Spaces:
Running
Running
File size: 21,582 Bytes
0f7edc0 9e74b5e 0f7edc0 9e74b5e 0f7edc0 9e74b5e 0f7edc0 9e74b5e 0f7edc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
"""
MAKER Framework - Hugging Face Space
=====================================
Reliable AI Agent with Web Search & File Upload
Based on: https://arxiv.org/abs/2511.09030
"""
import gradio as gr
import asyncio
import json
import re
import base64
from collections import Counter
from dataclasses import dataclass, field
from typing import Any, Callable, Optional
from pathlib import Path
# ============================================================================
# MAKER Core (Embedded)
# ============================================================================
@dataclass
class VotingConfig:
k: int = 3
max_samples: int = 30
temperature_first: float = 0.0
temperature_rest: float = 0.1
parallel_samples: int = 3
@dataclass
class RedFlagConfig:
max_response_chars: int = 3000
min_response_length: int = 5
banned_patterns: list = field(default_factory=lambda: [r"I don't know", r"I cannot"])
class LLMClient:
"""Universal LLM client."""
def __init__(self, provider: str, api_key: str, model: str = None):
self.provider = provider.lower()
self.api_key = api_key
self.model = model
self._client = None
self._setup_client()
def _setup_client(self):
if self.provider == "openai":
from openai import AsyncOpenAI
self._client = AsyncOpenAI(api_key=self.api_key)
self.model = self.model or "gpt-4o-mini"
elif self.provider == "anthropic":
from anthropic import AsyncAnthropic
self._client = AsyncAnthropic(api_key=self.api_key)
self.model = self.model or "claude-sonnet-4-20250514"
elif self.provider == "groq":
from openai import AsyncOpenAI
self._client = AsyncOpenAI(api_key=self.api_key, base_url="https://api.groq.com/openai/v1")
self.model = self.model or "llama-3.3-70b-versatile"
elif self.provider == "together":
from openai import AsyncOpenAI
self._client = AsyncOpenAI(api_key=self.api_key, base_url="https://api.together.xyz/v1")
self.model = self.model or "meta-llama/Llama-3.3-70B-Instruct-Turbo"
elif self.provider == "openrouter":
from openai import AsyncOpenAI
self._client = AsyncOpenAI(api_key=self.api_key, base_url="https://openrouter.ai/api/v1")
self.model = self.model or "openai/gpt-4o-mini"
async def generate(self, prompt: str, temperature: float = 0.0, max_tokens: int = 1000) -> str:
if self.provider == "anthropic":
r = await self._client.messages.create(
model=self.model, max_tokens=max_tokens,
messages=[{"role": "user", "content": prompt}]
)
return r.content[0].text
else:
r = await self._client.chat.completions.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
temperature=temperature, max_tokens=max_tokens
)
return r.choices[0].message.content
class WebSearch:
"""Web search using DuckDuckGo (free)."""
@staticmethod
async def search(query: str, num_results: int = 5) -> list:
try:
from duckduckgo_search import DDGS
results = []
with DDGS() as ddgs:
for r in ddgs.text(query, max_results=num_results):
results.append({
"title": r.get("title", ""),
"url": r.get("href", ""),
"snippet": r.get("body", "")
})
return results
except Exception as e:
return [{"title": "Error", "url": "", "snippet": str(e)}]
class FileHandler:
"""Handle file uploads."""
@staticmethod
async def load_file(file_path: str) -> dict:
path = Path(file_path)
ext = path.suffix.lower()
try:
if ext in {'.txt', '.md', '.json', '.py', '.js', '.html', '.css', '.csv'}:
content = path.read_text(encoding='utf-8', errors='replace')
return {"type": "text", "name": path.name, "content": content[:50000]}
elif ext == '.pdf':
try:
import pymupdf
doc = pymupdf.open(str(path))
text = "\n\n".join([page.get_text() for page in doc])
doc.close()
return {"type": "pdf", "name": path.name, "content": text[:50000]}
except ImportError:
return {"type": "error", "name": path.name, "content": "PDF requires: pip install pymupdf"}
elif ext == '.docx':
try:
from docx import Document
doc = Document(str(path))
text = "\n\n".join([p.text for p in doc.paragraphs])
return {"type": "docx", "name": path.name, "content": text[:50000]}
except ImportError:
return {"type": "error", "name": path.name, "content": "DOCX requires: pip install python-docx"}
elif ext in {'.png', '.jpg', '.jpeg', '.gif', '.webp'}:
content = path.read_bytes()
b64 = base64.b64encode(content).decode('utf-8')
return {"type": "image", "name": path.name, "base64": b64}
else:
content = path.read_text(encoding='utf-8', errors='replace')
return {"type": "text", "name": path.name, "content": content[:50000]}
except Exception as e:
return {"type": "error", "name": path.name, "content": str(e)}
class MAKERAgent:
"""MAKER Framework Agent."""
