Spaces:
Build error
Build error
| # -------------------------------------------------------- | |
| # Copyright (c) 2022 Microsoft | |
| # Licensed under The MIT License [see LICENSE for details] | |
| # Based on fairseq code bases | |
| # https://github.com/facebookresearch/fairseq | |
| # -------------------------------------------------------- | |
| """ | |
| Modified from https://github.com/facebookresearch/fairseq/blob/main/fairseq/models/transformer/transformer_decoder.py | |
| """ | |
| import math | |
| from typing import Any, Dict, List, Optional | |
| import torch | |
| import torch.nn as nn | |
| from fairseq import utils | |
| from fairseq.distributed import fsdp_wrap | |
| from fairseq.models import FairseqIncrementalDecoder | |
| from fairseq.models.transformer import TransformerConfig | |
| from fairseq.modules import ( | |
| AdaptiveSoftmax, | |
| BaseLayer, | |
| FairseqDropout, | |
| LayerDropModuleList, | |
| LayerNorm, | |
| PositionalEmbedding, | |
| SinusoidalPositionalEmbedding, | |
| ) | |
| from fairseq.modules.checkpoint_activations import checkpoint_wrapper | |
| from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_ | |
| from torch import Tensor | |
| from speechut.modules import transformer_layer | |
| from speechut.modules import RelativePositionalEncoding | |
| # rewrite name for backward compatibility in `make_generation_fast_` | |
| def module_name_fordropout(module_name: str) -> str: | |
| if module_name == "TransformerDecoderBase": | |
| return "TransformerDecoder" | |
| else: | |
| return module_name | |
| class TransformerDecoderBase(FairseqIncrementalDecoder): | |
| """ | |
| Transformer decoder consisting of *cfg.decoder.layers* layers. Each layer | |
| is a :class:`TransformerDecoderLayer`. | |
| Args: | |
| args (argparse.Namespace): parsed command-line arguments | |
| dictionary (~fairseq.data.Dictionary): decoding dictionary | |
| embed_tokens (torch.nn.Embedding): output embedding | |
| no_encoder_attn (bool, optional): whether to attend to encoder outputs | |
| (default: False). | |
| """ | |
| def __init__( | |
| self, | |
| cfg, | |
| dictionary, | |
| embed_tokens, | |
| no_encoder_attn=False, | |
| output_projection=None, | |
| use_rel_pos_enc=False, | |
| ): | |
| self.cfg = cfg | |
| super().__init__(dictionary) | |
| self.register_buffer("version", torch.Tensor([3])) | |
| self._future_mask = torch.empty(0) | |
| self.dropout_module = FairseqDropout( | |
| cfg.dropout, module_name=module_name_fordropout(self.__class__.__name__) | |
| ) | |
| self.decoder_layerdrop = cfg.decoder.layerdrop | |
| self.share_input_output_embed = cfg.share_decoder_input_output_embed | |
| input_embed_dim = embed_tokens.embedding_dim | |
| embed_dim = cfg.decoder.embed_dim | |
| self.embed_dim = embed_dim | |
| self.output_embed_dim = cfg.decoder.output_dim | |
| self.padding_idx = embed_tokens.padding_idx | |
| self.max_target_positions = cfg.max_target_positions | |
| self.embed_tokens = embed_tokens | |
| self.embed_scale = 1.0 if cfg.no_scale_embedding else math.sqrt(embed_dim) | |
| if not cfg.adaptive_input and cfg.quant_noise.pq > 0: | |
| self.quant_noise = apply_quant_noise_( | |
| nn.Linear(embed_dim, embed_dim, bias=False), | |
| cfg.quant_noise.pq, | |
| cfg.quant_noise.pq_block_size, | |
| ) | |
| else: | |
| self.quant_noise = None | |
| self.project_in_dim = ( | |
| Linear(input_embed_dim, embed_dim, bias=False) | |
| if embed_dim != input_embed_dim | |
| else None | |
| ) | |
| self.embed_positions = ( | |
| PositionalEmbedding( | |
| self.max_target_positions, | |
| embed_dim, | |
| self.padding_idx, | |
| learned=cfg.decoder.learned_pos, | |
| ) | |
