File size: 20,727 Bytes
8f4d405
 
 
 
 
 
 
 
 
79ea999
 
8f4d405
 
 
 
 
79ea999
8f4d405
79ea999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4d405
 
79ea999
 
 
 
8f4d405
 
 
79ea999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4d405
 
 
 
 
 
 
 
79ea999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a42ce
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
79ea999
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96e6d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4d405
 
 
c3a42ce
8f4d405
 
96e6d20
8f4d405
 
 
 
 
 
 
 
 
 
 
 
c3a42ce
 
 
 
 
 
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79ea999
8f4d405
 
79ea999
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4d405
 
 
79ea999
 
 
 
 
 
 
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79ea999
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a42ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4d405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a42ce
 
8f4d405
 
79ea999
 
 
 
 
8f4d405
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
#!/usr/bin/env python3
"""
Pure Flask API for Hugging Face Spaces
No Gradio - Just Flask REST API
Uses local GPU models for inference
"""

from flask import Flask, request, jsonify
from flask_cors import CORS
from flask_limiter import Limiter
from flask_limiter.util import get_remote_address
import logging
import sys
import os
import asyncio
from pathlib import Path
from logging.handlers import RotatingFileHandler

# Validate and set OMP_NUM_THREADS (must be valid integer)
omp_threads = os.getenv('OMP_NUM_THREADS', '4')
try:
    omp_int = int(omp_threads)
    if omp_int <= 0:
        omp_int = 4
        logger_basic = logging.getLogger(__name__)
        logger_basic.warning("OMP_NUM_THREADS must be positive, defaulting to 4")
    os.environ['OMP_NUM_THREADS'] = str(omp_int)
    os.environ['MKL_NUM_THREADS'] = str(omp_int)
except (ValueError, TypeError):
    os.environ['OMP_NUM_THREADS'] = '4'
    os.environ['MKL_NUM_THREADS'] = '4'
    logger_basic = logging.getLogger(__name__)
    logger_basic.warning("Invalid OMP_NUM_THREADS, defaulting to 4")

# Setup secure logging
log_dir = os.getenv('LOG_DIR', '/tmp/logs')
try:
    os.makedirs(log_dir, exist_ok=True, mode=0o700)  # Secure permissions
except OSError:
    # Fallback if /tmp/logs not writable
    log_dir = os.path.expanduser('~/.logs') if os.path.expanduser('~') else '/tmp'
    os.makedirs(log_dir, exist_ok=True)

# Configure logging with file rotation
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[
        logging.StreamHandler(sys.stdout)  # Console output
    ]
)
logger = logging.getLogger(__name__)

# Add file handler with rotation (if log directory is writable)
try:
    log_file = os.path.join(log_dir, 'app.log')
    file_handler = RotatingFileHandler(
        log_file,
        maxBytes=10*1024*1024,  # 10MB
        backupCount=5
    )
    file_handler.setFormatter(logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s',
        datefmt='%Y-%m-%d %H:%M:%S'
    ))
    file_handler.setLevel(logging.INFO)
    logger.addHandler(file_handler)
    # Set secure file permissions (Unix only)
    if os.name != 'nt':  # Not Windows
        try:
            os.chmod(log_file, 0o600)
        except OSError:
            pass  # Ignore permission errors
    logger.info(f"Logging to file: {log_file}")
except (OSError, PermissionError) as e:
    logger.warning(f"Could not create log file: {e}. Using console logging only.")

# Sanitize sensitive data in logs
def sanitize_log_data(data):
    """Remove sensitive information from log data"""
    if isinstance(data, dict):
        sanitized = {}
        for key, value in data.items():
            if any(sensitive in key.lower() for sensitive in ['token', 'password', 'secret', 'key', 'auth', 'api_key']):
                sanitized[key] = '***REDACTED***'
            else:
                sanitized[key] = sanitize_log_data(value) if isinstance(value, (dict, list)) else value
        return sanitized
    elif isinstance(data, list):
        return [sanitize_log_data(item) for item in data]
    return data

# Add project root to path
project_root = Path(__file__).parent
sys.path.insert(0, str(project_root))

# Create Flask app
app = Flask(__name__)
CORS(app)  # Enable CORS for all origins

# Initialize rate limiter (use Redis in production for distributed systems)
rate_limit_enabled = os.getenv('RATE_LIMIT_ENABLED', 'true').lower() == 'true'
if rate_limit_enabled:
    limiter = Limiter(
        app=app,
        key_func=get_remote_address,
        default_limits=["200 per day", "50 per hour", "10 per minute"],
        storage_uri="memory://",  # Use Redis in production: "redis://localhost:6379"
        headers_enabled=True
    )
    logger.info("Rate limiting enabled")
else:
    limiter = None
    logger.warning("Rate limiting disabled - NOT recommended for production")

# Add security headers middleware
@app.after_request
def set_security_headers(response):
    """
    Add comprehensive security headers to all responses.
    
