AbhishekParanjape
commited on
Commit
Β·
ef981ba
1
Parent(s):
4de9017
semantic chunker
Browse files- rag_system.py +11 -4
- semantic_chunking.py +420 -0
rag_system.py
CHANGED
|
@@ -18,6 +18,7 @@ import json
|
|
| 18 |
import base64
|
| 19 |
from openai import OpenAI
|
| 20 |
import re
|
|
|
|
| 21 |
|
| 22 |
# Load environment variables
|
| 23 |
load_dotenv()
|
|
@@ -198,11 +199,17 @@ class DocumentIngestion:
|
|
| 198 |
st.error("No embedding model available. Please install sentence-transformers or provide OpenAI API key.")
|
| 199 |
raise Exception("No embedding model available")
|
| 200 |
|
| 201 |
-
self.text_splitter =
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
)
|
|
|
|
|
|
|
| 206 |
self.persist_directory = os.getenv("CHROMA_PERSIST_DIRECTORY", "./chroma_db")
|
| 207 |
os.makedirs(self.persist_directory, exist_ok=True)
|
| 208 |
|
|
|
|
| 18 |
import base64
|
| 19 |
from openai import OpenAI
|
| 20 |
import re
|
| 21 |
+
from semantic_chunking import SemanticChunker
|
| 22 |
|
| 23 |
# Load environment variables
|
| 24 |
load_dotenv()
|
|
|
|
| 199 |
st.error("No embedding model available. Please install sentence-transformers or provide OpenAI API key.")
|
| 200 |
raise Exception("No embedding model available")
|
| 201 |
|
| 202 |
+
self.text_splitter = SemanticChunker(
|
| 203 |
+
embeddings_model=self.embeddings,
|
| 204 |
+
chunk_size=4, # 4 sentences per base chunk
|
| 205 |
+
overlap=1, # 1 sentence overlap
|
| 206 |
+
similarity_threshold=0.75, # Semantic similarity threshold
|
| 207 |
+
min_chunk_size=150, # Minimum 150 characters
|
| 208 |
+
max_chunk_size=1500, # Maximum 1500 characters
|
| 209 |
+
debug=True # Show statistics in Streamlit
|
| 210 |
)
|
| 211 |
+
|
| 212 |
+
st.info(f"π§ Using semantic chunking with {self.embedding_type} embeddings")
|
| 213 |
self.persist_directory = os.getenv("CHROMA_PERSIST_DIRECTORY", "./chroma_db")
|
| 214 |
os.makedirs(self.persist_directory, exist_ok=True)
|
| 215 |
|
semantic_chunking.py
ADDED
|
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Semantic Chunker Module for RAG Systems
|
| 3 |
+
======================================
|
| 4 |
+
|
| 5 |
+
A drop-in replacement for RecursiveCharacterTextSplitter that uses semantic similarity
|
| 6 |
+
to create more coherent chunks. Designed to work seamlessly with existing LangChain
|
| 7 |
+
and Streamlit RAG systems.
|
| 8 |
+
|
| 9 |
+
Author: AI Assistant
|
| 10 |
+
Compatible with: LangChain, BGE embeddings, OpenAI embeddings, Streamlit
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
import numpy as np
|
| 14 |
+
import re
|
| 15 |
+
from typing import List, Dict, Any, Optional, Union
|
| 16 |
+
from langchain.schema import Document
|
| 17 |
+
import streamlit as st
|
| 18 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 19 |
+
import logging
|
| 20 |
+
|
| 21 |
+
# Set up logging
|
| 22 |
+
logging.basicConfig(level=logging.INFO)
|
| 23 |
+
logger = logging.getLogger(__name__)
|
| 24 |
+
|
| 25 |
+
class SemanticChunker:
|
| 26 |
+
"""
|
| 27 |
+
Advanced semantic document chunker that creates coherent chunks based on
|
| 28 |
+
semantic similarity rather than fixed character counts.
|
| 29 |
+
|
| 30 |
+
Perfect for university documents, research papers, and policy documents
|
| 31 |
+
where maintaining semantic coherence is crucial.