def __init__(self, llm: LLMClient, voting: VotingConfig = None, red_flags: RedFlagConfig = None):
self.llm = llm
self.voting = voting or VotingConfig()
self.red_flags = red_flags or RedFlagConfig()
self.stats = {"samples": 0, "red_flags": 0, "tool_calls": 0}
def _check_red_flags(self, response: str) -> bool:
if len(response) > self.red_flags.max_response_chars:
return True
if len(response) < self.red_flags.min_response_length:
return True
for pattern in self.red_flags.banned_patterns:
if re.search(pattern, response, re.IGNORECASE):
return True
return False
def _parse_json(self, response: str) -> Optional[dict]:
response = re.sub(r'^```(?:json)?\s*', '', response.strip())
response = re.sub(r'\s*```$', '', response)
try:
result = json.loads(response)
return result if isinstance(result, dict) else None
except:
return None
def _serialize(self, result) -> str:
if isinstance(result, dict):
return json.dumps(result, sort_keys=True)
return str(result)
async def execute(self, prompt: str, expected_keys: list = None, use_tools: bool = False,
file_context: str = None, progress_callback: Callable = None) -> dict:
full_prompt = ""
if file_context:
full_prompt += f"CONTEXT FROM FILES:\n{file_context}\n\n"
full_prompt += prompt
if use_tools:
full_prompt += '\n\nTo search web: {"tool": "web_search", "query": "..."}'
full_prompt += "\n\nRespond with valid JSON only."
votes: Counter = Counter()
results_map = {}
samples, flagged = 0, 0
tool_results = []
if progress_callback:
progress_callback(0.1, "Getting first sample...")
response = await self.llm.generate(full_prompt, temperature=0.0)
samples += 1
self.stats["samples"] += 1
# Handle tool calls
if use_tools:
parsed = self._parse_json(response)
if parsed and parsed.get("tool") == "web_search":
query = parsed.get("query", "")
if progress_callback:
progress_callback(0.2, f"Searching: {query}...")
search_results = await WebSearch.search(query)
tool_results.append({"query": query, "results": search_results})
self.stats["tool_calls"] += 1
search_text = "\n".join([f"- {r['title']}: {r['snippet']}" for r in search_results[:5]])
full_prompt += f"\n\nSEARCH RESULTS:\n{search_text}\n\nNow provide final JSON answer."
response = await self.llm.generate(full_prompt, temperature=0.0)
samples += 1
# Parse response
if self._check_red_flags(response):
flagged += 1
self.stats["red_flags"] += 1
else:
parsed = self._parse_json(response)
if parsed and (not expected_keys or all(k in parsed for k in expected_keys)):
key = self._serialize(parsed)
votes[key] += 1
results_map[key] = parsed
# Voting loop
round_num = 1
while samples < self.voting.max_samples:
if votes:
top = votes.most_common(2)
top_count = top[0][1]
second_count = top[1][1] if len(top) > 1 else 0
if top_count - second_count >= self.voting.k:
break
round_num += 1
if progress_callback:
progress_callback(0.2 + 0.6 * (samples / self.voting.max_samples), f"Voting round {round_num}...")
for _ in range(self.voting.parallel_samples):
if samples >= self.voting.max_samples:
break
response = await self.llm.generate(full_prompt, temperature=self.voting.temperature_rest)
samples += 1
self.stats["samples"] += 1
if self._check_red_flags(response):
flagged += 1
continue
parsed = self._parse_json(response)
if parsed and (not expected_keys or all(k in parsed for k in expected_keys)):
key = self._serialize(parsed)
votes[key] += 1
if key not in results_map:
results_map[key] = parsed
if progress_callback:
progress_callback(1.0, "Complete!")
