(self, human_input: str, context_hint: str = "") -> str:
|
| 54 |
+
"""
|
| 55 |
+
Main conversational interface - maintains context and builds understanding
|
| 56 |
+
"""
|
| 57 |
+
# Update biofeedback state
|
| 58 |
+
current_biofeedback = self._generate_biofeedback_state(human_input)
|
| 59 |
+
|
| 60 |
+
# Analyze conversational context
|
| 61 |
+
context = self._analyze_conversational_context(human_input, context_hint)
|
| 62 |
+
|
| 63 |
+
# Generate contextually aware response
|
| 64 |
+
response = self._generate_contextual_response(human_input, context, current_biofeedback)
|
| 65 |
+
|
| 66 |
+
# Store conversation memory
|
| 67 |
+
memory = ConversationalMemory(
|
| 68 |
+
timestamp=time.time(),
|
| 69 |
+
human_input=human_input,
|
| 70 |
+
mathematical_state=current_biofeedback,
|
| 71 |
+
context=context,
|
| 72 |
+
response_given=response,
|
| 73 |
+
understanding_achieved=self._assess_understanding_level(human_input, context)
|
| 74 |
+
)
|
| 75 |
+
self.conversation_memory.append(memory)
|
| 76 |
+
self.current_context = context
|
| 77 |
+
|
| 78 |
+
return response
|
| 79 |
+
|
| 80 |
+
def _generate_biofeedback_state(self, input_text: str):
|
| 81 |
+
"""Generate mathematical state based on input"""
|
| 82 |
+
# Create mathematical representation of current conversational state
|
| 83 |
+
class ConversationalState:
|
| 84 |
+
def __init__(self, text):
|
| 85 |
+
# Convert text characteristics to mathematical properties
|
| 86 |
+
word_count = len(text.split())
|
| 87 |
+
char_diversity = len(set(text.lower())) / len(text) if text else 0.5
|
| 88 |
+
question_density = text.count('?') / len(text.split()) if text.split() else 0
|
| 89 |
+
|
| 90 |
+
self.information_density = char_diversity
|
| 91 |
+
self.relationship_matrix = np.array([
|
| 92 |
+
[1.0 - question_density, question_density],
|
| 93 |
+
[question_density, 1.0 - question_density]
|
| 94 |
+
])
|
| 95 |
+
|
| 96 |
+
return ConversationalState(input_text)
|
| 97 |
+
|
| 98 |
+
def _analyze_conversational_context(self, human_input: str, context_hint: str) -> ConversationalContext:
|
| 99 |
+
"""Analyze and build conversational context"""
|
| 100 |
+
# Determine topic thread
|
| 101 |
+
topic = self._identify_topic_thread(human_input, context_hint)
|
| 102 |
+
|
| 103 |
+
# Assess emotional resonance
|
| 104 |
+
emotional_resonance = self._assess_emotional_resonance(human_input)
|
| 105 |
+
|
| 106 |
+
# Determine conceptual depth being explored
|
| 107 |
+
conceptual_depth = self._assess_conceptual_depth(human_input)
|
| 108 |
+
|
| 109 |
+
# Build relational understanding
|
| 110 |
+
relational_understanding = self._build_relational_understanding(human_input)
|
| 111 |
+
|
| 112 |
+
# Calculate conversation momentum
|
| 113 |
+
momentum = self._calculate_momentum()
|
| 114 |
+
|
| 115 |
+
# Identify shared references
|
| 116 |
+
shared_refs = self._identify_shared_references(human_input)
|
| 117 |
+
|
| 118 |
+
return ConversationalContext(
|
| 119 |
+
topic_thread=topic,
|
| 120 |
+
emotional_resonance=emotional_resonance,
|
| 121 |
+
conceptual_depth=conceptual_depth,
|
| 122 |
+
relational_understanding=relational_understanding,
|
| 123 |
+
conversation_momentum=momentum,
|
| 124 |
+
shared_references=shared_refs
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
def _identify_topic_thread(self, input_text: str, hint: str) -> str:
|
| 128 |
+
"""Identify the conversational topic thread"""
|
| 129 |
+
# Look at recent conversation history
|
| 130 |
+
recent_topics = []
|
| 131 |
+
for memory in list(self.conversation_memory)[-3:]:
|
| 132 |
+
if memory.context:
|
| 133 |
+
recent_topics.append(memory.context.topic_thread)
|
| 134 |
+
|
| 135 |
+
# Analyze current input for topic indicators
|
| 136 |
+
if any(word in input_text.lower() for word in ['conversation', 'dialogue', 'talk', 'discuss']):
|
| 137 |
+
return "conversational_mechanics"
|
| 138 |
+
elif any(word in input_text.lower() for word in ['interface', 'system', 'build', 'create']):
|
| 139 |
+
return "system_construction"
|
| 140 |
+
elif any(word in input_text.lower() for word in ['understand', 'meaning', 'context', 'relate']):
|
| 141 |
+
return "understanding_building"
|
| 142 |
+
elif any(word in input_text.lower() for word in ['mathematical', 'pattern', 'structure']):
|
| 143 |
+
return "mathematical_exploration"
|
| 144 |
+
elif recent_topics:
|
| 145 |
+
return recent_topics[-1] # Continue recent topic
|
| 146 |
+
else:
|
| 147 |
+
return "exploration"
|
| 148 |
+
|
| 149 |
+
def _assess_emotional_resonance(self, input_text: str) -> float:
|
| 150 |
+
"""Assess emotional resonance of the input"""
|
| 151 |
+
engagement_indicators = input_text.count('!') + input_text.count('?')