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
def __init__(self,
|
| 35 |
+
embeddings_model,
|
| 36 |
+
chunk_size: int = 4,
|
| 37 |
+
overlap: int = 1,
|
| 38 |
+
similarity_threshold: float = 0.75,
|
| 39 |
+
min_chunk_size: int = 150,
|
| 40 |
+
max_chunk_size: int = 1500,
|
| 41 |
+
sentence_split_pattern: Optional[str] = None,
|
| 42 |
+
debug: bool = False):
|
| 43 |
+
"""
|
| 44 |
+
Initialize the semantic chunker.
|
| 45 |
+
|
| 46 |
+
Args:
|
| 47 |
+
embeddings_model: Your existing embeddings model (BGE, OpenAI, etc.)
|
| 48 |
+
chunk_size: Base number of sentences per chunk (default: 4)
|
| 49 |
+
overlap: Number of sentences to overlap between chunks (default: 1)
|
| 50 |
+
similarity_threshold: Cosine similarity threshold for extending chunks (0.0-1.0)
|
| 51 |
+
min_chunk_size: Minimum characters per chunk (skip smaller chunks)
|
| 52 |
+
max_chunk_size: Maximum characters per chunk (prevent overly large chunks)
|
| 53 |
+
sentence_split_pattern: Custom regex pattern for sentence splitting
|
| 54 |
+
debug: Enable debug logging and statistics
|
| 55 |
+
"""
|
| 56 |
+
self.embeddings_model = embeddings_model
|
| 57 |
+
self.chunk_size = chunk_size
|
| 58 |
+
self.overlap = overlap
|
| 59 |
+
self.similarity_threshold = similarity_threshold
|
| 60 |
+
self.min_chunk_size = min_chunk_size
|
| 61 |
+
self.max_chunk_size = max_chunk_size
|
| 62 |
+
self.debug = debug
|
| 63 |
+
|
| 64 |
+
# Default sentence splitting pattern optimized for academic/university documents
|
| 65 |
+
self.sentence_pattern = sentence_split_pattern or r'[.!?]+\s+'
|
| 66 |
+
|
| 67 |
+
# Statistics tracking
|
| 68 |
+
self.stats = {
|
| 69 |
+
"total_documents": 0,
|
| 70 |
+
"total_chunks": 0,
|
| 71 |
+
"avg_chunk_size": 0,
|
| 72 |
+
"chunking_methods": {},
|
| 73 |
+
"embedding_errors": 0
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
if self.debug:
|
| 77 |
+
logger.info(f"Initialized SemanticChunker with threshold={similarity_threshold}")
|
| 78 |
+
|
| 79 |
+
def _detect_embedding_model_type(self) -> str:
|
| 80 |
+
"""Detect the type of embedding model being used."""
|
| 81 |
+
if hasattr(self.embeddings_model, 'model'):
|
| 82 |
+
# Likely sentence-transformers model (BGE, etc.)
|
| 83 |
+
model_name = getattr(self.embeddings_model.model, 'model_name', 'sentence-transformers')
|
| 84 |
+
return f"sentence-transformers ({model_name})"
|
| 85 |
+
elif hasattr(self.embeddings_model, 'client'):
|
| 86 |
+
# Likely OpenAI
|
| 87 |
+
return "OpenAI"
|
| 88 |
+
else:
|
| 89 |
+
return "Unknown"
|
| 90 |
+
|
| 91 |
+
def _preprocess_text_for_splitting(self, text: str) -> str:
|
| 92 |
+
"""
|
| 93 |
+
Preprocess text to handle common formatting issues in university documents.
|
| 94 |
+
"""
|
| 95 |
+
# Fix common formatting issues
|
| 96 |
+
fixes = [
|
| 97 |
+
# Add space after periods before capital letters
|
| 98 |
+
(r'([a-z])\.([A-Z])', r'\1. \2'),
|
| 99 |
+
# Add space after numbers with periods
|
| 100 |
+
(r'([0-9]+)\.([A-Z])', r'\1. \2'),
|
| 101 |
+
# Fix missing spaces after question/exclamation marks
|
| 102 |
+
(r'([a-z])\?([A-Z])', r'\1? \2'),
|
| 103 |
+
(r'([a-z])\!([A-Z])', r'\1! \2'),
|
| 104 |
+
# Clean up multiple spaces
|
| 105 |
+
(r'\s+', ' '),
|
| 106 |
+
# Fix bullet points
|
| 107 |
+
(r'β’\s*([A-Z])', r'β’ \1'),
|
| 108 |
+
(r'-\s*([A-Z])', r'- \1'),
|
| 109 |
+
]
|
| 110 |
+
|
| 111 |
+
processed_text = text
|
| 112 |
+
for pattern, replacement in fixes:
|
| 113 |
+
processed_text = re.sub(pattern, replacement, processed_text)
|
| 114 |
+
|
| 115 |
+
return processed_text.strip()
|
| 116 |
+
|
| 117 |
+
def _split_into_sentences(self, text: str) -> List[str]:
|
| 118 |
+
"""
|
| 119 |
+
Advanced sentence splitting optimized for academic documents.
