Spaces:
Sleeping
Sleeping
File size: 19,411 Bytes
0f7edc0 43b2ee6 0f7edc0 9e74b5e 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 7a12b9e 43b2ee6 7a12b9e 43b2ee6 7a12b9e 43b2ee6 7a12b9e 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 62f1a95 0f7edc0 43b2ee6 7a12b9e 43b2ee6 0f7edc0 43b2ee6 d645858 43b2ee6 d645858 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 0f7edc0 43b2ee6 9e74b5e 43b2ee6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
"""
MAKER Agent - Chat Interface
=============================
Reliable AI Agent with Web Search & File Upload
Based on: https://arxiv.org/abs/2511.09030
"""
import gradio as gr
import asyncio
import json
import re
import base64
from collections import Counter
from dataclasses import dataclass, field
from typing import Any, Callable, Optional
from pathlib import Path
# ============================================================================
# MAKER Core (Embedded)
# ============================================================================
@dataclass
class VotingConfig:
k: int = 3
max_samples: int = 30
temperature_first: float = 0.0
temperature_rest: float = 0.1
parallel_samples: int = 3
@dataclass
class RedFlagConfig:
max_response_chars: int = 3000
min_response_length: int = 5
banned_patterns: list = field(default_factory=lambda: [])
class LLMClient:
"""Universal LLM client."""
def __init__(self, provider: str, api_key: str, model: str = None):
self.provider = provider.lower()
self.api_key = api_key
self.model = model
self._client = None
self._setup_client()
def _setup_client(self):
if self.provider == "openai":
from openai import AsyncOpenAI
self._client = AsyncOpenAI(api_key=self.api_key)
self.model = self.model or "gpt-4o-mini"
elif self.provider == "anthropic":
from anthropic import AsyncAnthropic
self._client = AsyncAnthropic(api_key=self.api_key)
self.model = self.model or "claude-sonnet-4-20250514"
elif self.provider == "groq":
from openai import AsyncOpenAI
self._client = AsyncOpenAI(api_key=self.api_key, base_url="https://api.groq.com/openai/v1")
self.model = self.model or "llama-3.3-70b-versatile"
elif self.provider == "together":
from openai import AsyncOpenAI
self._client = AsyncOpenAI(api_key=self.api_key, base_url="https://api.together.xyz/v1")
self.model = self.model or "meta-llama/Llama-3.3-70B-Instruct-Turbo"
elif self.provider == "openrouter":
from openai import AsyncOpenAI
self._client = AsyncOpenAI(api_key=self.api_key, base_url="https://openrouter.ai/api/v1")
self.model = self.model or "openai/gpt-4o-mini"
async def generate(self, prompt: str, temperature: float = 0.0, max_tokens: int = 2000) -> str:
if self.provider == "anthropic":
r = await self._client.messages.create(
model=self.model, max_tokens=max_tokens,
messages=[{"role": "user", "content": prompt}]
)
return r.content[0].text
else:
r = await self._client.chat.completions.create(
model=self.model,
messages=[{"role": "user", "content": prompt}],
temperature=temperature, max_tokens=max_tokens
)
return r.choices[0].message.content
class WebSearch:
"""Web search using DuckDuckGo (free)."""
@staticmethod
async def search(query: str, num_results: int = 5) -> list:
try:
from duckduckgo_search import DDGS
results = []
with DDGS() as ddgs:
for r in ddgs.text(query, max_results=num_results):
results.append({
"title": r.get("title", ""),
"url": r.get("href", ""),
"snippet": r.get("body", "")
})
return results
except Exception as e:
return [{"title": "Error", "url": "", "snippet": str(e)}]
class FileHandler:
"""Handle file uploads."""
@staticmethod
async def load_file(file_path: str) -> dict:
path = Path(file_path)
ext = path.suffix.lower()
try:
if ext in {'.txt', '.md', '.json', '.py', '.js', '.html', '.css', '.csv'}:
content = path.read_text(encoding='utf-8', errors='replace')
return {"type": "text", "name": path.name, "content": content[:50000]}
elif ext == '.pdf':
try:
import pymupdf
doc = pymupdf.open(str(path))
text = "\n\n".join([page.get_text() for page in doc])
doc.close()
return {"type": "pdf", "name": path.name, "content": text[:50000]}
except ImportError:
return {"type": "error", "name": path.name, "content": "PDF requires: pip install pymupdf"}
elif ext == '.docx':
try:
from docx import Document
doc = Document(str(path))
text = "\n\n".join([p.text for p in doc.paragraphs])
return {"type": "docx", "name": path.name, "content": text[:50000]}
except ImportError:
return {"type": "error", "name": path.name, "content": "DOCX requires: pip install python-docx"}
elif ext in {'.png', '.jpg', '.jpeg', '.gif', '.webp'}:
content = path.read_bytes()
b64 = base64.b64encode(content).decode('utf-8')
return {"type": "image", "name": path.name, "base64": b64}
else:
content = path.read_text(encoding='utf-8', errors='replace')
return {"type": "text", "name": path.name, "content": content[:50000]}
except Exception as e:
return {"type": "error", "name": path.name, "content": str(e)}
class MAKERAgent:
"""MAKER Framework Agent."""