| if not cfg.no_token_positional_embeddings | |
| else None | |
| ) | |
| if cfg.layernorm_embedding: | |
| self.layernorm_embedding = LayerNorm(embed_dim, export=cfg.export) | |
| else: | |
| self.layernorm_embedding = None | |
| self.cross_self_attention = cfg.cross_self_attention | |
| if self.decoder_layerdrop > 0.0: | |
| self.layers = LayerDropModuleList(p=self.decoder_layerdrop) | |
| else: | |
| self.layers = nn.ModuleList([]) | |
| self.use_rel_pos_enc = use_rel_pos_enc | |
| self.layers.extend( | |
| [ | |
| self.build_decoder_layer(cfg, no_encoder_attn) | |
| for _ in range(cfg.decoder.layers) | |
| ] | |
| ) | |
| self.num_layers = len(self.layers) | |
| if cfg.decoder.normalize_before and not cfg.no_decoder_final_norm: | |
| self.layer_norm = LayerNorm(embed_dim, export=cfg.export) | |
| else: | |
| self.layer_norm = None | |
| self.project_out_dim = ( | |
| Linear(embed_dim, self.output_embed_dim, bias=False) | |
| if embed_dim != self.output_embed_dim and not cfg.tie_adaptive_weights | |
| else None | |
| ) | |
| self.adaptive_softmax = None | |
| self.output_projection = output_projection | |
| if self.output_projection is None: | |
| self.build_output_projection(cfg, dictionary, embed_tokens) | |
| if self.use_rel_pos_enc: | |
| self.pos_emb = RelativePositionalEncoding(embed_dim // cfg.decoder.attention_heads, 24) | |
| def build_output_projection(self, cfg, dictionary, embed_tokens): | |
| if cfg.adaptive_softmax_cutoff is not None: | |
| self.adaptive_softmax = AdaptiveSoftmax( | |
| len(dictionary), | |
| self.output_embed_dim, | |
| utils.eval_str_list(cfg.adaptive_softmax_cutoff, type=int), | |
| dropout=cfg.adaptive_softmax_dropout, | |
| adaptive_inputs=embed_tokens if cfg.tie_adaptive_weights else None, | |
| factor=cfg.adaptive_softmax_factor, | |
| tie_proj=cfg.tie_adaptive_proj, | |
| ) | |
| elif self.share_input_output_embed: | |
| self.output_projection = nn.Linear( | |
| self.embed_tokens.weight.shape[1], | |
| self.embed_tokens.weight.shape[0], | |
| bias=False, | |
| ) | |
| self.output_projection.weight = self.embed_tokens.weight | |
| else: | |
| self.output_projection = nn.Linear( | |
| self.output_embed_dim, len(dictionary), bias=False | |
| ) | |
| nn.init.normal_( | |
| self.output_projection.weight, mean=0, std=self.output_embed_dim ** -0.5 | |
| ) | |
| num_base_layers = cfg.base_layers | |
| for i in range(num_base_layers): | |
| self.layers.insert( | |
| ((i + 1) * cfg.decoder.layers) // (num_base_layers + 1), | |
| BaseLayer(cfg), | |
| ) | |
| def build_decoder_layer(self, cfg, no_encoder_attn=False): | |
| layer = transformer_layer.TransformerDecoderLayerBase(cfg, no_encoder_attn, has_relative_attention_bias=self.use_rel_pos_enc) | |
| checkpoint = cfg.checkpoint_activations | |
| if checkpoint: | |
| offload_to_cpu = cfg.offload_activations | |
| layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) | |
| # if we are checkpointing, enforce that FSDP always wraps the | |
| # checkpointed layer, regardless of layer size | |
| min_params_to_wrap = cfg.min_params_to_wrap if not checkpoint else 0 | |
| layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap) | |
| return layer | |
| def forward( | |
| self, | |
| prev_output_tokens, | |
| encoder_out: Optional[Dict[str, List[Tensor]]] = None, | |
| incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, | |
| features_only: bool = False, | |
| full_context_alignment: bool = False, | |
| alignment_layer: Optional[int] = None, | |
| alignment_heads: Optional[int] = None, | |
| src_lengths: Optional[Any] = None, | |
| return_all_hiddens: bool = False, | |
| ): | |
| """ | |
| Args: | |