|
| 120 |
+
"""
|
| 121 |
+
# Preprocess text
|
| 122 |
+
text = self._preprocess_text_for_splitting(text)
|
| 123 |
+
|
| 124 |
+
# Split on sentence boundaries
|
| 125 |
+
raw_sentences = re.split(self.sentence_pattern, text)
|
| 126 |
+
|
| 127 |
+
# Clean and filter sentences
|
| 128 |
+
sentences = []
|
| 129 |
+
for sentence in raw_sentences:
|
| 130 |
+
sentence = sentence.strip()
|
| 131 |
+
|
| 132 |
+
# Filter out very short sentences, pure numbers, or empty strings
|
| 133 |
+
if len(sentence) >= 10 and not sentence.isdigit() and not re.match(r'^[^\w]*$', sentence):
|
| 134 |
+
sentences.append(sentence)
|
| 135 |
+
|
| 136 |
+
if self.debug:
|
| 137 |
+
logger.info(f"Split text into {len(sentences)} sentences")
|
| 138 |
+
|
| 139 |
+
return sentences
|
| 140 |
+
|
| 141 |
+
def _get_embeddings(self, texts: List[str]) -> Optional[np.ndarray]:
|
| 142 |
+
"""
|
| 143 |
+
Get embeddings from the provided model with error handling.
|
| 144 |
+
"""
|
| 145 |
+
try:
|
| 146 |
+
if hasattr(self.embeddings_model, 'model'):
|
| 147 |
+
# sentence-transformers model (BGE, etc.)
|
| 148 |
+
embeddings = self.embeddings_model.model.encode(texts)
|
| 149 |
+
return np.array(embeddings)
|
| 150 |
+
elif hasattr(self.embeddings_model, 'embed_documents'):
|
| 151 |
+
# OpenAI or similar API-based embeddings
|
| 152 |
+
embeddings = self.embeddings_model.embed_documents(texts)
|
| 153 |
+
return np.array(embeddings)
|
| 154 |
+
else:
|
| 155 |
+
# Try direct call
|
| 156 |
+
embeddings = self.embeddings_model(texts)
|
| 157 |
+
return np.array(embeddings)
|
| 158 |
+
|
| 159 |
+
except Exception as e:
|
| 160 |
+
self.stats["embedding_errors"] += 1
|
| 161 |
+
if self.debug:
|
| 162 |
+
logger.error(f"Error generating embeddings: {e}")
|
| 163 |
+
|
| 164 |
+
# Show warning in Streamlit if available
|
| 165 |
+
try:
|
| 166 |
+
st.warning(f"β οΈ Embedding error, falling back to simple chunking: {str(e)[:100]}...")
|
| 167 |
+
except:
|
| 168 |
+
pass # Streamlit not available
|
| 169 |
+
|
| 170 |
+
return None
|
| 171 |
+
|
| 172 |
+
def _calculate_semantic_boundaries(self, embeddings: np.ndarray, sentences: List[str]) -> List[int]:
|
| 173 |
+
"""
|
| 174 |
+
Find natural semantic boundaries in the text based on embedding similarities.
|
| 175 |
+
"""
|
| 176 |
+
boundaries = [0] # Always start with first sentence
|
| 177 |
+
|
| 178 |
+
# Calculate similarities between consecutive sentences
|
| 179 |
+
similarities = []
|
| 180 |
+
for i in range(len(embeddings) - 1):
|
| 181 |
+
sim = cosine_similarity(
|
| 182 |
+
embeddings[i:i+1],
|
| 183 |
+
embeddings[i+1:i+2]
|
| 184 |
+
)[0][0]
|
| 185 |
+
similarities.append(sim)
|
| 186 |
+
|
| 187 |
+
# Find significant drops in similarity (topic boundaries)
|
| 188 |
+
if len(similarities) > 1:
|
| 189 |
+
mean_sim = np.mean(similarities)
|
| 190 |
+
std_sim = np.std(similarities)
|
| 191 |
+
threshold = mean_sim - (0.5 * std_sim) # Adaptive threshold
|
| 192 |
+
|
| 193 |
+
for i, sim in enumerate(similarities):
|
| 194 |
+
if sim < threshold:
|
| 195 |
+
boundaries.append(i + 1)
|
| 196 |
+
|
| 197 |
+
boundaries.append(len(sentences)) # Always end with last sentence
|
| 198 |
+
|
| 199 |
+
return sorted(list(set(boundaries))) # Remove duplicates and sort
|
| 200 |
+
|
| 201 |
+
def _create_chunks_from_boundaries(self, sentences: List[str], boundaries: List[int],
|
| 202 |
+
embeddings: Optional[np.ndarray], metadata: Dict[str, Any]) -> List[Document]:
|
| 203 |
+
"""
|
| 204 |
+
Create document chunks based on semantic boundaries.