def __init__(self, llm: LLMClient, voting: VotingConfig = None, red_flags: RedFlagConfig = None):
self.llm = llm
self.voting = voting or VotingConfig()
self.red_flags = red_flags or RedFlagConfig()
self.stats = {"samples": 0, "red_flags": 0, "tool_calls": 0}
def _check_red_flags(self, response: str) -> bool:
if len(response) > self.red_flags.max_response_chars:
return True
if len(response) < self.red_flags.min_response_length:
return True
for pattern in self.red_flags.banned_patterns:
if re.search(pattern, response, re.IGNORECASE):
return True
return False
def _normalize_response(self, response: str) -> str:
"""Normalize response for voting comparison."""
return response.strip().lower()
async def execute(self, prompt: str, use_search: bool = False,
file_context: str = None, progress_callback: Callable = None) -> dict:
# Build the full prompt
full_prompt = "You are a helpful assistant. Respond naturally and conversationally.\n\n"
if file_context:
full_prompt += f"The user has provided the following files for context:\n{file_context}\n\n"
full_prompt += f"User: {prompt}\n\nAssistant:"
# Handle web search if enabled
search_results = None
if use_search:
if progress_callback:
progress_callback(0.1, "Searching the web...")
search_results = await WebSearch.search(prompt)
self.stats["tool_calls"] += 1
if search_results and search_results[0].get("title") != "Error":
search_text = "\n".join([f"- {r['title']}: {r['snippet']}" for r in search_results[:5]])
full_prompt = f"You are a helpful assistant with access to web search results.\n\n"
if file_context:
full_prompt += f"Files provided:\n{file_context}\n\n"
full_prompt += f"Web search results for '{prompt}':\n{search_text}\n\n"
full_prompt += f"User question: {prompt}\n\nProvide a helpful response based on the search results. Assistant:"
if progress_callback:
progress_callback(0.2, "Getting response...")
# Voting loop
votes: Counter = Counter()
responses_map = {}
samples, flagged = 0, 0
# First sample at temperature 0
response = await self.llm.generate(full_prompt, temperature=0.0)
samples += 1
self.stats["samples"] += 1
if not self._check_red_flags(response):
key = self._normalize_response(response)
votes[key] += 1
responses_map[key] = response
else:
flagged += 1
self.stats["red_flags"] += 1
# Continue voting until we have a winner
round_num = 1
while samples < self.voting.max_samples:
if votes:
top = votes.most_common(2)
top_count = top[0][1]
second_count = top[1][1] if len(top) > 1 else 0
if top_count - second_count >= self.voting.k:
break
round_num += 1
if progress_callback:
progress_callback(0.2 + 0.7 * (samples / self.voting.max_samples), f"Voting round {round_num}...")
for _ in range(self.voting.parallel_samples):
if samples >= self.voting.max_samples:
break
response = await self.llm.generate(full_prompt, temperature=self.voting.temperature_rest)
samples += 1
self.stats["samples"] += 1
if not self._check_red_flags(response):
key = self._normalize_response(response)
votes[key] += 1
if key not in responses_map:
responses_map[key] = response
else:
flagged += 1
self.stats["red_flags"] += 1
if progress_callback:
progress_callback(1.0, "Done!")
if votes:
top_key, top_count = votes.most_common(1)[0]
return {
"success": True,
"response": responses_map[top_key],
"votes": top_count,
"total_samples": samples,
"red_flagged": flagged,
"search_results": search_results
}
return {
"success": False,
"response": "I couldn't generate a reliable response. Please try again.",
"votes": 0,
"total_samples": samples,
"red_flagged": flagged,
"search_results": search_results
}
# ============================================================================
# Global State
# ============================================================================
current_agent = None
loaded_files = {}
# ============================================================================
# Functions
# ============================================================================
def setup_agent(provider, api_key, model, k_votes):
global current_agent
if not api_key:
return "β Please enter your API key", gr.update(interactive=False)
try:
llm = LLMClient(provider, api_key, model if model else None)
current_agent = MAKERAgent(llm, VotingConfig(k=k_votes))
return f"β
Connected to {provider} ({llm.model})", gr.update(interactive=True)
except Exception as e:
return f"β Error: {e}", gr.update(interactive=False)
def process_files(files):
global loaded_files
loaded_files = {}
if not files:
return "No files attached"
names = []
for f in files:
info = asyncio.run(FileHandler.load_file(f.name))
loaded_files[info['name']] = info
names.append(info['name'])
return f"π {', '.join(names)}"
async def chat_async(message, history, use_search, files, progress=gr.Progress()):
global current_agent, loaded_files
if not current_agent:
return history + [[message, "β οΈ Please set up your API key first in the Settings tab."]]
