Commit
·
f37320f
1
Parent(s):
c50b07e
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Build txtai workflows.
|
| 3 |
+
|
| 4 |
+
Based on this example: https://github.com/neuml/txtai/blob/master/examples/workflows.py
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import re
|
| 9 |
+
|
| 10 |
+
import yaml
|
| 11 |
+
|
| 12 |
+
import pandas as pd
|
| 13 |
import streamlit as st
|
| 14 |
|
| 15 |
+
from txtai.embeddings import Documents, Embeddings
|
| 16 |
+
from txtai.pipeline import Segmentation, Summary, Tabular, Textractor, Transcription, Translation
|
| 17 |
+
from txtai.workflow import ServiceTask, Task, UrlTask, Workflow
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class Application:
|
| 21 |
+
"""
|
| 22 |
+
Streamlit application.
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
def __init__(self):
|
| 26 |
+
"""
|
| 27 |
+
Creates a new Streamlit application.
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
# Component options
|
| 31 |
+
self.components = {}
|
| 32 |
+
|
| 33 |
+
# Defined pipelines
|
| 34 |
+
self.pipelines = {}
|
| 35 |
+
|
| 36 |
+
# Current workflow
|
| 37 |
+
self.workflow = []
|
| 38 |
+
|
| 39 |
+
# Embeddings index params
|
| 40 |
+
self.embeddings = None
|
| 41 |
+
self.documents = None
|
| 42 |
+
self.data = None
|
| 43 |
+
|
| 44 |
+
def number(self, label):
|
| 45 |
+
"""
|
| 46 |
+
Extracts a number from a text input field.
|
| 47 |
+
|
| 48 |
+
Args:
|
| 49 |
+
label: label to use for text input field
|
| 50 |
+
|
| 51 |
+
Returns:
|
| 52 |
+
numeric input
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
value = st.sidebar.text_input(label)
|
| 56 |
+
return int(value) if value else None
|
| 57 |
+
|
| 58 |
+
def split(self, text):
|
| 59 |
+
"""
|
| 60 |
+
Splits text on commas and returns a list.
|
| 61 |
+
|
| 62 |
+
Args:
|
| 63 |
+
text: input text
|
| 64 |
+
|
| 65 |
+
Returns:
|
| 66 |
+
list
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
return [x.strip() for x in text.split(",")]
|
| 70 |
+
|
| 71 |
+
def options(self, component):
|
| 72 |
+
"""
|
| 73 |
+
Extracts component settings into a component configuration dict.
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
component: component type
|
| 77 |
+
|
| 78 |
+
Returns:
|
| 79 |
+
dict with component settings
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
options = {"type": component}
|
| 83 |
+
|
| 84 |
+
st.sidebar.markdown("---")
|
| 85 |
+
|
| 86 |
+
if component == "embeddings":
|
| 87 |
+
st.sidebar.markdown("**Embeddings Index** \n*Index workflow output*")
|
| 88 |
+
options["path"] = st.sidebar.text_area("Embeddings model path", value="sentence-transformers/nli-mpnet-base-v2")
|
| 89 |
+
options["upsert"] = st.sidebar.checkbox("Upsert")
|
| 90 |
+
|
| 91 |
+
elif component == "summary":
|
| 92 |
+
st.sidebar.markdown("**Summary** \n*Abstractive text summarization*")
|
| 93 |
+
options["path"] = st.sidebar.text_input("Model", value="sshleifer/distilbart-cnn-12-6")
|
| 94 |
+
options["minlength"] = self.number("Min length")
|
| 95 |
+
options["maxlength"] = self.number("Max length")
|
| 96 |
+
|
| 97 |
+
elif component in ("segment", "textract"):
|
| 98 |
+
if component == "segment":
|
| 99 |
+
st.sidebar.markdown("**Segment** \n*Split text into semantic units*")
|
| 100 |
+
else:
|
| 101 |
+
st.sidebar.markdown("**Textractor** \n*Extract text from documents*")
|
| 102 |
+
|
| 103 |
+
options["sentences"] = st.sidebar.checkbox("Split sentences")
|
| 104 |
+
options["lines"] = st.sidebar.checkbox("Split lines")
|
| 105 |
+
options["paragraphs"] = st.sidebar.checkbox("Split paragraphs")
|
| 106 |
+
options["join"] = st.sidebar.checkbox("Join tokenized")
|
| 107 |
+