|
| 205 |
+
"""
|
| 206 |
+
chunks = []
|
| 207 |
+
|
| 208 |
+
for i in range(len(boundaries) - 1):
|
| 209 |
+
start_idx = boundaries[i]
|
| 210 |
+
end_idx = boundaries[i + 1]
|
| 211 |
+
|
| 212 |
+
# Create base chunk
|
| 213 |
+
chunk_sentences = sentences[start_idx:end_idx]
|
| 214 |
+
|
| 215 |
+
# Try to extend chunk if semantically similar
|
| 216 |
+
if embeddings is not None and end_idx < len(sentences):
|
| 217 |
+
current_embedding = np.mean(embeddings[start_idx:end_idx], axis=0, keepdims=True)
|
| 218 |
+
|
| 219 |
+
# Check if we can extend the chunk
|
| 220 |
+
extended_end = end_idx
|
| 221 |
+
while extended_end < len(sentences):
|
| 222 |
+
next_sentence_embedding = embeddings[extended_end:extended_end+1]
|
| 223 |
+
similarity = cosine_similarity(current_embedding, next_sentence_embedding)[0][0]
|
| 224 |
+
|
| 225 |
+
if similarity > self.similarity_threshold:
|
| 226 |
+
# Check size limit
|
| 227 |
+
test_chunk = ' '.join(sentences[start_idx:extended_end+1])
|
| 228 |
+
if len(test_chunk) <= self.max_chunk_size:
|
| 229 |
+
extended_end += 1
|
| 230 |
+
# Update current embedding
|
| 231 |
+
current_embedding = np.mean(embeddings[start_idx:extended_end], axis=0, keepdims=True)
|
| 232 |
+
else:
|
| 233 |
+
break
|
| 234 |
+
else:
|
| 235 |
+
break
|
| 236 |
+
|
| 237 |
+
# Use extended chunk if we found extensions
|
| 238 |
+
if extended_end > end_idx:
|
| 239 |
+
chunk_sentences = sentences[start_idx:extended_end]
|
| 240 |
+
|
| 241 |
+
# Create chunk text
|
| 242 |
+
chunk_text = ' '.join(chunk_sentences)
|
| 243 |
+
|
| 244 |
+
# Only add chunks that meet minimum size requirement
|
| 245 |
+
if len(chunk_text) >= self.min_chunk_size:
|
| 246 |
+
chunk_metadata = metadata.copy()
|
| 247 |
+
chunk_metadata.update({
|
| 248 |
+
"chunk_index": len(chunks),
|
| 249 |
+
"sentence_count": len(chunk_sentences),
|
| 250 |
+
"start_sentence": start_idx,
|
| 251 |
+
"end_sentence": start_idx + len(chunk_sentences) - 1,
|
| 252 |
+
"chunking_method": "semantic_boundary",
|
| 253 |
+
"similarity_threshold": self.similarity_threshold,
|
| 254 |
+
"chunk_size_chars": len(chunk_text)
|
| 255 |
+
})
|
| 256 |
+
|
| 257 |
+
chunks.append(Document(page_content=chunk_text, metadata=chunk_metadata))
|
| 258 |
+
|
| 259 |
+
return chunks
|
| 260 |
+
|
| 261 |
+
def _create_simple_chunks(self, sentences: List[str], metadata: Dict[str, Any]) -> List[Document]:
|
| 262 |
+
"""
|
| 263 |
+
Fallback to simple sentence-based chunking when embeddings are unavailable.