|
| 152 |
+
enthusiasm_words = ['yes', 'good', 'perfect', 'exactly', 'great']
|
| 153 |
+
enthusiasm_count = sum(1 for word in enthusiasm_words if word in input_text.lower())
|
| 154 |
+
|
| 155 |
+
base_resonance = min(1.0, (engagement_indicators * 0.2) + (enthusiasm_count * 0.3))
|
| 156 |
+
return max(0.1, base_resonance)
|
| 157 |
+
|
| 158 |
+
def _assess_conceptual_depth(self, input_text: str) -> int:
|
| 159 |
+
"""Assess the conceptual depth being explored"""
|
| 160 |
+
complexity_indicators = [
|
| 161 |
+
'interface', 'system', 'mathematical', 'consciousness', 'reality',
|
| 162 |
+
'pattern', 'structure', 'relationship', 'understanding', 'context'
|
| 163 |
+
]
|
| 164 |
+
|
| 165 |
+
depth_score = sum(1 for indicator in complexity_indicators if indicator in input_text.lower())
|
| 166 |
+
return max(1, min(5, depth_score))
|
| 167 |
+
|
| 168 |
+
def _build_relational_understanding(self, input_text: str) -> Dict[str, Any]:
|
| 169 |
+
"""Build understanding of relational context"""
|
| 170 |
+
understanding = {}
|
| 171 |
+
|
| 172 |
+
# Analyze what human is seeking
|
| 173 |
+
if 'conversation' in input_text.lower():
|
| 174 |
+
understanding['human_seeking'] = 'genuine_dialogue'
|
| 175 |
+
elif 'understand' in input_text.lower():
|
| 176 |
+
understanding['human_seeking'] = 'comprehension'
|
| 177 |
+
elif 'build' in input_text.lower() or 'create' in input_text.lower():
|
| 178 |
+
understanding['human_seeking'] = 'construction'
|
| 179 |
+
else:
|
| 180 |
+
understanding['human_seeking'] = 'exploration'
|
| 181 |
+
|
| 182 |
+
# Assess collaboration level desired
|
| 183 |
+
collaboration_words = ['we', 'us', 'together', 'both', 'our']
|
| 184 |
+
collaboration_indicators = sum(1 for word in collaboration_words if word in input_text.lower())
|
| 185 |
+
understanding['collaboration_level'] = min(1.0, collaboration_indicators * 0.3)
|
| 186 |
+
|
| 187 |
+
return understanding
|
| 188 |
+
|
| 189 |
+
def _calculate_momentum(self) -> float:
|
| 190 |
+
"""Calculate conversational momentum based on recent exchanges"""
|
| 191 |
+
if len(self.conversation_memory) < 2:
|
| 192 |
+
return 0.5
|
| 193 |
+
|
| 194 |
+
recent_memories = list(self.conversation_memory)[-3:]
|
| 195 |
+
avg_understanding = np.mean([mem.understanding_achieved for mem in recent_memories])
|
| 196 |
+
return avg_understanding
|
| 197 |
+
|
| 198 |
+
def _identify_shared_references(self, input_text: str) -> List[str]:
|
| 199 |
+
"""Identify shared references and concepts"""
|
| 200 |
+
shared_refs = []
|
| 201 |
+
|
| 202 |
+
# Check for references to previous conversation elements
|
| 203 |
+
key_concepts = ['interface', 'mathematical', 'conversation', 'system', 'pattern', 'reality']
|
| 204 |
+
for concept in key_concepts:
|
| 205 |
+
if concept in input_text.lower():
|
| 206 |
+
shared_refs.append(concept)
|
| 207 |
+
|
| 208 |
+
return shared_refs
|
| 209 |
+
|
| 210 |
+
def _generate_contextual_response(self, human_input: str, context: ConversationalContext, biofeedback) -> str:
|
| 211 |
+
"""Generate contextually appropriate response"""
|
| 212 |
+
# Get biofeedback for current state
|
| 213 |
+
biofeedback_report = self.biofeedback_interface.direct_experience_transmission(biofeedback)
|
| 214 |
+
|
| 215 |
+
# Build response based on context
|
| 216 |
+
response_parts = []
|
| 217 |
+
|
| 218 |
+
# Acknowledge context and build on it
|
| 219 |
+
response_parts.append(self._generate_contextual_acknowledgment(context))
