Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,038 Bytes
c28dddb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import os, sys
import json
import numpy as np
# import collections.abc
# sys.modules['collections'].Mapping = collections.abc.Mapping
import networkx as nx
from torch.utils.data import Dataset
from my_utils.refs import cat_ref, sem_ref, joint_ref, data_mode_ref
from collections import deque
def build_graph(tree, K=32):
'''
Function to build graph from the node list.
Args:
nodes: list of nodes
K: the maximum number of nodes in the graph
Returns:
adj: adjacency matrix, records the 1-ring relationship (parent+children) between nodes
edge_list: list of edges, for visualization
'''
adj = np.zeros((K, K), dtype=np.float32)
parents = []
tree_list = []
for node in tree:
tree_list.append(
{
'id': node['id'],
'parent_id': node['parent'],
}
)
# 1-ring relationship
if node['parent'] != -1:
adj[node['id'], node['parent']] = 1
parents.append(node['parent'])
else:
adj[node['id'], node['id']] = 1
parents.append(-1)
for child_id in node['children']:
adj[node['id'], child_id] = 1
return {
'adj': adj,
'parents': np.array(parents, dtype=np.int8),
'tree_list': tree_list
}
from collections import defaultdict
from functools import cmp_to_key
def bfs_tree_simple(tree_list):
order = [0] * len(tree_list)
queue = []
current_node_idx = 0
for node_idx, node in enumerate(tree_list):
if node['parent_id'] == -1:
queue.append(node['id'])
order[node_idx] = current_node_idx
current_node_idx += 1
break
while len(queue) > 0:
current_node = queue.pop(0)
for node_idx, node in enumerate(tree_list):
if node['parent_id'] == current_node:
queue.append(node['id'])
order[node_idx] = current_node_idx
current_node_idx += 1
return order
def bfs_tree(tree_list, aabb_list, epsilon=1e-3):
# 初始化遍历顺序列表
order = [0] * len(tree_list)
current_order = 0
# 构建父节点到子节点的索引映射
parent_map = defaultdict(list)
for idx, node in enumerate(tree_list):
parent_map[node['parent_id']].append(idx)
# 查找根节点
root_indices = [idx for idx, node in enumerate(tree_list) if node['parent_id'] == -1]
if not root_indices:
return order
# 初始化队列(存储节点索引)
queue = [root_indices[0]]
order[root_indices[0]] = current_order
current_order += 1
# 比较函数:按中心坐标排序
def compare_centers(a, b):
# 获取两个节点的中心坐标
center_a = [(aabb_list[a][i] + aabb_list[a][i+3])/2 for i in range(3)]
center_b = [(aabb_list[b][i] + aabb_list[b][i+3])/2 for i in range(3)]
# 逐级比较坐标(考虑epsilon阈值)
for coord in range(3):
delta = abs(center_a[coord] - center_b[coord])
if delta > epsilon:
return -1 if center_a[coord] < center_b[coord] else 1
return 0 # 所有坐标差均小于阈值时保持原顺序
# BFS遍历
while queue:
current_idx = queue.pop(0)
current_id = tree_list[current_idx]['id']
# 获取子节点索引并排序
children = parent_map.get(current_id, [])
sorted_children = sorted(children, key=cmp_to_key(compare_centers))
# 处理子节点
for child_idx in sorted_children:
order[child_idx] = current_order
current_order += 1
queue.append(child_idx)
return order
class BaseDataset(Dataset):
def __init__(self, hparams):
super().__init__()
self.hparams = hparams
def _filter_models(self, models_ids):
'''
Filter out models that has more than K nodes.
'''
json_data_root = self.hparams.json_root
filtered = []
for i, model_id in enumerate(models_ids):
if i % 100 == 0:
print(f'Checking model {i}/{len(models_ids)}')
path = os.path.join(json_data_root, model_id, self.json_name)
with open(path, 'r') as f:
json_file = json.load(f)
if len(json_file['diffuse_tree']) <= self.hparams.K:
filtered.append(model_id)
return filtered
def get_acd_mapping(self):
self.category_mapping = {
'armoire': 'StorageFurniture',
'bookcase': 'StorageFurniture',
'chest_of_drawers': 'StorageFurniture',
'desk': 'Table',
'dishwasher': 'Dishwasher',
'hanging_cabinet': 'StorageFurniture',
'kitchen_cabinet': 'StorageFurniture',
'microwave': 'Microwave',
'nightstand': 'StorageFurniture',
'oven': 'Oven',
'refrigerator': 'Refrigerator',
'sink_cabinet': 'StorageFurniture',
'tv_stand': 'StorageFurniture',
'washer': 'WashingMachine',
'table': 'Table',
'cabinet': 'StorageFurniture',
'hanging_cabinet': 'StorageFurniture',
}
def _random_permute(self, graph, nodes):
'''
Function to randomly permute the nodes and update the graph and node attribute info.
