Spaces:
Sleeping
Sleeping
app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# Lingshu-7B imports
|
| 6 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
| 7 |
+
|
| 8 |
+
# MedGemma imports
|
| 9 |
+
from transformers import pipeline
|
| 10 |
+
|
| 11 |
+
def load_lingshu_model():
|
| 12 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 13 |
+
"lingshu-medical-mllm/Lingshu-7B",
|
| 14 |
+
torch_dtype=torch.bfloat16,
|
| 15 |
+
attn_implementation="flash_attention_2",
|
| 16 |
+
device_map="auto"
|
| 17 |
+
)
|
| 18 |
+
processor = AutoProcessor.from_pretrained("lingshu-medical-mllm/Lingshu-7B")
|
| 19 |
+
return model, processor
|
| 20 |
+
|
| 21 |
+
def load_medgemma_model():
|
| 22 |
+
pipe = pipeline(
|
| 23 |
+
"image-text-to-text",
|
| 24 |
+
model="google/medgemma-27b-it",
|
| 25 |
+
torch_dtype=torch.bfloat16,
|
| 26 |
+
device="cuda"
|
| 27 |
+
)
|
| 28 |
+
return pipe
|
| 29 |
+
|
| 30 |
+
lingshu_model, lingshu_processor = None, None
|
| 31 |
+
medgemma_pipe = None
|
| 32 |
+
|
| 33 |
+
def setup_models(selected_model):
|
| 34 |
+
global lingshu_model, lingshu_processor, medgemma_pipe
|
| 35 |
+
if selected_model == "Lingshu-7B" and lingshu_model is None:
|
| 36 |
+
lingshu_model, lingshu_processor = load_lingshu_model()
|
| 37 |
+
if selected_model == "MedGemma-27B-IT" and medgemma_pipe is None:
|
| 38 |
+
medgemma_pipe = load_medgemma_model()
|
| 39 |
+
|
| 40 |
+
def med_ai_inference(img, prompt, model_type):
|
| 41 |
+
setup_models(model_type)
|
| 42 |
+
if model_type == "Lingshu-7B":
|
| 43 |
+
messages = [
|
| 44 |
+
{
|
| 45 |
+
"role": "user",
|
| 46 |
+
"content": [
|
| 47 |
+
{"type": "image", "image": img},
|
| 48 |
+
{"type": "text", "text": prompt}
|
| 49 |
+
]
|
| 50 |
+
}
|
| 51 |
+
]
|
| 52 |
+
text = lingshu_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 53 |
+
inputs = lingshu_processor(text=[text], images=[img], padding=True, return_tensors="pt").to(lingshu_model.device)
|
| 54 |
+
with torch.no_grad():
|
| 55 |
+
generated_ids = lingshu_model.generate(**inputs, max_new_tokens=128)
|
| 56 |
+
trim_ids = generated_ids[:, inputs.input_ids.shape[1]:]
|
| 57 |
+
out_text = lingshu_processor.batch_decode(trim_ids, skip_special_tokens=True)
|
| 58 |
+
return out_text[0]
|
| 59 |
+
if model_type == "MedGemma-27B-IT":
|
| 60 |
+
# MedGemma expects messages
|
| 61 |
+
messages = [
|
| 62 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a medical expert."}]},
|
| 63 |
+
{"role": "user", "content": [{"type": "text", "text": prompt}, {"type": "image", "image": img}]}
|
| 64 |
+
]
|
| 65 |
+
res = medgemma_pipe(text=messages, max_new_tokens=200)
|
| 66 |
+
return res[0]["generated_text"][-1]["content"]
|
| 67 |
+
|
| 68 |
+
with gr.Blocks() as demo:
|
| 69 |
+
gr.Markdown("# Medical AI Companion")
|
| 70 |
+
gr.Markdown("Upload a medical image, type your medical question or prompt, and select a model for automated report/answer.")
|
| 71 |
+
model_radio = gr.Radio(label="Model", choices=["Lingshu-7B", "MedGemma-27B-IT"], value="Lingshu-7B")
|
| 72 |
+
img_input = gr.Image(type="pil", label="Medical Image")
|
| 73 |
+
text_input = gr.Textbox(lines=2, label="Prompt", value="Describe this image.")
|
| 74 |
+
outbox = gr.Textbox(lines=10, label="AI Report / Answer", interactive=False)
|
| 75 |
+
run_btn = gr.Button("Analyze")
|
| 76 |
+
run_btn.click(med_ai_inference, [img_input, text_input, model_radio], outbox)
|
| 77 |
+
|
| 78 |
+
demo.launch()
|