options["minlength"] = self.number("Min section length")
|
| 108 |
+
|
| 109 |
+
elif component == "service":
|
| 110 |
+
options["url"] = st.sidebar.text_input("URL")
|
| 111 |
+
options["method"] = st.sidebar.selectbox("Method", ["get", "post"], index=0)
|
| 112 |
+
options["params"] = st.sidebar.text_input("URL parameters")
|
| 113 |
+
options["batch"] = st.sidebar.checkbox("Run as batch", value=True)
|
| 114 |
+
options["extract"] = st.sidebar.text_input("Subsection(s) to extract")
|
| 115 |
+
|
| 116 |
+
if options["params"]:
|
| 117 |
+
options["params"] = {key: None for key in self.split(options["params"])}
|
| 118 |
+
if options["extract"]:
|
| 119 |
+
options["extract"] = self.split(options["extract"])
|
| 120 |
+
|
| 121 |
+
elif component == "tabular":
|
| 122 |
+
options["idcolumn"] = st.sidebar.text_input("Id columns")
|
| 123 |
+
options["textcolumns"] = st.sidebar.text_input("Text columns")
|
| 124 |
+
if options["textcolumns"]:
|
| 125 |
+
options["textcolumns"] = self.split(options["textcolumns"])
|
| 126 |
+
|
| 127 |
+
elif component == "transcribe":
|
| 128 |
+
st.sidebar.markdown("**Transcribe** \n*Transcribe audio to text*")
|
| 129 |
+
options["path"] = st.sidebar.text_input("Model", value="facebook/wav2vec2-base-960h")
|
| 130 |
+
|
| 131 |
+
elif component == "translate":
|
| 132 |
+
st.sidebar.markdown("**Translate** \n*Machine translation*")
|
| 133 |
+
options["target"] = st.sidebar.text_input("Target language code", value="en")
|
| 134 |
+
|
| 135 |
+
return options
|
| 136 |
+
|
| 137 |
+
def build(self, components):
|
| 138 |
+
"""
|
| 139 |
+
Builds a workflow using components.
|
| 140 |
+
|
| 141 |
+
Args:
|
| 142 |
+
components: list of components to add to workflow
|
| 143 |
+
"""
|
| 144 |
+
|
| 145 |
+
# Clear application
|
| 146 |
+
self.__init__()
|
| 147 |
+
|
| 148 |
+
# pylint: disable=W0108
|
| 149 |
+
tasks = []
|
| 150 |
+
for component in components:
|
| 151 |
+
component = dict(component)
|
| 152 |
+
wtype = component.pop("type")
|
| 153 |
+
self.components[wtype] = component
|
| 154 |
+
|
| 155 |
+
if wtype == "embeddings":
|
| 156 |
+
self.embeddings = Embeddings({**component})
|
| 157 |
+
self.documents = Documents()
|
| 158 |
+
tasks.append(Task(self.documents.add, unpack=False))
|
| 159 |
+
|
| 160 |
+
elif wtype == "segment":
|
| 161 |
+
self.pipelines[wtype] = Segmentation(**self.components["segment"])
|
| 162 |
+
tasks.append(Task(self.pipelines["segment"]))
|
| 163 |
+
|
| 164 |
+
elif wtype == "service":
|
| 165 |
+
tasks.append(ServiceTask(**self.components["service"]))
|
| 166 |
+
|
| 167 |
+
elif wtype == "summary":
|
| 168 |
+
self.pipelines[wtype] = Summary(component.pop("path"))
|
| 169 |
+
tasks.append(Task(lambda x: self.pipelines["summary"](x, **self.components["summary"])))
|
| 170 |
+
|
| 171 |
+
elif wtype == "tabular":
|
| 172 |
+
self.pipelines[wtype] = Tabular(**self.components["tabular"])
|
| 173 |
+
tasks.append(Task(self.pipelines["tabular"]))
|
| 174 |
+
|
| 175 |
+
elif wtype == "textract":
|
| 176 |
+
self.pipelines[wtype] = Textractor(**self.components["textract"])
|
| 177 |
+
tasks.append(UrlTask(self.pipelines["textract"]))
|
| 178 |
+
|
| 179 |
+
elif wtype == "transcribe":
|
| 180 |
+
self.pipelines[wtype] = Transcription(component.pop("path"))
|
| 181 |
+
tasks.append(UrlTask(self.pipelines["transcribe"], r".\.wav$"))
|
| 182 |
+
|
| 183 |
+
elif wtype == "translate":
|
| 184 |
+
self.pipelines[wtype] = Translation()
|
| 185 |
+
tasks.append(Task(lambda x: self.pipelines["translate"](x, **self.components["translate"])))
|
| 186 |
+
|
| 187 |
+
self.workflow = Workflow(tasks)
|
| 188 |
+
|
| 189 |
+
def yaml(self, components):
|
| 190 |
+
"""
|
| 191 |
+
Builds a yaml string for components.
