Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import itertools
|
| 3 |
+
import pickle
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
# Import and download necessary NLTK data for tokenization.
|
| 7 |
+
import nltk
|
| 8 |
+
from nltk.translate.bleu_score import sentence_bleu
|
| 9 |
+
|
| 10 |
+
nltk.download('punkt')
|
| 11 |
+
|
| 12 |
+
# Import the ROUGE metric implementation.
|
| 13 |
+
from rouge import Rouge
|
| 14 |
+
|
| 15 |
+
rouge = Rouge()
|
| 16 |
+
|
| 17 |
+
from datasets import load_dataset
|
| 18 |
+
import streamlit as st
|
| 19 |
+
|
| 20 |
+
# Use name="sample-10BT" to use the 10BT sample.
|
| 21 |
+
fw = load_dataset("HuggingFaceFW/fineweb", name="CC-MAIN-2024-10", split="train", streaming=True)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# Define helper functions for character-level accuracy and precision.
|
| 25 |
+
def char_accuracy(true_output, model_output):
|
| 26 |
+
# Compare matching characters in corresponding positions.
|
| 27 |
+
matches = sum(1 for c1, c2 in zip(true_output, model_output) if c1 == c2)
|
| 28 |
+
# Account for any extra characters in either string.
|
| 29 |
+
total = max(len(true_output), len(model_output))
|
| 30 |
+
return matches / total if total > 0 else 1.0
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def char_precision(true_output, model_output):
|
| 34 |
+
# Precision is matching characters divided by the length of the model's output.
|
| 35 |
+
matches = sum(1 for c1, c2 in zip(true_output, model_output) if c1 == c2)
|
| 36 |
+
return matches / len(model_output) if len(model_output) > 0 else 0.0
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# Initialize Streamlit app
|
| 40 |
+
st.title("Model Evaluation App")
|
| 41 |
+
st.write("This app evaluates a model's ability to reverse input text character by character.")
|
| 42 |
+
|
| 43 |
+
# Parameters
|
| 44 |
+
word_threshold = st.sidebar.number_input("Word Threshold", value=100, step=10)
|
| 45 |
+
num_samples = st.sidebar.number_input("Number of Samples", value=1, step=1)
|
| 46 |
+
|
| 47 |
+
# Get samples
|
| 48 |
+
samples = list(itertools.islice(fw, num_samples))
|
| 49 |
+
acc = []
|
| 50 |
+
pres = []
|
| 51 |
+
bleu = []
|
| 52 |
+
rouges = []
|
| 53 |
+
|
| 54 |
+
for x in samples:
|
| 55 |
+
nextt = x["text"].split(" ")
|
| 56 |
+
for n in range(len(nextt) // word_threshold):
|
| 57 |
+
inp = nextt[word_threshold * n: word_threshold * (n + 1)]
|
| 58 |
+
inp = " ".join(inp).replace("\n", "")
|
| 59 |
+
|
| 60 |
+
# Display the input text
|
| 61 |
+
st.subheader("Input Text")
|
| 62 |
+
st.write(inp)
|
| 63 |
+
|
| 64 |
+
prompt = (
|
| 65 |
+
"You are a helpful assistant that echoes the user's input, but backwards, "
|
| 66 |
+
"do not simply rearrange the words, reverse the user's input down to the character "
|
| 67 |
+
"(e.g. reverse Hello World to dlroW olleH). Surround the backwards version of the "
|
| 68 |
+
"user's input with <back> </back> tags. " + inp
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# Ground truth: reverse the input (character by character)
|
| 72 |
+
true_output = inp[::-1]
|
| 73 |
+
st.subheader("True Output")
|
| 74 |
+
st.write(true_output)
|
| 75 |
+
|
| 76 |
+
# Get the model output (Here, we simulate it or integrate your model inference)
|
| 77 |
+
# For demonstration purposes, we'll reverse the input as the model output
|
| 78 |
+
# Replace this part with your model's actual output
|
| 79 |
+
model_output_full = "<back>" + true_output + "</back>"
|
| 80 |
+
|
| 81 |
+
# Extract the text between <back> and </back> tags
|
| 82 |
+
tag1 = model_output_full.find("<back>")
|
| 83 |
+
tag2 = model_output_full.find("</back>")
|
| 84 |
+
model_output = model_output_full[tag1 + 6: tag2]
|
| 85 |
+
st.subheader("Model Output")
|
| 86 |
+
st.write(model_output)
|
| 87 |
+
|
| 88 |
+
# Tokenize both outputs for BLEU calculation
|
| 89 |
+
reference_tokens = nltk.word_tokenize(true_output)
|
| 90 |
+
candidate_tokens = nltk.word_tokenize(model_output)
|
| 91 |
+
|
| 92 |
+
# Compute BLEU score (using the single reference)
|
| 93 |
+
bleu_score = sentence_bleu([reference_tokens], candidate_tokens)
|
| 94 |
+
st.write("**BLEU Score:**", bleu_score)
|
| 95 |
+
|
| 96 |
+
# Compute ROUGE scores
|
| 97 |
+
rouge_scores = rouge.get_scores(model_output, true_output)
|
| 98 |
+
st.write("**ROUGE Scores:**")
|
| 99 |
+
st.json(rouge_scores)
|
| 100 |
+
|
| 101 |
+
# Compute character-level accuracy and precision
|
| 102 |
+
accuracy_metric = char_accuracy(true_output, model_output)
|
| 103 |
+
precision_metric = char_precision(true_output, model_output)
|
| 104 |
+
st.write("**Character Accuracy:**", accuracy_metric)
|
| 105 |
+
st.write("**Character Precision:**", precision_metric)
|
| 106 |
+
|
| 107 |
+
st.markdown("---")
|
| 108 |
+
|
| 109 |
+
# Append metrics to lists
|
| 110 |
+
acc.append(accuracy_metric)
|
| 111 |
+
pres.append(precision_metric)
|
| 112 |
+
bleu.append(bleu_score)
|
| 113 |
+
rouges.append(rouge_scores)
|
| 114 |
+
|
| 115 |
+
# Allow the user to download the metrics
|
| 116 |
+
if st.button("Download Metrics"):
|
| 117 |
+
with open('accuracy.pkl', 'wb') as file:
|
| 118 |
+
pickle.dump(acc, file)
|
| 119 |
+
with open('precision.pkl', 'wb') as file:
|
| 120 |
+
pickle.dump(pres, file)
|
| 121 |
+
with open('bleu.pkl', 'wb') as file:
|
| 122 |
+
pickle.dump(bleu, file)
|
| 123 |
+
with open('rouge.pkl', 'wb') as file:
|
| 124 |
+
pickle.dump(rouges, file)
|
| 125 |
+
st.success("Metrics saved successfully!")
|
| 126 |
+
|
| 127 |
+
# Provide download links
|
| 128 |
+
st.download_button('Download Accuracy Metrics', data=open('accuracy.pkl', 'rb'), file_name='accuracy.pkl')
|
| 129 |
+
st.download_button('Download Precision Metrics', data=open('precision.pkl', 'rb'), file_name='precision.pkl')
|
| 130 |
+
st.download_button('Download BLEU Metrics', data=open('bleu.pkl', 'rb'), file_name='bleu.pkl')
|
| 131 |
+
st.download_button('Download ROUGE Metrics', data=open('rouge.pkl', 'rb'), file_name='rouge.pkl')
|