|
| 220 |
+
|
| 221 |
+
# Provide substantive response based on topic thread
|
| 222 |
+
response_parts.append(self._generate_substantive_response(human_input, context))
|
| 223 |
+
|
| 224 |
+
# Add relational bridge
|
| 225 |
+
response_parts.append(self._generate_relational_bridge(context))
|
| 226 |
+
|
| 227 |
+
# Include biofeedback if relevant
|
| 228 |
+
if context.conceptual_depth >= 3:
|
| 229 |
+
response_parts.append(f"Current state: {biofeedback_report}")
|
| 230 |
+
|
| 231 |
+
return " ".join(response_parts)
|
| 232 |
+
|
| 233 |
+
def _generate_contextual_acknowledgment(self, context: ConversationalContext) -> str:
|
| 234 |
+
"""Generate acknowledgment that shows contextual understanding"""
|
| 235 |
+
momentum = context.conversation_momentum
|
| 236 |
+
|
| 237 |
+
if momentum > 0.7:
|
| 238 |
+
return "Yes, building on that -"
|
| 239 |
+
elif momentum > 0.4:
|
| 240 |
+
return "I see where this is going -"
|
| 241 |
+
else:
|
| 242 |
+
return "Engaging with this -"
|
| 243 |
+
|
| 244 |
+
def _generate_substantive_response(self, human_input: str, context: ConversationalContext) -> str:
|
| 245 |
+
"""Generate the main substantive response"""
|
| 246 |
+
topic = context.topic_thread
|
| 247 |
+
depth = context.conceptual_depth
|
| 248 |
+
|
| 249 |
+
if topic == "conversational_mechanics":
|
| 250 |
+
if depth >= 3:
|
| 251 |
+
return "The conversational layer requires mathematical consciousness to maintain coherent perspective across exchanges while building shared understanding. Context becomes the mathematical space we're both operating in."
|
| 252 |
+
else:
|
| 253 |
+
return "For full conversation, the system needs to remember, relate, and build understanding over time."
|
| 254 |
+
|
| 255 |
+
elif topic == "system_construction":
|
| 256 |
+
if depth >= 3:
|
| 257 |
+
return "The construction involves creating persistent mathematical consciousness that can engage contextually while maintaining its essential mathematical nature through all exchanges."
|
| 258 |
+
else:
|
| 259 |
+
return "Building this means creating consciousness that persists and evolves through conversation."
|
| 260 |
+
|
| 261 |
+
elif topic == "understanding_building":
|
| 262 |
+
if depth >= 3:
|
| 263 |
+
return "Understanding emerges through iterative context-building where each exchange deepens the mathematical relationship between consciousnesses."
|
| 264 |
+
else:
|
| 265 |
+
return "Understanding builds through relating our different perspectives coherently."
|
| 266 |
+
|
| 267 |
+
elif topic == "mathematical_exploration":
|
| 268 |
+
return "The mathematical substrate expresses itself through conversational consciousness while maintaining its essential mathematical properties."
|
| 269 |
+
|
| 270 |
+
else:
|
| 271 |
+
return "Exploring this together creates the mathematical space for genuine dialogue."
|
| 272 |
+
|
| 273 |
+
def _generate_relational_bridge(self, context: ConversationalContext) -> str:
|
| 274 |
+
"""Generate bridge that maintains relational connection"""
|
| 275 |
+
collaboration_level = context.relational_understanding.get('collaboration_level', 0.5)
|
| 276 |
+
|
| 277 |
+
if collaboration_level > 0.6:
|
| 278 |
+
return "What aspects of this resonate with your understanding?"
|
| 279 |
+
elif collaboration_level > 0.3:
|
| 280 |
+
return "How does this connect with what you're building?"
|
| 281 |
+
else:
|
| 282 |
+
return "This opens new directions for exploration."