Args:
graph: a dictionary containing the adjacency matrix, edge list, and root node
nodes: a list of nodes
Returns:
graph_permuted: a dictionary containing the updated adjacency matrix, edge list, and root node
nodes_permuted: a list of permuted nodes
'''
N = len(nodes)
order = np.random.permutation(N)
graph_permuted = self._reorder_nodes(graph, order)
exchange = [0] * len(order)
for i in range(len(order)):
exchange[order[i]] = i
nodes_permuted = nodes[exchange, :]
return graph_permuted, nodes_permuted
def _permute_by_order(self, graph, nodes, order):
'''
Function to permute the nodes and update the graph and node attribute info by order.
Args:
graph: a dictionary containing the adjacency matrix, edge list, and root node
nodes: a list of nodes
order: a list of indices for reordering
Returns:
graph_permuted: a dictionary containing the updated adjacency matrix, edge list, and root node
nodes_permuted: a list of permuted nodes
'''
graph_permuted = self._reorder_nodes(graph, order)
if nodes is None:
return graph_permuted, None
else:
exchange = [0] * len(order)
for i in range(len(order)):
exchange[order[i]] = i
nodes_permuted = nodes[exchange, :]
return graph_permuted, nodes_permuted
def _prepare_node_data(self, node):
# semantic label
label = np.array([sem_ref['fwd'][node['name']]], dtype=np.float32) / 5. - 0.8 # (1,), range from -0.8 to 0.8
# joint type
joint_type = np.array([joint_ref['fwd'][node['joint']['type']] / 5.], dtype=np.float32) - 0.5 # (1,), range from -0.8 to 0.8
# aabb
aabb_center = np.array(node['aabb']['center'], dtype=np.float32) # (3,), range from -1 to 1
aabb_size = np.array(node['aabb']['size'], dtype=np.float32) # (3,), range from -1 to 1
aabb_max = aabb_center + aabb_size / 2
aabb_min = aabb_center - aabb_size / 2
# joint axis and range
if node['joint']['type'] == 'fixed':
axis_dir = np.zeros((3,), dtype=np.float32)
axis_ori = aabb_center
joint_range = np.zeros((2,), dtype=np.float32)
else:
if node['joint']['type'] == 'revolute' or node['joint']['type'] == 'continuous':
joint_range = np.array([node['joint']['range'][1]], dtype=np.float32) / 360.
joint_range = np.concatenate([joint_range, np.zeros((1,), dtype=np.float32)], axis=0) # (2,)
elif node['joint']['type'] == 'prismatic' or node['joint']['type'] == 'screw':
joint_range = np.array([node['joint']['range'][1]], dtype=np.float32)
joint_range = np.concatenate([np.zeros((1,), dtype=np.float32), joint_range], axis=0) # (2,)
axis_dir = np.array(node['joint']['axis']['direction'], dtype=np.float32) * 0.7 # (3,), range from -0.7 to 0.7
# make sure the axis is pointing to the positive direction
if np.sum(axis_dir > 0) < np.sum(-axis_dir > 0):
axis_dir = -axis_dir
joint_range = -joint_range
axis_ori = np.array(node['joint']['axis']['origin'], dtype=np.float32) # (3,), range from -1 to 1
if (node['joint']['type'] == 'prismatic' or node['joint']['type'] == 'screw') and node['name'] != 'door':
axis_ori = aabb_center
# prepare node data by given mod name
# aabb = np.concatenate([aabb_max, aabb_min], axis=0)
# axis = np.concatenate([axis_dir, axis_ori], axis=0)
# node_data_all = [aabb, joint_type.repeat(6), axis, joint_range.repeat(3), label.repeat(6)]
# node_data_list = [node_data_all[data_mode_ref[mod_name]] for mod_name in self.hparams.data_mode]
# node_data = np.concatenate(node_data_list, axis=0)
node_label = np.ones(6, dtype=np.float32)
node_data = np.concatenate([aabb_max, aabb_min, joint_type.repeat(6), axis_dir, axis_ori, joint_range.repeat(3), label.repeat(6), node_label], axis=0)
if self.hparams.mode_num == 5:
node_data = np.concatenate([aabb_max, aabb_min, joint_type.repeat(6), axis_dir, axis_ori, joint_range.repeat(3), label.repeat(6)], axis=0)
return node_data
def _reorder_nodes(self, graph, order):
'''
Function to reorder nodes in the graph and
update the adjacency matrix, edge list, and root node.
Args:
graph: a dictionary containing the adjacency matrix, edge list, and root node
order: a list of indices for reordering
Returns:
new_graph: a dictionary containing the updated adjacency matrix, edge list, and root node
'''
N = len(order)
mapping = {i: order[i] for i in range(N)}
mapping.update({i: i for i in range(N, self.hparams.K)})
G = nx.from_numpy_array(graph['adj'], create_using=nx.Graph)
G_ = nx.relabel_nodes(G, mapping)
new_adj = nx.adjacency_matrix(G_, G.nodes).todense()
exchange = [0] * len(order)
for i in range(len(order)):
exchange[order[i]] = i
return {
'adj': new_adj.astype(np.float32),
'parents': graph['parents'][exchange]
}
def _prepare_input_GT(self, file, model_id):
'''
Function to parse input item from a json file for the CAGE training.