| prev_output_tokens (LongTensor): previous decoder outputs of shape | |
| `(batch, tgt_len)`, for teacher forcing | |
| encoder_out (optional): output from the encoder, used for | |
| encoder-side attention, should be of size T x B x C | |
| incremental_state (dict): dictionary used for storing state during | |
| :ref:`Incremental decoding` | |
| features_only (bool, optional): only return features without | |
| applying output layer (default: False). | |
| full_context_alignment (bool, optional): don't apply | |
| auto-regressive mask to self-attention (default: False). | |
| Returns: | |
| tuple: | |
| - the decoder's output of shape `(batch, tgt_len, vocab)` | |
| - a dictionary with any model-specific outputs | |
| """ | |
| x, extra = self.extract_features( | |
| prev_output_tokens, | |
| encoder_out=encoder_out, | |
| incremental_state=incremental_state, | |
| full_context_alignment=full_context_alignment, | |
| alignment_layer=alignment_layer, | |
| alignment_heads=alignment_heads, | |
| ) | |
| if not features_only: | |
| x = self.output_layer(x) | |
| return x, extra | |
| def extract_features( | |
| self, | |
| prev_output_tokens, | |
| encoder_out: Optional[Dict[str, List[Tensor]]], | |
| incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, | |
| full_context_alignment: bool = False, | |
| alignment_layer: Optional[int] = None, | |
| alignment_heads: Optional[int] = None, | |
| ): | |
| return self.extract_features_scriptable( | |
| prev_output_tokens, | |
| encoder_out, | |
| incremental_state, | |
| full_context_alignment, | |
| alignment_layer, | |
| alignment_heads, | |
| ) | |
| """ | |
| A scriptable subclass of this class has an extract_features method and calls | |
| super().extract_features, but super() is not supported in torchscript. A copy of | |
| this function is made to be used in the subclass instead. | |
| """ | |
| def extract_features_scriptable( | |
| self, | |
| prev_output_tokens, | |
| encoder_out: Optional[Dict[str, List[Tensor]]], | |
| incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, | |
| full_context_alignment: bool = False, | |
| alignment_layer: Optional[int] = None, | |
| alignment_heads: Optional[int] = None, | |
| ): | |
| """ | |
| Similar to *forward* but only return features. | |
| Includes several features from "Jointly Learning to Align and | |
| Translate with Transformer Models" (Garg et al., EMNLP 2019). | |
| Args: | |
| full_context_alignment (bool, optional): don't apply | |
| auto-regressive mask to self-attention (default: False). | |
| alignment_layer (int, optional): return mean alignment over | |
| heads at this layer (default: last layer). | |
| alignment_heads (int, optional): only average alignment over | |
| this many heads (default: all heads). | |
| Returns: | |
| tuple: | |
| - the decoder's features of shape `(batch, tgt_len, embed_dim)` | |
| - a dictionary with any model-specific outputs | |
| """ | |
| bs, slen = prev_output_tokens.size() | |
| if alignment_layer is None: | |
| alignment_layer = self.num_layers - 1 | |
| enc: Optional[Tensor] = None | |
| padding_mask: Optional[Tensor] = None | |
| if encoder_out is not None and len(encoder_out["encoder_out"]) > 0: | |
| enc = encoder_out["encoder_out"][0] | |
| assert ( | |
| enc.size()[1] == bs | |
| ), f"Expected enc.shape == (t, {bs}, c) got {enc.shape}" | |
| if encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0: | |
| padding_mask = encoder_out["encoder_padding_mask"][0] | |
| # embed positions | |
| positions = None | |
| if self.embed_positions is not None: | |
| positions = self.embed_positions( | |
| prev_output_tokens, incremental_state=incremental_state | |
| ) | |
