Spaces:
Runtime error
Runtime error
| import os | |
| from datasets import load_dataset | |
| from transformers import TrOCRProcessor, VisionEncoderDecoderModel, Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator | |
| # Check if model already exists | |
| if os.path.exists("trained_model"): | |
| print("β Model already exists. Skipping training.") | |
| exit() | |
| print("π Starting training...") | |
| # Load only 100 samples for faster CPU training | |
| ds = load_dataset("Azu/Handwritten-Mathematical-Expression-Convert-LaTeX", split="train[:100]") | |
| # DEBUG: Inspect a few labels | |
| print("\nπ Sample labels from dataset:") | |
| for i in range(5): | |
| print(f"{i}: {ds[i]['label']} (type: {type(ds[i]['label'])})") | |
| processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") | |
| # Safely extract label string from possible dict or str | |
| def safe_get_label(example): | |
| label = example.get("label") | |
| if isinstance(label, dict) and "latex" in label: | |
| return label["latex"] | |
| elif isinstance(label, str): | |
| return label | |
| else: | |
| return None | |
| def preprocess(example): | |
| label_str = safe_get_label(example) | |
| if not isinstance(label_str, str) or label_str.strip() == "": | |
| return {} # Skip if label is invalid | |
| # Convert image to RGB | |
| img = example["image"].convert("RGB") | |
| inputs = processor(images=img, return_tensors="pt") | |
| # Tokenize label | |
| labels = processor.tokenizer( | |
| label_str, | |
| truncation=True, | |
| padding="max_length", | |
| max_length=128 | |
| ).input_ids | |
| return { | |
| "pixel_values": inputs.pixel_values[0], | |
| "labels": labels | |
| } | |
| # Preprocess and filter | |
| ds = ds.map(preprocess, remove_columns=["image", "label"]) | |
| ds = ds.filter(lambda ex: "labels" in ex and ex["labels"] is not None) | |
| # Check number of remaining examples | |
| print(f"β Total usable training samples: {len(ds)}") | |
| if len(ds) == 0: | |
| raise RuntimeError("β No usable training samples after preprocessing.") | |
| # Model setup | |
| model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") | |
| model.config.decoder_start_token_id = processor.tokenizer.cls_token_id | |
| model.config.pad_token_id = processor.tokenizer.pad_token_id | |
| training_args = Seq2SeqTrainingArguments( | |
| output_dir="trained_model", | |
| per_device_train_batch_size=2, | |
| num_train_epochs=1, | |
| learning_rate=5e-5, | |
| logging_steps=10, | |
| save_steps=500, | |
| fp16=False, | |
| push_to_hub=False, | |
| ) | |
| trainer = Seq2SeqTrainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=ds, | |
| tokenizer=processor.tokenizer, | |
| data_collator=default_data_collator, | |
| ) | |
| trainer.train() | |
| print("β Training completed") | |
| # Save model | |
| model.save_pretrained("trained_model") | |
| processor.save_pretrained("trained_model") | |
| print("β Model saved to trained_model/") | |