|
| 192 |
+
|
| 193 |
+
Args:
|
| 194 |
+
components: list of components to export to YAML
|
| 195 |
+
|
| 196 |
+
Returns:
|
| 197 |
+
YAML string
|
| 198 |
+
"""
|
| 199 |
+
|
| 200 |
+
# pylint: disable=W0108
|
| 201 |
+
data = {}
|
| 202 |
+
tasks = []
|
| 203 |
+
name = None
|
| 204 |
+
|
| 205 |
+
for component in components:
|
| 206 |
+
component = dict(component)
|
| 207 |
+
name = wtype = component.pop("type")
|
| 208 |
+
|
| 209 |
+
if wtype == "summary":
|
| 210 |
+
data["summary"] = {"path": component.pop("path")}
|
| 211 |
+
tasks.append({"action": "summary"})
|
| 212 |
+
|
| 213 |
+
elif wtype == "segment":
|
| 214 |
+
data["segmentation"] = component
|
| 215 |
+
tasks.append({"action": "segmentation"})
|
| 216 |
+
|
| 217 |
+
elif wtype == "service":
|
| 218 |
+
config = dict(**component)
|
| 219 |
+
config["task"] = "service"
|
| 220 |
+
tasks.append(config)
|
| 221 |
+
|
| 222 |
+
elif wtype == "tabular":
|
| 223 |
+
data["tabular"] = component
|
| 224 |
+
tasks.append({"action": "tabular"})
|
| 225 |
+
|
| 226 |
+
elif wtype == "textract":
|
| 227 |
+
data["textractor"] = component
|
| 228 |
+
tasks.append({"action": "textractor", "task": "url"})
|
| 229 |
+
|
| 230 |
+
elif wtype == "transcribe":
|
| 231 |
+
data["transcription"] = {"path": component.pop("path")}
|
| 232 |
+
tasks.append({"action": "transcription", "task": "url"})
|
| 233 |
+
|
| 234 |
+
elif wtype == "translate":
|
| 235 |
+
data["translation"] = {}
|
| 236 |
+
tasks.append({"action": "translation", "args": list(component.values())})
|
| 237 |
+
|
| 238 |
+
elif wtype == "embeddings":
|
| 239 |
+
index = component.pop("index")
|
| 240 |
+
upsert = component.pop("upsert")
|
| 241 |
+
|
| 242 |
+
data["embeddings"] = component
|
| 243 |
+
data["writable"] = True
|
| 244 |
+
|
| 245 |
+
if index:
|
| 246 |
+
data["path"] = index
|
| 247 |
+
|
| 248 |
+
name = "index"
|
| 249 |
+
tasks.append({"action": "upsert" if upsert else "index"})
|
| 250 |
+
|
| 251 |
+
# Add in workflow
|
| 252 |
+
data["workflow"] = {name: {"tasks": tasks}}
|
| 253 |
+
|
| 254 |
+
return (name, yaml.dump(data))
|
| 255 |
+
|
| 256 |
+
def find(self, key):
|
| 257 |
+
"""
|
| 258 |
+
Lookup record from cached data by uid key.
|
| 259 |
+
|
| 260 |
+
Args:
|
| 261 |
+
key: uid to search for
|
| 262 |
+
|
| 263 |
+
Returns:
|
| 264 |
+
text for matching uid
|
| 265 |
+
"""
|
| 266 |
+
|
| 267 |
+
return [text for uid, text, _ in self.data if uid == key][0]
|
| 268 |
+
|
| 269 |
+
def process(self, data):
|
| 270 |
+
"""
|
| 271 |
+
Processes the current application action.