if votes:
top_key, top_count = votes.most_common(1)[0]
return {
"success": True, "result": results_map[top_key],
"votes": top_count, "total_samples": samples,
"red_flagged": flagged, "vote_distribution": dict(votes),
"tool_results": tool_results
}
return {"success": False, "result": None, "votes": 0, "total_samples": samples,
"red_flagged": flagged, "vote_distribution": {}, "tool_results": tool_results}
# ============================================================================
# Custom CSS
# ============================================================================
CUSTOM_CSS = """
.gradio-container {
max-width: 1200px !important;
}
.header-title {
background: linear-gradient(90deg, #6366f1, #8b5cf6, #a855f7);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
font-size: 2.5rem !important;
font-weight: 800 !important;
text-align: center;
}
.header-sub {
color: #64748b !important;
text-align: center;
margin-bottom: 1.5rem !important;
}
.primary-btn {
background: linear-gradient(135deg, #6366f1 0%, #8b5cf6 100%) !important;
border: none !important;
font-weight: 600 !important;
border-radius: 8px !important;
}
.primary-btn:hover {
transform: translateY(-2px) !important;
box-shadow: 0 4px 12px rgba(99, 102, 241, 0.4) !important;
}
"""
# ============================================================================
# State & Functions
# ============================================================================
current_agent = None
loaded_files = {}
def create_agent(provider, api_key, model, k_votes):
global current_agent
if not api_key:
return "β Please enter API key"
try:
llm = LLMClient(provider, api_key, model if model else None)
current_agent = MAKERAgent(llm, VotingConfig(k=k_votes))
return f"β
Agent ready: {provider} / {llm.model}"
except Exception as e:
return f"β Error: {e}"
async def run_query_async(prompt, use_search, use_files, expected_keys, progress=gr.Progress()):
global current_agent, loaded_files
if not current_agent:
return {"error": "Create agent first"}, "β No agent", ""
file_context = None
if use_files and loaded_files:
parts = [f"=== {n} ===\n{i.get('content', '')[:10000]}"
for n, i in loaded_files.items() if i["type"] != "image"]
file_context = "\n\n".join(parts) if parts else None
keys = [k.strip() for k in expected_keys.split(",") if k.strip()] if expected_keys else None
def update_progress(pct, msg):
progress(pct, desc=msg)
try:
result = await current_agent.execute(prompt, keys, use_search, file_context, update_progress)
stats = f"""### Stats
- **Success**: {'β
' if result['success'] else 'β'}
- **Votes**: {result['votes']}
- **Samples**: {result['total_samples']}
- **Red-flagged**: {result['red_flagged']}"""
votes = "### Vote Distribution\n" + "\n".join([f"- {v} votes: {k[:80]}..." for k, v in
sorted(result['vote_distribution'].items(), key=lambda x: -x[1])[:3]]) if result['vote_distribution'] else ""
return result['result'], stats, votes
except Exception as e:
return {"error": str(e)}, f"β {e}", ""
def run_query(prompt, use_search, use_files, expected_keys, progress=gr.Progress()):
return asyncio.run(run_query_async(prompt, use_search, use_files, expected_keys, progress))
def handle_files(files):
global loaded_files
if not files:
loaded_files = {}
return "No files"
loaded_files = {}
results = []
for f in files:
info = asyncio.run(FileHandler.load_file(f.name))
loaded_files[info['name']] = info
if info['type'] == 'error':
results.append(f"β {info['name']}: {info['content']}")
elif info['type'] == 'image':
results.append(f"πΌοΈ {info['name']}")
else:
results.append(f"β
{info['name']} ({len(info.get('content', ''))} chars)")
return "\n".join(results)
# ============================================================================
# UI
# ============================================================================
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft(), title="MAKER Agent") as demo:
gr.HTML("""
<div style="text-align: center; padding: 20px 0;">
<h1 class="header-title">π§ MAKER Agent</h1>
<p class="header-sub">Reliable AI with Voting & Red-Flagging | Based on arxiv.org/abs/2511.09030</p>
</div>
""")
with gr.Tabs():
# Setup Tab
with gr.Tab("βοΈ Setup"):
gr.Markdown("### Configure your LLM provider")
with gr.Row():
with gr.Column():
provider = gr.Dropdown(
["openai", "anthropic", "groq", "together", "openrouter"],
value="openai", label="Provider"
)
api_key = gr.Textbox(label="API Key", type="password", placeholder="sk-...")