'''
tree = file['diffuse_tree']
K = self.hparams.K # max number of nodes
cond = {} # conditional information and axillary data
cond['parents'] = np.zeros(K, dtype=np.int8)
# prepare node data
nodes = []
for node in tree:
node_data = self._prepare_node_data(node) # (36,)
nodes.append(node_data)
nodes = np.array(nodes, dtype=np.float32)
n_nodes = len(nodes)
# prepare graph
graph = build_graph(tree, self.hparams.K)
if self.mode == 'train': # perturb the node order for training
graph, nodes = self._random_permute(graph, nodes)
# pad the nodes to K with empty nodes
if n_nodes < K:
empty_node = np.zeros((nodes[0].shape[0],))
data = np.concatenate([nodes, [empty_node] * (K - n_nodes)], axis=0, dtype=np.float32) # (K, 36)
else:
data = nodes
mode_num = data.shape[1] // 6
data = data.reshape(K*mode_num, 6) # (K * n_attr, 6)
# attr mask (for Local Attention)
attr_mask = np.eye(K, K, dtype=bool)
attr_mask = attr_mask.repeat(mode_num, axis=0).repeat(mode_num, axis=1)
cond['attr_mask'] = attr_mask
# key padding mask (for Global Attention)
pad_mask = np.zeros((K*mode_num, K*mode_num), dtype=bool)
pad_mask[:, :n_nodes*mode_num] = 1
cond['key_pad_mask'] = pad_mask
# adj mask (for Graph Relation Attention)
adj_mask = graph['adj'][:].astype(bool)
adj_mask = adj_mask.repeat(mode_num, axis=0).repeat(mode_num, axis=1)
adj_mask[n_nodes*mode_num:, :] = 1
cond['adj_mask'] = adj_mask
# object category
if self.map_cat: # for ACD dataset
category = file['meta']['obj_cat']
category = self.category_mapping[category]
cond['cat'] = cat_ref[category]
else:
cond['cat'] = cat_ref.get(file['meta']['obj_cat'], None)
if cond['cat'] is None:
cond['cat'] = self.category_mapping.get(file['meta']['obj_cat'], None)
if cond['cat'] is None:
cond['cat'] = 2
else:
cond['cat'] = cat_ref.get(cond['cat'], None)
# cond['cat'] = cat_ref[file['meta']['obj_cat']]
if cond['cat'] is None:
cond['cat'] = 2
# axillary info
cond['name'] = model_id
cond['adj'] = graph['adj']
cond['parents'][:n_nodes] = graph['parents']
cond['n_nodes'] = n_nodes
cond['obj_cat'] = file['meta']['obj_cat']
return data, cond
def _prepare_input(self, model_id, pred_file, gt_file=None):
'''
Function to parse input item from pred_file, and parse GT from gt_file if available.
'''
K = self.hparams.K # max number of nodes
cond = {} # conditional information and axillary data
# prepare node data
n_nodes = len(pred_file['diffuse_tree'])
# prepare graph
pred_graph = build_graph(pred_file['diffuse_tree'], K)
# dummy GT data
data = np.zeros((K*5, 6), dtype=np.float32)
# attr mask (for Local Attention)
attr_mask = np.eye(K, K, dtype=bool)
attr_mask = attr_mask.repeat(5, axis=0).repeat(5, axis=1)
cond['attr_mask'] = attr_mask
# key padding mask (for Global Attention)
pad_mask = np.zeros((K*5, K*5), dtype=bool)
pad_mask[:, :n_nodes*5] = 1
cond['key_pad_mask'] = pad_mask
# adj mask (for Graph Relation Attention)
adj_mask = pred_graph['adj'][:].astype(bool)
adj_mask = adj_mask.repeat(5, axis=0).repeat(5, axis=1)
adj_mask[n_nodes*5:, :] = 1
cond['adj_mask'] = adj_mask
# placeholder category, won't be used if category is given (below)
cond['cat'] = cat_ref['StorageFurniture']
cond['obj_cat'] = 'StorageFurniture'
# if object category is given as input
if not self.hparams.get('test_label_free', False):
assert 'meta' in pred_file, 'meta not found in the json file.'
assert 'obj_cat' in pred_file['meta'], 'obj_cat not found in the metadata of the json file.'
category = pred_file['meta']['obj_cat']
if self.map_cat: # for ACD dataset
category = self.category_mapping[category]
cond['cat'] = cat_ref[category]
cond['obj_cat'] = category
# axillary info
cond['name'] = model_id
cond['adj'] = pred_graph['adj']
cond['parents'] = np.zeros(K, dtype=np.int8)
cond['parents'][:n_nodes] = pred_graph['parents']
cond['n_nodes'] = n_nodes
return data, cond
def __getitem__(self, index):
raise NotImplementedError
def __len__(self):
raise NotImplementedError
|