|
| 264 |
+
"""
|
| 265 |
+
chunks = []
|
| 266 |
+
|
| 267 |
+
for i in range(0, len(sentences), max(1, self.chunk_size - self.overlap)):
|
| 268 |
+
chunk_sentences = sentences[i:i + self.chunk_size]
|
| 269 |
+
chunk_text = ' '.join(chunk_sentences)
|
| 270 |
+
|
| 271 |
+
if len(chunk_text) >= self.min_chunk_size:
|
| 272 |
+
chunk_metadata = metadata.copy()
|
| 273 |
+
chunk_metadata.update({
|
| 274 |
+
"chunk_index": len(chunks),
|
| 275 |
+
"sentence_count": len(chunk_sentences),
|
| 276 |
+
"start_sentence": i,
|
| 277 |
+
"end_sentence": i + len(chunk_sentences) - 1,
|
| 278 |
+
"chunking_method": "simple_fallback",
|
| 279 |
+
"chunk_size_chars": len(chunk_text)
|
| 280 |
+
})
|
| 281 |
+
|
| 282 |
+
chunks.append(Document(page_content=chunk_text, metadata=chunk_metadata))
|
| 283 |
+
|
| 284 |
+
return chunks
|
| 285 |
+
|
| 286 |
+
def split_documents(self, documents: List[Document]) -> List[Document]:
|
| 287 |
+
"""
|
| 288 |
+
Main method: Split documents into semantically coherent chunks.
|
| 289 |
+
|
| 290 |
+
Args:
|
| 291 |
+
documents: List of LangChain Document objects
|
| 292 |
+
|
| 293 |
+
Returns:
|
| 294 |
+
List of Document objects with semantic chunks
|
| 295 |
+
"""
|
| 296 |
+
all_chunks = []
|
| 297 |
+
self.stats["total_documents"] = len(documents)
|
| 298 |
+
|
| 299 |
+
for doc_idx, doc in enumerate(documents):
|
| 300 |
+
try:
|
| 301 |
+
# Split document into sentences
|
| 302 |
+
sentences = self._split_into_sentences(doc.page_content)
|
| 303 |
+
|
| 304 |
+
if not sentences:
|
| 305 |
+
if self.debug:
|
| 306 |
+
logger.warning(f"No sentences found in document {doc_idx}")
|
| 307 |
+
continue
|
| 308 |
+
|
| 309 |
+
# Handle very short documents
|
| 310 |
+
if len(sentences) < self.chunk_size:
|
| 311 |
+
chunk_text = ' '.join(sentences)
|
| 312 |
+
if len(chunk_text) >= self.min_chunk_size:
|
| 313 |
+
chunk_metadata = doc.metadata.copy()
|
| 314 |
+
chunk_metadata.update({
|
| 315 |
+
"chunk_index": 0,
|
| 316 |
+
"total_chunks": 1,
|
| 317 |
+
"sentence_count": len(sentences),
|
| 318 |
+
"chunking_method": "single_chunk",
|
| 319 |
+
"chunk_size_chars": len(chunk_text)
|
| 320 |
+
})
|
| 321 |
+
all_chunks.append(Document(page_content=chunk_text, metadata=chunk_metadata))
|
| 322 |
+
continue
|
| 323 |
+
|
| 324 |
+
# Generate embeddings
|
| 325 |
+
embeddings = self._get_embeddings(sentences)
|
| 326 |
+
|
| 327 |
+
if embeddings is not None:
|
| 328 |
+
# Create semantic chunks
|
| 329 |
+
chunks = self._create_chunks_from_boundaries(sentences, [0, len(sentences)], embeddings, doc.metadata)
|
| 330 |
+
method = "semantic"
|
| 331 |
+
else:
|
| 332 |
+
# Fallback to simple chunking
|
| 333 |
+
chunks = self._create_simple_chunks(sentences, doc.metadata)
|
| 334 |
+
method = "simple_fallback"
|
| 335 |
+
|
| 336 |
+
# Update statistics
|
| 337 |
+
self.stats["chunking_methods"][method] = self.stats["chunking_methods"].get(method, 0) + 1
|
| 338 |
+
|
| 339 |
+
# Update total chunks count in each chunk's metadata
|
| 340 |
+
for chunk in chunks:
|
| 341 |
+
chunk.metadata["total_chunks"] = len(chunks)
|
| 342 |
+
chunk.metadata["source_document_index"] = doc_idx
|
| 343 |
+
|
| 344 |
+
all_chunks.extend(chunks)
|
| 345 |
+
|
| 346 |
+
if self.debug:
|
| 347 |
+
logger.info(f"Document {doc_idx}: {len(sentences)} sentences β {len(chunks)} chunks ({method})")
|
| 348 |
+
|
| 349 |
+
except Exception as e:
|
| 350 |
+
logger.error(f"Error processing document {doc_idx}: {e}")
|
| 351 |
+
if self.debug:
|
| 352 |
+
st.error(f"Error processing document {doc_idx}: {e}")
|
| 353 |
+
|
| 354 |
+
# Update final statistics
|
| 355 |
+
self.stats["total_chunks"] = len(all_chunks)
|
| 356 |
+
if all_chunks:
|
| 357 |
+
chunk_sizes = [len(chunk.page_content) for chunk in all_chunks]
|
| 358 |
+
self.stats["avg_chunk_size"] = sum(chunk_sizes) / len(chunk_sizes)
|
| 359 |
+
|
| 360 |
+
if self.debug:
|
| 361 |
+
logger.info(f"Created {len(all_chunks)} total chunks from {len(documents)} documents")
|
| 362 |
+
|
| 363 |
+
return all_chunks
|
| 364 |
+
|
| 365 |
+
def get_statistics(self) -> Dict[str, Any]:
|
| 366 |
+
"""Get chunking statistics for analysis."""