|
| 272 |
+
|
| 273 |
+
Args:
|
| 274 |
+
data: input data
|
| 275 |
+
"""
|
| 276 |
+
|
| 277 |
+
if data and self.workflow:
|
| 278 |
+
# Build tuples for embedding index
|
| 279 |
+
if self.documents:
|
| 280 |
+
data = [(x, element, None) for x, element in enumerate(data)]
|
| 281 |
+
|
| 282 |
+
# Process workflow
|
| 283 |
+
for result in self.workflow(data):
|
| 284 |
+
if not self.documents:
|
| 285 |
+
st.write(result)
|
| 286 |
+
|
| 287 |
+
# Build embeddings index
|
| 288 |
+
if self.documents:
|
| 289 |
+
# Cache data
|
| 290 |
+
self.data = list(self.documents)
|
| 291 |
+
|
| 292 |
+
with st.spinner("Building embedding index...."):
|
| 293 |
+
self.embeddings.index(self.documents)
|
| 294 |
+
self.documents.close()
|
| 295 |
+
|
| 296 |
+
# Clear workflow
|
| 297 |
+
self.documents, self.pipelines, self.workflow = None, None, None
|
| 298 |
+
|
| 299 |
+
if self.embeddings and self.data:
|
| 300 |
+
# Set query and limit
|
| 301 |
+
query = st.text_input("Query")
|
| 302 |
+
limit = min(5, len(self.data))
|
| 303 |
+
|
| 304 |
+
st.markdown(
|
| 305 |
+
"""
|
| 306 |
+
<style>
|
| 307 |
+
table td:nth-child(1) {
|
| 308 |
+
display: none
|
| 309 |
+
}
|
| 310 |
+
table th:nth-child(1) {
|
| 311 |
+
display: none
|
| 312 |
+
}
|
| 313 |
+
table {text-align: left !important}
|
| 314 |
+
</style>
|
| 315 |
+
""",
|
| 316 |
+
unsafe_allow_html=True,
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
if query:
|
| 320 |
+
df = pd.DataFrame([{"content": self.find(uid), "score": score} for uid, score in self.embeddings.search(query, limit)])
|
| 321 |
+
st.table(df)
|
| 322 |
+
|
| 323 |
+
def parse(self, data):
|
| 324 |
+
"""
|
| 325 |
+
Parse input data, splits on new lines depending on type of tasks and format of input.
|
| 326 |
+
|
| 327 |
+
Args:
|
| 328 |
+
data: input data
|
| 329 |
+
|
| 330 |
+
Returns:
|
| 331 |
+
parsed data
|
| 332 |
+
"""
|
| 333 |
+
|
| 334 |
+
if re.match(r"^(http|https|file):\/\/", data) or (self.workflow and isinstance(self.workflow.tasks[0], ServiceTask)):
|
| 335 |
+
return [x for x in data.split("\n") if x]
|
| 336 |
+
|
| 337 |
+
return [data]
|
| 338 |
+
|
| 339 |
+
def run(self):
|
| 340 |
+
"""
|
| 341 |
+
Runs Streamlit application.
|
| 342 |
+
"""
|
| 343 |
+
|
| 344 |
+
st.sidebar.image("https://github.com/neuml/txtai/raw/master/logo.png", width=256)
|
| 345 |
+
st.sidebar.markdown("# Workflow builder \n*Build and apply workflows to data* ")
|
| 346 |
+
|
| 347 |
+
# Get selected components
|
| 348 |
+
components = ["embeddings", "segment", "service", "summary", "tabular", "textract", "transcribe", "translate"]
|
| 349 |
+
selected = st.sidebar.multiselect("Select components", components)
|
| 350 |
+
|
| 351 |
+
# Get selected options
|
| 352 |
+
components = [self.options(component) for component in selected]
|
| 353 |
+
st.sidebar.markdown("---")
|
| 354 |
+
|
| 355 |
+
with st.sidebar:
|
| 356 |
+
col1, col2 = st.columns(2)
|
| 357 |
+
|
| 358 |
+
# Build or re-build workflow when build button clicked
|
| 359 |
+
build = col1.button("Build", help="Build the workflow and run within this application")
|
| 360 |
+
if build:
|
| 361 |
+
with st.spinner("Building workflow...."):
|
| 362 |
+
self.build(components)
|
| 363 |
+
|
| 364 |
+
# Generate API configuration
|
| 365 |
+
_, config = self.yaml(components)
|
| 366 |
+
|
| 367 |
+
col2.download_button("Export", config, file_name="workflow.yml", mime="text/yaml", help="Export the API workflow as YAML")
|
| 368 |
+
|
| 369 |
+
with st.expander("Data", expanded=not self.data):
|
| 370 |
+
data = st.text_area("Input", height=10)
|
| 371 |
+
|
| 372 |
+
# Parse text items
|
| 373 |
+
data = self.parse(data)
|
| 374 |
+
|
| 375 |
+
# Process current action
|
| 376 |
+
self.process(data)
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
@st.cache(allow_output_mutation=True)
|
| 380 |
+
def create():
|
| 381 |
+
"""
|
| 382 |
+
Creates and caches a Streamlit application.
|
| 383 |
+
|
| 384 |
+
Returns:
|
| 385 |
+
Application
|
| 386 |
+
"""
|
| 387 |
+
|
| 388 |
+
return Application()
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
if __name__ == "__main__":
|
| 392 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 393 |
+
|
| 394 |
+
# Create and run application
|
| 395 |
+
app = create()
|
| 396 |
+
app.run()
|