# Process any new files
if files:
for f in files:
info = await FileHandler.load_file(f.name)
loaded_files[info['name']] = info
# Build file context
file_context = None
if loaded_files:
parts = []
for name, info in loaded_files.items():
if info["type"] != "image" and info["type"] != "error":
parts.append(f"=== {name} ===\n{info.get('content', '')[:10000]}")
if parts:
file_context = "\n\n".join(parts)
def update_progress(pct, msg):
progress(pct, desc=msg)
try:
result = await current_agent.execute(
message,
use_search=use_search,
file_context=file_context,
progress_callback=update_progress
)
response = result["response"]
# Add subtle stats footer
stats = f"\n\n---\n*{result['votes']} votes, {result['total_samples']} samples*"
return history + [[message, response + stats]]
except Exception as e:
return history + [[message, f"β Error: {str(e)}"]]
def chat(message, history, use_search, files):
return asyncio.run(chat_async(message, history, use_search, files))
def clear_chat():
global loaded_files
loaded_files = {}
return [], None, "No files attached"
# ============================================================================
# UI
# ============================================================================
with gr.Blocks(title="MAKER Agent") as demo:
# Header
gr.HTML("""
<div style="text-align: center; padding: 20px 0 10px 0;">
<h1 style="font-size: 2rem; margin: 0;">π§ MAKER Agent</h1>
<p style="color: #666; margin: 5px 0;">Reliable AI with Voting β’ <a href="https://arxiv.org/abs/2511.09030" target="_blank">Paper</a></p>
</div>
""")
with gr.Tabs():
# Chat Tab
with gr.Tab("π¬ Chat"):
chatbot = gr.Chatbot(
height=450,
)
with gr.Row():
with gr.Column(scale=12):
msg = gr.Textbox(
placeholder="Ask anything...",
show_label=False,
lines=2,
)
with gr.Column(scale=1, min_width=80):
send_btn = gr.Button("Send", variant="primary", interactive=False)
with gr.Row():
with gr.Column(scale=4):
file_upload = gr.File(
label="",
file_count="multiple",
file_types=[".pdf", ".docx", ".txt", ".md", ".json", ".csv"],
show_label=False,
)
with gr.Column(scale=2):
file_status = gr.Markdown("No files attached")
with gr.Column(scale=2):
use_search = gr.Checkbox(
label="π Web Search",
value=False,
info="Search DuckDuckGo"
)
with gr.Column(scale=1):
clear_btn = gr.Button("ποΈ Clear")
# Event handlers
file_upload.change(process_files, file_upload, file_status)
msg.submit(chat, [msg, chatbot, use_search, file_upload], chatbot).then(
lambda: "", None, msg
)
send_btn.click(chat, [msg, chatbot, use_search, file_upload], chatbot).then(
lambda: "", None, msg
)
clear_btn.click(clear_chat, None, [chatbot, file_upload, file_status])
# Settings Tab
with gr.Tab("βοΈ Settings"):
gr.Markdown("### Connect to an LLM Provider")
with gr.Row():
with gr.Column():
provider = gr.Dropdown(
["groq", "openai", "anthropic", "together", "openrouter"],
value="groq",
label="Provider",
info="Groq is free & fast!"
)
api_key = gr.Textbox(
label="API Key",
type="password",
placeholder="Paste your API key here..."
)
model = gr.Textbox(
label="Model (optional)",
placeholder="Leave blank for default"
)
with gr.Column():
k_votes = gr.Slider(
1, 7, value=3, step=1,
label="Reliability (K votes)",
info="Higher = more reliable, slower"
)
gr.Markdown("""
### Get API Keys
**Groq** (recommended - free & fast):
[console.groq.com](https://console.groq.com)
**OpenAI**: [platform.openai.com/api-keys](https://platform.openai.com/api-keys)
**Anthropic**: [console.anthropic.com](https://console.anthropic.com)
""")
connect_btn = gr.Button("π Connect", variant="primary")
status = gr.Markdown("π Enter your API key and click Connect")
connect_btn.click(
setup_agent,
[provider, api_key, model, k_votes],
[status, send_btn]
)
# About Tab
with gr.Tab("βΉοΈ About"):
gr.Markdown("""
## How MAKER Works
This agent uses the **MAKER Framework** to achieve reliable AI responses:
1. **Multiple Samples** - Generates several responses for each question
2. **Voting** - Responses "vote" and the winner needs K votes ahead
3. **Red-Flagging** - Suspicious outputs are automatically discarded
### Why This Matters
Instead of hoping the AI gets it right, MAKER uses statistics to ensure reliability. The paper achieved **1 million steps with zero errors** using this approach.
### Features
- π **Web Search** - Free DuckDuckGo search (no API key needed)
- π **File Upload** - PDF, DOCX, TXT, MD, JSON, CSV
- β‘ **Multiple Providers** - Groq, OpenAI, Anthropic, and more
### Links
- π [Research Paper](https://arxiv.org/abs/2511.09030)
- π₯ [Video Explanation](https://youtube.com/watch?v=TJ-vWGCosdQ)
""")
# Footer
gr.HTML("""
<div style="text-align: center; color: #888; padding: 15px; font-size: 0.85rem;">
MAKER Framework β’ <a href="https://arxiv.org/abs/2511.09030" style="color: #888;">arxiv.org/abs/2511.09030</a>
</div>
""")
if __name__ == "__main__":
demo.launch()
|