|
| 367 |
+
return self.stats.copy()
|
| 368 |
+
|
| 369 |
+
def display_statistics(self):
|
| 370 |
+
"""Display chunking statistics in Streamlit (if available)."""
|
| 371 |
+
try:
|
| 372 |
+
with st.expander("π Semantic Chunking Statistics"):
|
| 373 |
+
col1, col2 = st.columns(2)
|
| 374 |
+
|
| 375 |
+
with col1:
|
| 376 |
+
st.metric("Total Documents", self.stats["total_documents"])
|
| 377 |
+
st.metric("Total Chunks", self.stats["total_chunks"])
|
| 378 |
+
|
| 379 |
+
with col2:
|
| 380 |
+
st.metric("Avg Chunk Size", f"{self.stats['avg_chunk_size']:.0f} chars")
|
| 381 |
+
st.metric("Embedding Errors", self.stats["embedding_errors"])
|
| 382 |
+
|
| 383 |
+
if self.stats["chunking_methods"]:
|
| 384 |
+
st.write("**Chunking Methods Used:**")
|
| 385 |
+
for method, count in self.stats["chunking_methods"].items():
|
| 386 |
+
percentage = (count / self.stats["total_documents"]) * 100 if self.stats["total_documents"] > 0 else 0
|
| 387 |
+
st.write(f" - {method}: {count} documents ({percentage:.1f}%)")
|
| 388 |
+
|
| 389 |
+
st.write("**Configuration:**")
|
| 390 |
+
st.json({
|
| 391 |
+
"chunk_size": self.chunk_size,
|
| 392 |
+
"overlap": self.overlap,
|
| 393 |
+
"similarity_threshold": self.similarity_threshold,
|
| 394 |
+
"min_chunk_size": self.min_chunk_size,
|
| 395 |
+
"max_chunk_size": self.max_chunk_size,
|
| 396 |
+
"embedding_model": self._detect_embedding_model_type()
|
| 397 |
+
})
|
| 398 |
+
|
| 399 |
+
except ImportError:
|
| 400 |
+
# Streamlit not available, print to console
|
| 401 |
+
print("\n=== Semantic Chunking Statistics ===")
|
| 402 |
+
print(f"Documents processed: {self.stats['total_documents']}")
|
| 403 |
+
print(f"Chunks created: {self.stats['total_chunks']}")
|
| 404 |
+
print(f"Average chunk size: {self.stats['avg_chunk_size']:.0f} characters")
|
| 405 |
+
print(f"Embedding errors: {self.stats['embedding_errors']}")
|
| 406 |
+
print(f"Chunking methods: {self.stats['chunking_methods']}")
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
def create_semantic_chunker(embeddings_model, **kwargs) -> SemanticChunker:
|
| 410 |
+
"""
|
| 411 |
+
Convenience function to create a semantic chunker with sensible defaults.
|
| 412 |
+
|
| 413 |
+
Args:
|
| 414 |
+
embeddings_model: Your existing embeddings model
|
| 415 |
+
**kwargs: Additional parameters to pass to SemanticChunker
|
| 416 |
+
|
| 417 |
+
Returns:
|
| 418 |
+
SemanticChunker instance ready to use
|
| 419 |
+
"""
|
| 420 |
+
return SemanticChunker(embeddings_model=embeddings_model, **kwargs)
|