| if incremental_state is not None: | |
| prev_output_tokens = prev_output_tokens[:, -1:] | |
| if positions is not None: | |
| positions = positions[:, -1:] | |
| # embed tokens and positions | |
| x = self.embed_scale * self.embed_tokens(prev_output_tokens) | |
| if self.quant_noise is not None: | |
| x = self.quant_noise(x) | |
| if self.project_in_dim is not None: | |
| x = self.project_in_dim(x) | |
| if positions is not None: | |
| x += positions | |
| if self.layernorm_embedding is not None: | |
| x = self.layernorm_embedding(x) | |
| x = self.dropout_module(x) | |
| # B x T x C -> T x B x C | |
| x = x.transpose(0, 1) | |
| if self.use_rel_pos_enc: | |
| pos_seq = torch.arange(0, slen).long().to(x.device) | |
| pos_seq = pos_seq[:, None] - pos_seq[None, :] | |
| pos_k, _ = self.pos_emb(pos_seq, incremental_state) | |
| else: | |
| pos_k = None | |
| self_attn_padding_mask: Optional[Tensor] = None | |
| if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any(): | |
| self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) | |
| # decoder layers | |
| attn: Optional[Tensor] = None | |
| inner_states: List[Optional[Tensor]] = [x] | |
| for idx, layer in enumerate(self.layers): | |
| if incremental_state is None and not full_context_alignment: | |
| self_attn_mask = self.buffered_future_mask(x) | |
| else: | |
| self_attn_mask = None | |
| x, layer_attn, _ = layer( | |
| x, | |
| enc, | |
| padding_mask, | |
| incremental_state, | |
| self_attn_mask=self_attn_mask, | |
| self_attn_padding_mask=self_attn_padding_mask, | |
| need_attn=bool((idx == alignment_layer)), | |
| need_head_weights=bool((idx == alignment_layer)), | |
| pos_bias=pos_k, | |
| ) | |
| inner_states.append(x) | |
| if layer_attn is not None and idx == alignment_layer: | |
| attn = layer_attn.float().to(x) | |
| if attn is not None: | |
| if alignment_heads is not None: | |
| attn = attn[:alignment_heads] | |
| # average probabilities over heads | |
| attn = attn.mean(dim=0) | |
| if self.layer_norm is not None: | |
| x = self.layer_norm(x) | |
| # T x B x C -> B x T x C | |
| x = x.transpose(0, 1) | |
| if self.project_out_dim is not None: | |
| x = self.project_out_dim(x) | |
| return x, {"attn": [attn], "inner_states": inner_states} | |
| def output_layer(self, features): | |
| """Project features to the vocabulary size.""" | |
| if self.adaptive_softmax is None: | |
| # project back to size of vocabulary | |
| return self.output_projection(features) | |
| else: | |
| return features | |
| def max_positions(self): | |
| """Maximum output length supported by the decoder.""" | |
| if self.embed_positions is None: | |
| return self.max_target_positions | |
| return min(self.max_target_positions, self.embed_positions.max_positions) | |
| def buffered_future_mask(self, tensor): | |
| dim = tensor.size(0) | |
| # self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround. | |
| if ( | |
| self._future_mask.size(0) == 0 | |
| or (not self._future_mask.device == tensor.device) | |
| or self._future_mask.size(0) < dim | |
| ): | |
| self._future_mask = torch.triu( | |
| utils.fill_with_neg_inf(torch.zeros([dim, dim])), 1 | |
| ) | |
| self._future_mask = self._future_mask.to(tensor) | |
| return self._future_mask[:dim, :dim] | |
| def upgrade_state_dict_named(self, state_dict, name): | |
| """Upgrade a (possibly old) state dict for new versions of fairseq.""" | |
| if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): | |
| weights_key = "{}.embed_positions.weights".format(name) | |
| if weights_key in state_dict: | |
| del state_dict[weights_key] | |
| state_dict[ | |
| "{}.embed_positions._float_tensor".format(name) | |
| ] = torch.FloatTensor(1) | |