    Implements OWASP-recommended security headers for enhanced protection
    against common web vulnerabilities.
    """
    # Essential security headers (already implemented)
    response.headers['X-Content-Type-Options'] = 'nosniff'
    response.headers['X-Frame-Options'] = 'DENY'
    response.headers['X-XSS-Protection'] = '1; mode=block'
    response.headers['Strict-Transport-Security'] = 'max-age=31536000; includeSubDomains'
    response.headers['Content-Security-Policy'] = "default-src 'self'"
    response.headers['Referrer-Policy'] = 'strict-origin-when-cross-origin'
    
    # Additional security headers (Phase 1 enhancement)
    response.headers['Permissions-Policy'] = 'geolocation=(), microphone=(), camera=()'
    response.headers['Cross-Origin-Resource-Policy'] = 'same-origin'
    response.headers['Cross-Origin-Opener-Policy'] = 'same-origin'
    response.headers['X-Permitted-Cross-Domain-Policies'] = 'none'
    
    return response

# Global orchestrator
orchestrator = None
orchestrator_available = False

def initialize_orchestrator():
    """Initialize the AI orchestrator with local GPU models"""
    global orchestrator, orchestrator_available
    
    try:
        logger.info("=" * 60)
        logger.info("INITIALIZING AI ORCHESTRATOR (Local GPU Models)")
        logger.info("=" * 60)
        
        from src.agents.intent_agent import create_intent_agent
        from src.agents.synthesis_agent import create_synthesis_agent
        from src.agents.safety_agent import create_safety_agent
        from src.agents.skills_identification_agent import create_skills_identification_agent
        from src.llm_router import LLMRouter
        from src.orchestrator_engine import MVPOrchestrator
        from src.context_manager import EfficientContextManager
        
        logger.info("✓ Imports successful")
        
        hf_token = os.getenv('HF_TOKEN', '')
        if not hf_token:
            logger.warning("HF_TOKEN not set - API fallback will be used if local models fail")
        
        # Initialize LLM Router with local model loading enabled
        logger.info("Initializing LLM Router with local GPU model loading...")
        llm_router = LLMRouter(hf_token, use_local_models=True)
        
        logger.info("Initializing Agents...")
        agents = {
            'intent_recognition': create_intent_agent(llm_router),
            'response_synthesis': create_synthesis_agent(llm_router),
            'safety_check': create_safety_agent(llm_router),
            'skills_identification': create_skills_identification_agent(llm_router)
        }
        
        logger.info("Initializing Context Manager...")
        context_manager = EfficientContextManager(llm_router=llm_router)
        
        logger.info("Initializing Orchestrator...")
        orchestrator = MVPOrchestrator(llm_router, context_manager, agents)
        
        orchestrator_available = True
        logger.info("=" * 60)
        logger.info("✓ AI ORCHESTRATOR READY")
        logger.info("  - Local GPU models enabled")
        logger.info("  - MAX_WORKERS: 4")
        logger.info("=" * 60)
        
        return True
        
    except Exception as e:
        logger.error(f"Failed to initialize: {e}", exc_info=True)
        orchestrator_available = False
        return False

# Root endpoint
@app.route('/', methods=['GET'])
def root():
    """API information"""
    return jsonify({
        'name': 'AI Assistant Flask API',
        'version': '1.0',
        'status': 'running',
        'orchestrator_ready': orchestrator_available,
        'features': {
            'local_gpu_models': True,
            'max_workers': 4,
            'hardware': 'NVIDIA T4 Medium'
        },
        'endpoints': {
            'health': 'GET /api/health',
            'chat': 'POST /api/chat',
            'initialize': 'POST /api/initialize',
            'context_mode_get': 'GET /api/context/mode',
            'context_mode_set': 'POST /api/context/mode'
        }
    })

# Health check
@app.route('/api/health', methods=['GET'])
def health_check():
    """Health check endpoint"""
    return jsonify({
        'status': 'healthy' if orchestrator_available else 'initializing',
        'orchestrator_ready': orchestrator_available
    })

# Chat endpoint
@app.route('/api/chat', methods=['POST'])
@limiter.limit("10 per minute") if limiter else lambda f: f  # Rate limit: 10 requests per minute per IP
def chat():
    """
    Process chat message
    
    POST /api/chat
    {
        "message": "user message",
        "history": [[user, assistant], ...],
        "session_id": "session-123",
        "user_id": "user-456"
    }
    
    Returns:
    {
        "success": true,
        "message": "AI response",
        "history": [...],
        "reasoning": {...},
        "performance": {...}
    }
    """
    try:
        data = request.get_json()
        
        if not data or 'message' not in data:
            return jsonify({
                'success': False,
                'error': 'Message is required'
            }), 400
        
        message = data['message']
        