model = gr.Textbox(label="Model (optional)", placeholder="Leave blank for default")
with gr.Column():
k_votes = gr.Slider(1, 10, value=3, step=1, label="K (votes needed to win)",
info="Higher = more reliable but slower")
gr.Markdown("""
### How MAKER Works
1. **Voting**: Samples multiple responses, winner needs K votes ahead
2. **Red-Flagging**: Discards suspicious outputs (too long, malformed)
3. **Tools**: Optional web search for current information
""")
setup_btn = gr.Button("π Create Agent", elem_classes="primary-btn")
setup_status = gr.Markdown("π Enter your API key and click Create Agent to start")
setup_btn.click(create_agent, [provider, api_key, model, k_votes], setup_status)
# Query Tab
with gr.Tab("π¬ Query"):
gr.Markdown("### Ask a question")
with gr.Row():
with gr.Column(scale=2):
prompt = gr.Textbox(
label="Your Query",
lines=4,
placeholder="Ask anything... The agent will use voting to ensure reliable answers.\n\nExample: What are the key factors for startup success? Return as JSON with keys: factors, explanation"
)
with gr.Row():
use_search = gr.Checkbox(label="π Enable Web Search", info="Search DuckDuckGo for current info")
use_files = gr.Checkbox(label="π Use Uploaded Files", info="Include file content in context")
expected_keys = gr.Textbox(
label="Expected JSON keys (optional)",
placeholder="answer, confidence, sources",
info="Comma-separated list of required keys in response"
)
run_btn = gr.Button("βΆοΈ Run Query", elem_classes="primary-btn")
with gr.Column(scale=1):
gr.Markdown("""### Example Queries
**Simple Analysis:**
```
What factors lead to startup success?
```
**With Web Search:**
```
What are the latest AI news this week?
```
**With Expected Keys:**
```
Analyze the pros and cons of remote work.
Expected keys: pros, cons, recommendation
```
""")
gr.Markdown("---")
gr.Markdown("### Results")
with gr.Row():
with gr.Column(scale=2):
result_json = gr.JSON(label="Response")
with gr.Column(scale=1):
stats_md = gr.Markdown("*Run a query to see stats*")
votes_md = gr.Markdown("")
run_btn.click(
run_query,
[prompt, use_search, use_files, expected_keys],
[result_json, stats_md, votes_md]
)
# Files Tab
with gr.Tab("π Files"):
gr.Markdown("### Upload files for analysis")
gr.Markdown("Supported formats: PDF, DOCX, TXT, MD, JSON, CSV, PNG, JPG")
file_upload = gr.File(
label="Upload Files",
file_count="multiple",
file_types=[".pdf", ".docx", ".txt", ".md", ".json", ".csv", ".png", ".jpg", ".jpeg"]
)
file_status = gr.Markdown("*No files uploaded*")
file_upload.change(handle_files, file_upload, file_status)
gr.Markdown("""
### How to use files
1. Upload your files above
2. Go to the **Query** tab
3. Check **"Use Uploaded Files"**
4. Ask questions about your documents!
""")
# About Tab
with gr.Tab("βΉοΈ About"):
gr.Markdown("""
## About MAKER Framework
**MAKER** (Massively Decomposed Agentic Processes) achieves near-zero errors through:
| Pillar | Description |
|--------|-------------|
| **Maximal Decomposition** | Break tasks into single-step atomic operations |
| **K-Voting** | Sample multiple times, winner needs K votes ahead |
| **Red-Flagging** | Discard suspicious outputs (don't try to repair them) |
### Key Insight
> *"Reliability is an engineering problem, not a model problem."*
Instead of waiting for better models, you can achieve near-zero errors TODAY using smaller, cheaper models with statistical voting.
### Results from the Paper
The researchers achieved **1,000,000 steps with ZERO errors** using gpt-4.1-mini!
### Links
- π **Paper**: [arxiv.org/abs/2511.09030](https://arxiv.org/abs/2511.09030)
- π₯ **Video Explanation**: [YouTube](https://youtube.com/watch?v=TJ-vWGCosdQ)
### Supported LLM Providers
| Provider | Example Models |
|----------|----------------|
| OpenAI | gpt-4o-mini, gpt-4o |
| Anthropic | claude-sonnet, claude-opus |
| Groq | llama-3.3-70b (very fast!) |
| Together | Llama, Mistral, Qwen |
| OpenRouter | 100+ models |
""")
gr.HTML("""
<div style="text-align:center; color:#64748b; padding:20px; border-top: 1px solid #e2e8f0; margin-top: 20px;">
MAKER Framework | Based on <a href="https://arxiv.org/abs/2511.09030" style="color:#6366f1">arxiv.org/abs/2511.09030</a>
</div>
""")
if __name__ == "__main__":
demo.launch()
|