| if f"{name}.output_projection.weight" not in state_dict: | |
| if self.share_input_output_embed: | |
| embed_out_key = f"{name}.embed_tokens.weight" | |
| else: | |
| embed_out_key = f"{name}.embed_out" | |
| if embed_out_key in state_dict: | |
| state_dict[f"{name}.output_projection.weight"] = state_dict[ | |
| embed_out_key | |
| ] | |
| if not self.share_input_output_embed: | |
| del state_dict[embed_out_key] | |
| for i in range(self.num_layers): | |
| # update layer norms | |
| layer_norm_map = { | |
| "0": "self_attn_layer_norm", | |
| "1": "encoder_attn_layer_norm", | |
| "2": "final_layer_norm", | |
| } | |
| for old, new in layer_norm_map.items(): | |
| for m in ("weight", "bias"): | |
| k = "{}.layers.{}.layer_norms.{}.{}".format(name, i, old, m) | |
| if k in state_dict: | |
| state_dict[ | |
| "{}.layers.{}.{}.{}".format(name, i, new, m) | |
| ] = state_dict[k] | |
| del state_dict[k] | |
| version_key = "{}.version".format(name) | |
| if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) <= 2: | |
| # earlier checkpoints did not normalize after the stack of layers | |
| self.layer_norm = None | |
| self.normalize = False | |
| state_dict[version_key] = torch.Tensor([1]) | |
| return state_dict | |
| def Linear(in_features, out_features, bias=True): | |
| m = nn.Linear(in_features, out_features, bias) | |
| nn.init.xavier_uniform_(m.weight) | |
| if bias: | |
| nn.init.constant_(m.bias, 0.0) | |
| return m | |
| class TransformerDecoderBaseScriptable(TransformerDecoderBase): | |
| def extract_features( | |
| self, | |
| prev_output_tokens, | |
| encoder_out: Optional[Dict[str, List[Tensor]]] = None, | |
| incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, | |
| full_context_alignment: bool = False, | |
| alignment_layer: Optional[int] = None, | |
| alignment_heads: Optional[int] = None, | |
| ): | |
| # call scriptable method from parent class | |
| x, _ = self.extract_features_scriptable( | |
| prev_output_tokens, | |
| encoder_out, | |
| incremental_state, | |
| full_context_alignment, | |
| alignment_layer, | |
| alignment_heads, | |
| ) | |
| return x, None | |
| class TransformerDecoder(TransformerDecoderBase): | |
| def __init__( | |
| self, | |
| args, | |
| dictionary, | |
| embed_tokens, | |
| no_encoder_attn=False, | |
| output_projection=None, | |
| ): | |
| self.args = args | |
| super().__init__( | |
| TransformerConfig.from_namespace(args), | |
| dictionary, | |
| embed_tokens, | |
| no_encoder_attn=no_encoder_attn, | |
| output_projection=output_projection, | |
| use_rel_pos_enc=getattr(args, "use_rel_pos_enc", False), | |
| ) | |
| def build_output_projection(self, args, dictionary, embed_tokens): | |
| super().build_output_projection( | |
| TransformerConfig.from_namespace(args), dictionary, embed_tokens | |
| ) | |
| def build_decoder_layer(self, args, no_encoder_attn=False): | |
| return super().build_decoder_layer( | |
| TransformerConfig.from_namespace(args), no_encoder_attn=no_encoder_attn | |
| ) | |
| class TransformerDecoderScriptable(TransformerDecoder): | |
| def extract_features( | |
| self, | |
| prev_output_tokens, | |
| encoder_out: Optional[Dict[str, List[Tensor]]] = None, | |
| incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, | |
| full_context_alignment: bool = False, | |
| alignment_layer: Optional[int] = None, | |
| alignment_heads: Optional[int] = None, | |
| ): | |
| # call scriptable method from parent class | |
| x, _ = self.extract_features_scriptable( | |
| prev_output_tokens, | |
| encoder_out, | |
| incremental_state, | |
| full_context_alignment, | |
| alignment_layer, | |
| alignment_heads, | |
| ) | |
| return x, None | |