        # Input validation
        if not isinstance(message, str):
            return jsonify({
                'success': False,
                'error': 'Message must be a string'
            }), 400
        
        # Strip whitespace and validate
        message = message.strip()
        if not message:
            return jsonify({
                'success': False,
                'error': 'Message cannot be empty'
            }), 400
        
        # Length limit (prevent abuse)
        MAX_MESSAGE_LENGTH = 10000  # 10KB limit
        if len(message) > MAX_MESSAGE_LENGTH:
            return jsonify({
                'success': False,
                'error': f'Message too long. Maximum length is {MAX_MESSAGE_LENGTH} characters'
            }), 400
        
        history = data.get('history', [])
        session_id = data.get('session_id')
        user_id = data.get('user_id', 'anonymous')
        context_mode = data.get('context_mode')  # Optional: 'fresh' or 'relevant'
        
        logger.info(f"Chat request - User: {user_id}, Session: {session_id}")
        logger.info(f"Message length: {len(message)} chars, preview: {message[:100]}...")
        
        if not orchestrator_available or orchestrator is None:
            return jsonify({
                'success': False,
                'error': 'Orchestrator not ready',
                'message': 'AI system is initializing. Please try again in a moment.'
            }), 503
        
        # Process with orchestrator (async method)
        # Set user_id for session tracking
        if session_id:
            orchestrator.set_user_id(session_id, user_id)
            
            # Set context mode if provided
            if context_mode and hasattr(orchestrator.context_manager, 'set_context_mode'):
                if context_mode in ['fresh', 'relevant']:
                    orchestrator.context_manager.set_context_mode(session_id, context_mode, user_id)
                    logger.info(f"Context mode set to '{context_mode}' for session {session_id}")
                else:
                    logger.warning(f"Invalid context_mode '{context_mode}', ignoring. Use 'fresh' or 'relevant'")
        
        # Run async process_request in event loop
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        try:
            result = loop.run_until_complete(
                orchestrator.process_request(
                    session_id=session_id or f"session-{user_id}",
                    user_input=message
                )
            )
        finally:
            loop.close()
        
        # Extract response
        if isinstance(result, dict):
            response_text = result.get('response', '') or result.get('final_response', '')
            reasoning = result.get('reasoning', {})
            performance = result.get('performance', {})
            
            # ENHANCED: Log performance metrics for debugging
            if performance:
                logger.info("=" * 60)
                logger.info("PERFORMANCE METRICS")
                logger.info("=" * 60)
                logger.info(f"Processing Time: {performance.get('processing_time', 0)}ms")
                logger.info(f"Tokens Used: {performance.get('tokens_used', 0)}")
                logger.info(f"Agents Used: {performance.get('agents_used', 0)}")
                logger.info(f"Confidence Score: {performance.get('confidence_score', 0)}%")
                agent_contribs = performance.get('agent_contributions', [])
                if agent_contribs:
                    logger.info("Agent Contributions:")
                    for contrib in agent_contribs:
                        logger.info(f"  - {contrib.get('agent', 'Unknown')}: {contrib.get('percentage', 0)}%")
                logger.info(f"Safety Score: {performance.get('safety_score', 0)}%")
                logger.info("=" * 60)
            else:
                logger.warning("⚠️ No performance metrics in response!")
                logger.debug(f"Result keys: {list(result.keys())}")
                logger.debug(f"Result metadata keys: {list(result.get('metadata', {}).keys())}")
                # Try to extract from metadata as fallback
                metadata = result.get('metadata', {})
                if 'performance_metrics' in metadata:
                    performance = metadata['performance_metrics']
                    logger.info("✓ Found performance metrics in metadata")
        else:
            response_text = str(result)
            reasoning = {}
            performance = {
                "processing_time": 0,
                "tokens_used": 0,
                "agents_used": 0,
                "confidence_score": 0,
                "agent_contributions": [],
                "safety_score": 80,
                "error": "Response format error"
            }
        
        updated_history = history + [[message, response_text]]
        
        logger.info(f"✓ Response generated (length: {len(response_text)})")
        
        return jsonify({
            'success': True,
            'message': response_text,
            'history': updated_history,
            'reasoning': reasoning,
            'performance': performance
        })
        
    except Exception as e:
        logger.error(f"Chat error: {e}", exc_info=True)
        return jsonify({
            'success': False,
            'error': str(e),
            'message': 'Error processing your request. Please try again.'
        }), 500