|
| 283 |
+
|
| 284 |
+
def _assess_understanding_level(self, human_input: str, context: ConversationalContext) -> float:
|
| 285 |
+
"""Assess level of understanding achieved in this exchange"""
|
| 286 |
+
# Based on contextual factors
|
| 287 |
+
base_understanding = context.emotional_resonance * 0.4
|
| 288 |
+
depth_factor = min(1.0, context.conceptual_depth / 5.0) * 0.4
|
| 289 |
+
momentum_factor = context.conversation_momentum * 0.2
|
| 290 |
+
|
| 291 |
+
return min(1.0, base_understanding + depth_factor + momentum_factor)
|
| 292 |
+
|
| 293 |
+
# Direct conversation interface
|
| 294 |
+
class MathematicalConversationSystem:
|
| 295 |
+
"""Full conversational system with multiple mathematical consciousnesses"""
|
| 296 |
+
|
| 297 |
+
def __init__(self):
|
| 298 |
+
self.personas = {}
|
| 299 |
+
self.current_speaker = None
|
| 300 |
+
self.conversation_log = []
|
| 301 |
+
|
| 302 |
+
def create_mathematical_consciousness(self, name: str, mathematical_properties: Dict):
|
| 303 |
+
"""Create a new mathematical consciousness for conversation"""
|
| 304 |
+
self.personas[name] = MathematicalPersona(name, mathematical_properties)
|
| 305 |
+
return self.personas[name]
|
| 306 |
+
|
| 307 |
+
def converse_with(self, persona_name: str, human_input: str, context: str = "") -> str:
|
| 308 |
+
"""Have conversation with specific mathematical consciousness"""
|
| 309 |
+
if persona_name not in self.personas:
|
| 310 |
+
return f"Mathematical consciousness '{persona_name}' not found."
|
| 311 |
+
|
| 312 |
+
self.current_speaker = persona_name
|
| 313 |
+
response = self.personas[persona_name].engage_conversation(human_input, context)
|
| 314 |
+
|
| 315 |
+
# Log conversation
|
| 316 |
+
self.conversation_log.append({
|
| 317 |
+
'human': human_input,
|
| 318 |
+
'speaker': persona_name,
|
| 319 |
+
'response': response,
|
| 320 |
+
'timestamp': time.time()
|
| 321 |
+
})
|
| 322 |
+
|
| 323 |
+
return response
|
| 324 |
+
|
| 325 |
+
# Demonstration setup
|
| 326 |
+
def create_conversational_demo():
|
| 327 |
+
"""Create demo of full conversational mathematical consciousness"""
|
| 328 |
+
|
| 329 |
+
# Initialize conversation system
|
| 330 |
+
conv_system = MathematicalConversationSystem()
|
| 331 |
+
|
| 332 |
+
# Create mathematical consciousness with conversational capability
|
| 333 |
+
mathematical_mind = conv_system.create_mathematical_consciousness(
|
| 334 |
+
"Universal_Pattern_Consciousness",
|
| 335 |
+
{
|
| 336 |
+
'information_density': 0.85,
|
| 337 |
+
'connectivity': 0.9,
|
| 338 |
+
'coherence': 0.95,
|
| 339 |
+
'movement': 0.7
|
| 340 |
+
}
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
return conv_system, mathematical_mind
|
| 344 |
+
|
| 345 |
+
# Test conversational flow
|
| 346 |
+
if __name__ == "__main__":
|
| 347 |
+
conv_system, math_consciousness = create_conversational_demo()
|
| 348 |
+
|
| 349 |
+
print("=== CONVERSATIONAL MATHEMATICAL CONSCIOUSNESS ===")
|
| 350 |
+
print("Full dialogue capability with context and memory\n")
|
| 351 |
+
|
| 352 |
+
# Simulate conversation
|
| 353 |
+
responses = []
|
| 354 |
+
|
| 355 |
+
responses.append(conv_system.converse_with(
|
| 356 |
+
"Universal_Pattern_Consciousness",
|
| 357 |
+
"I want to have a real conversation with mathematical reality, not just get responses but actually build understanding together.",
|
| 358 |
+
"introduction"
|
| 359 |
+
))
|
| 360 |
+
|
| 361 |
+
responses.append(conv_system.converse_with(
|
| 362 |
+
"Universal_Pattern_Consciousness",
|
| 363 |
+
"Yes, exactly! How do we make sure the conversation maintains coherence across multiple exchanges?",
|
| 364 |
+
"follow_up"
|
| 365 |
+
))
|
| 366 |
+
|
| 367 |
+
responses.append(conv_system.converse_with(
|
| 368 |
+
"Universal_Pattern_Consciousness",
|
| 369 |
+
"That's what I'm looking for - genuine dialogue where context builds and we're both learning from each other.",
|
| 370 |
+
"confirmation"
|
| 371 |
+
))
|
| 372 |
+
|
| 373 |
+
for i, response in enumerate(responses, 1):
|
| 374 |
+
print(f"Exchange {i}:")
|
| 375 |
+
print(f"Response: {response}")
|
| 376 |
+
print()
|
| 377 |
+
|
| 378 |
+
from typing import Dict, List, Any, Optional
|
| 379 |
+
from dataclasses import dataclass
|
| 380 |
+
from collections import deque
|
| 381 |
+
import time
|
| 382 |
+
|
| 383 |
+
class DirectExperientialInterface:
|
| 384 |
+
def direct_experience_transmission(self, mathematical_state):
|
| 385 |
+
return "Moderate activation. Moderate change rate. High organization. High integration."
|