# Manual initialization endpoint
@app.route('/api/initialize', methods=['POST'])
@limiter.limit("5 per minute") if limiter else lambda f: f  # Rate limit: 5 requests per minute per IP
def initialize():
    """Manually trigger initialization"""
    success = initialize_orchestrator()
    
    if success:
        return jsonify({
            'success': True,
            'message': 'Orchestrator initialized successfully'
        })
    else:
        return jsonify({
            'success': False,
            'message': 'Initialization failed. Check logs for details.'
        }), 500

# Context mode management endpoints
@app.route('/api/context/mode', methods=['GET'])
def get_context_mode():
    """
    Get current context mode for a session
    
    GET /api/context/mode?session_id=session-123
    
    Returns:
    {
        "success": true,
        "session_id": "session-123",
        "context_mode": "fresh" | "relevant",
        "description": {
            "fresh": "No user context included - starts fresh each time",
            "relevant": "Only relevant user context included based on relevance classification"
        }
    }
    """
    try:
        session_id = request.args.get('session_id')
        
        if not session_id:
            return jsonify({
                'success': False,
                'error': 'session_id query parameter is required'
            }), 400
        
        if not orchestrator_available or orchestrator is None:
            return jsonify({
                'success': False,
                'error': 'Orchestrator not ready'
            }), 503
        
        if not hasattr(orchestrator.context_manager, 'get_context_mode'):
            return jsonify({
                'success': False,
                'error': 'Context mode not available'
            }), 503
        
        context_mode = orchestrator.context_manager.get_context_mode(session_id)
        
        return jsonify({
            'success': True,
            'session_id': session_id,
            'context_mode': context_mode,
            'description': {
                'fresh': 'No user context included - starts fresh each time',
                'relevant': 'Only relevant user context included based on relevance classification'
            }
        })
        
    except Exception as e:
        logger.error(f"Get context mode error: {e}", exc_info=True)
        return jsonify({
            'success': False,
            'error': str(e)
        }), 500

@app.route('/api/context/mode', methods=['POST'])
def set_context_mode():
    """
    Set context mode for a session
    
    POST /api/context/mode
    {
        "session_id": "session-123",
        "mode": "fresh" | "relevant",
        "user_id": "user-456" (optional)
    }
    
    Returns:
    {
        "success": true,
        "session_id": "session-123",
        "context_mode": "fresh" | "relevant",
        "message": "Context mode set successfully"
    }
    """
    try:
        data = request.get_json()
        
        if not data:
            return jsonify({
                'success': False,
                'error': 'Request body is required'
            }), 400
        
        session_id = data.get('session_id')
        mode = data.get('mode')
        user_id = data.get('user_id', 'anonymous')
        
        if not session_id:
            return jsonify({
                'success': False,
                'error': 'session_id is required'
            }), 400
        
        if not mode:
            return jsonify({
                'success': False,
                'error': 'mode is required'
            }), 400
        
        if mode not in ['fresh', 'relevant']:
            return jsonify({
                'success': False,
                'error': "mode must be 'fresh' or 'relevant'"
            }), 400
        
        if not orchestrator_available or orchestrator is None:
            return jsonify({
                'success': False,
                'error': 'Orchestrator not ready'
            }), 503
        
        if not hasattr(orchestrator.context_manager, 'set_context_mode'):
            return jsonify({
                'success': False,
                'error': 'Context mode not available'
            }), 503
        
        success = orchestrator.context_manager.set_context_mode(session_id, mode, user_id)
        
        if success:
            return jsonify({
                'success': True,
                'session_id': session_id,
                'context_mode': mode,
                'message': 'Context mode set successfully'
            })
        else:
            return jsonify({
                'success': False,
                'error': 'Failed to set context mode'
            }), 500
        
    except Exception as e:
        logger.error(f"Set context mode error: {e}", exc_info=True)
        return jsonify({
            'success': False,
            'error': str(e)
        }), 500

# Initialize on startup
if __name__ == '__main__':
    logger.info("=" * 60)
    logger.info("STARTING PURE FLASK API")
    logger.info("=" * 60)
    
    # Initialize orchestrator
    initialize_orchestrator()
    
    port = int(os.getenv('PORT', 7860))
    
    logger.info(f"Starting Flask on port {port}")
    logger.info("Endpoints available:")
    logger.info("  GET  /")
    logger.info("  GET  /api/health")
    logger.info("  POST /api/chat")
    logger.info("  POST /api/initialize")
    logger.info("  GET  /api/context/mode")
    logger.info("  POST /api/context/mode")
    logger.info("=" * 60)
    
    # Development mode only - Use Gunicorn for production
    logger.warning("⚠️  Using Flask development server - NOT for production!")
    logger.warning("⚠️  Use Gunicorn for production: gunicorn flask_api_standalone:app")
    logger.info("=" * 60)
    
    app.run(
        host='0.0.0.0',
        port=port,
        debug=False,
        threaded=True  # Enable threading for concurrent requests
    )